test_elementwise_pow_op.py 7.6 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
Q
Qiao Longfei 已提交
16 17
import unittest
import numpy as np
18
from op_test import OpTest, skip_check_grad_ci
19
import paddle.fluid as fluid
20
import paddle
Q
Qiao Longfei 已提交
21 22 23 24 25


class TestElementwisePowOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_pow"
26
        self.python_api = paddle.pow
Q
Qiao Longfei 已提交
27
        self.inputs = {
28 29
            'X': np.random.uniform(1, 2, [20, 5]).astype("float64"),
            'Y': np.random.uniform(1, 2, [20, 5]).astype("float64")
Q
Qiao Longfei 已提交
30 31 32 33
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
34 35 36 37
        if hasattr(self, 'attrs'):
            self.check_output(check_eager=False)
        else:
            self.check_output(check_eager=True)
Q
Qiao Longfei 已提交
38

39
    def test_check_grad_normal(self):
40 41 42 43
        if hasattr(self, 'attrs'):
            self.check_grad(['X', 'Y'], 'Out', check_eager=False)
        else:
            self.check_grad(['X', 'Y'], 'Out', check_eager=True)
44

Q
Qiao Longfei 已提交
45

46 47 48
class TestElementwisePowOp_big_shape_1(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
49
        self.python_api = paddle.pow
50
        self.inputs = {
51
            'X': np.random.uniform(1, 2, [10, 10]).astype("float64"),
Z
zhupengyang 已提交
52
            'Y': np.random.uniform(0.1, 1, [10, 10]).astype("float64")
53 54 55 56 57 58 59
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


class TestElementwisePowOp_big_shape_2(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
60
        self.python_api = paddle.pow
61
        self.inputs = {
62 63
            'X': np.random.uniform(1, 2, [10, 10]).astype("float64"),
            'Y': np.random.uniform(0.2, 2, [10, 10]).astype("float64")
64 65 66 67
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


68 69
@skip_check_grad_ci(
    reason="[skip shape check] Use y_shape(1) to test broadcast.")
Q
Qiao Longfei 已提交
70 71 72
class TestElementwisePowOp_scalar(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
73
        self.python_api = paddle.pow
Q
Qiao Longfei 已提交
74
        self.inputs = {
75 76
            'X': np.random.uniform(0.1, 1, [3, 3, 4]).astype(np.float64),
            'Y': np.random.uniform(0.1, 1, [1]).astype(np.float64)
77 78 79 80 81 82 83
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


class TestElementwisePowOp_tensor(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
84
        self.python_api = paddle.pow
85
        self.inputs = {
86 87
            'X': np.random.uniform(0.1, 1, [100]).astype("float64"),
            'Y': np.random.uniform(1, 3, [100]).astype("float64")
88 89 90 91 92 93 94
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


class TestElementwisePowOp_broadcast_0(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
95
        self.python_api = paddle.pow
96
        self.inputs = {
97 98
            'X': np.random.uniform(0.1, 1, [2, 1, 100]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
Q
Qiao Longfei 已提交
99 100 101 102
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


103 104 105
class TestElementwisePowOp_broadcast_1(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
106
        self.python_api = paddle.pow
107
        self.inputs = {
108 109
            'X': np.random.uniform(0.1, 1, [2, 100, 1]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
110 111 112
        }
        self.attrs = {'axis': 1}
        self.outputs = {
113
            'Out': np.power(self.inputs['X'], self.inputs['Y'].reshape(100, 1))
114 115 116 117 118 119
        }


class TestElementwisePowOp_broadcast_2(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
120
        self.python_api = paddle.pow
121
        self.inputs = {
122 123
            'X': np.random.uniform(0.1, 1, [100, 3, 1]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
124 125 126
        }
        self.attrs = {'axis': 0}
        self.outputs = {
127 128
            'Out':
            np.power(self.inputs['X'], self.inputs['Y'].reshape(100, 1, 1))
129 130 131 132 133 134
        }


class TestElementwisePowOp_broadcast_3(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
135
        self.python_api = paddle.pow
136
        self.inputs = {
137 138
            'X': np.random.uniform(0.1, 1, [2, 20, 5, 1]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [20, 5]).astype("float64")
139 140 141
        }
        self.attrs = {'axis': 1}
        self.outputs = {
142
            'Out': np.power(self.inputs['X'], self.inputs['Y'].reshape(1, 20, 5,
143 144 145 146
                                                                       1))
        }


147 148 149
class TestElementwisePowOp_broadcast_4(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
150
        self.python_api = paddle.pow
151
        self.inputs = {
152 153
            'X': np.random.uniform(0.1, 1, [2, 10, 3, 5]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [2, 10, 1, 5]).astype("float64")
154 155 156 157
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


158 159 160
class TestElementwisePowOpInt(OpTest):
    def setUp(self):
        self.op_type = "elementwise_pow"
161
        self.python_api = paddle.pow
162 163 164 165
        self.inputs = {'X': np.asarray([1, 3, 6]), 'Y': np.asarray([1, 1, 1])}
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
166 167 168 169
        if hasattr(self, 'attrs'):
            self.check_output(check_eager=False)
        else:
            self.check_output(check_eager=True)
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187


class TestElementwisePowGradOpInt(unittest.TestCase):
    def setUp(self):
        self.x = np.asarray([1, 3, 6])
        self.y = np.asarray([1, 1, 1])
        self.res = self.x**self.y
        # dout = 1
        self.grad_res = np.asarray([1, 1, 1])
        # dx = dout * y * pow(x, y-1)
        self.grad_x = self.grad_res * self.y * (self.x
                                                **(self.y - 1)).astype("int")
        # dy = dout * log(x) * pow(x, y)
        self.grad_y = (self.grad_res * np.log(self.x) *
                       (self.x**self.y)).astype("int")
        print(self.grad_res, self.grad_x, self.grad_y)

    def test_grad(self):
188
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
        places = [fluid.CPUPlace()]
        if fluid.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            with fluid.dygraph.guard(place):
                x = fluid.dygraph.to_variable(self.x, zero_copy=False)
                y = fluid.dygraph.to_variable(self.y, zero_copy=False)
                print(x, y)
                x.stop_gradient = False
                y.stop_gradient = False
                res = x**y
                res.backward()
                self.assertTrue(np.array_equal(res.gradient(), self.grad_res))
                self.assertTrue(np.array_equal(x.gradient(), self.grad_x))
                self.assertTrue(np.array_equal(y.gradient(), self.grad_y))
204
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
205 206


Q
Qiao Longfei 已提交
207 208
if __name__ == '__main__':
    unittest.main()