fleet_base.py 37.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
16
import copy
17
import warnings
18
import paddle
19
import os
20
from paddle.fluid.framework import dygraph_only
21
from paddle.fluid import compiler
22
from .role_maker import UserDefinedRoleMaker, PaddleCloudRoleMaker, RoleMakerBase
23
from .strategy_compiler import StrategyCompiler
24
from .distributed_strategy import DistributedStrategy
25 26
from .meta_optimizer_factory import MetaOptimizerFactory
from .runtime_factory import RuntimeFactory
27
from paddle.fluid.wrapped_decorator import wrap_decorator
28
from paddle.fluid.dygraph import parallel_helper
29

30

31 32 33 34 35 36 37 38 39 40 41 42
def _inited_runtime_handler_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._runtime_handle is None:
            raise ValueError("Fleet can not find suitable runtime handler")

        return func(*args, **kwargs)

    return __impl__


43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
def _is_non_distributed_check_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._role_maker is not None and cls._role_maker._is_non_distributed(
        ) is True:
            warnings.warn(
                "%s() function doesn't work when use non_distributed fleet." %
                (func.__name__))
            return

        return func(*args, **kwargs)

    return __impl__


59
inited_runtime_handler = wrap_decorator(_inited_runtime_handler_)
60
is_non_distributed_check = wrap_decorator(_is_non_distributed_check_)
61 62


63 64 65
class Fleet(object):
    """
    Unified API for distributed training of PaddlePaddle
66
    Please reference the https://github.com/PaddlePaddle/FleetX for details
67 68 69 70 71


    Returns:
        Fleet: A Fleet instance

72
    Example for collective training:
1
123malin 已提交
73

74 75
        .. code-block:: python

1
123malin 已提交
76 77
            import paddle
            paddle.enable_static()
78
            import paddle.distributed.fleet as fleet
79 80 81

            fleet.init(is_collective=True)

82 83 84
            strategy = fleet.DistributedStrategy()
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
            optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
85 86 87 88 89 90 91 92

            # do distributed training


    Example for parameter server training:

        .. code-block:: python

1
123malin 已提交
93 94
            import paddle
            paddle.enable_static()
95 96
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
S
ShenLiang 已提交
97
            fleet.init(strategy=strategy)
98

99
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
100
            optimizer = fleet.distributed_optimizer(optimizer)
101

102 103
            if fleet.is_first_worker():
                print("this is first worker")
104

105 106
            print("current node index: {}".format(fleet.worker_index()))
            print("total number of worker num: {}".format(fleet.worker_num()))
107

108 109 110
            if fleet.is_worker():
                print("this is worker")
            print("worker endpoints: {}".format(fleet.worker_endpoints(to_string=True)))
111

112 113
            print("server num: {}".format(fleet.server_num()))
            print("server endpoints: {}".format(fleet.server_endpoints(to_string=True)))
114

115 116 117
            if fleet.is_server():
                print("this is server")
            fleet.stop_worker()
118 119


120 121 122
    """

    def __init__(self):
123
        self._role_maker = None
124
        self.strategy_compiler = None
125
        self._is_collective = False
126
        self._runtime_handle = None
D
Dong Daxiang 已提交
127 128
        self._util = None
        self._context = {}
129

130
    def init(self, role_maker=None, is_collective=False, strategy=None):
131 132 133
        """
        Initialize role_maker in Fleet.

134 135 136 137 138 139 140 141 142 143 144
        This function is responsible for the distributed architecture
        what you want to run your code behind.

        Args:
            role_maker (RoleMakerBase, optional): A ``RoleMakerBase`` containing the configuration
                of environment variables related to distributed training.If you did not initialize 
                the rolemaker by yourself, it will be automatically initialized to PaddleRoleMaker.
                The default value is None.
            is_collective (Boolean, optional): A ``Boolean`` variable determines whether the program 
                runs on the CPU or GPU. False means set distributed training using CPU, and True means
                GPU.The default value is False.The default value is False.
145 146 147 148
            strategy (DistributedStrategy): Extra properties for distributed training. 
                For details, please refer to paddle.distributed.fleet.DistributedStrategy. Default: None.


149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
        Returns:
            None

        Examples1:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

        Examples2:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init(is_collective=True)

        Examples3:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
1
123malin 已提交
171
                role = fleet.PaddleCloudRoleMaker()
172
                fleet.init(role)
173

174 175 176 177 178 179
        Examples4:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
S
ShenLiang 已提交
180
                fleet.init(strategy=strategy)
181

182
        """
S
ShenLiang 已提交
183 184 185
        if strategy is None:
            strategy = DistributedStrategy()
        self._user_defined_strategy = copy.deepcopy(strategy)
186 187

        if role_maker is None:
188 189 190 191 192 193
            if isinstance(is_collective, bool):
                self._is_collective = is_collective
                self._role_maker = PaddleCloudRoleMaker(
                    is_collective=self._is_collective)
            else:
                raise ValueError(
194 195
                    "`is_collective` should be instance of `bool`, but got {}".
                    format(type(is_collective)))
196
        else:
197 198 199 200 201 202
            if isinstance(role_maker, RoleMakerBase):
                self._role_maker = role_maker
            else:
                raise ValueError(
                    "`role_maker` should be subclass of `RoleMakerBase`, but got {}".
                    format(type(role_maker)))
203
        self._role_maker._generate_role()
204

205 206 207
        import paddle.distributed.fleet as fleet
        fleet.util._set_role_maker(self._role_maker)

208
        self.strategy_compiler = StrategyCompiler()
209 210 211 212 213 214 215 216 217

        if self._role_maker._is_non_distributed() and self._is_collective:
            if paddle.fluid.core.is_compiled_with_cuda():
                gpus_num = paddle.fluid.core.get_cuda_device_count()
                if gpus_num != 1:
                    raise ValueError(
                        "CUDA_VISIBLE_DEVICES shoule be set only 1 card if you use `python` to launch fleet program."
                    )

218
        if paddle.fluid.framework.in_dygraph_mode():
219 220
            if self.worker_num() == 1:
                return
221 222 223 224
            if parallel_helper._is_parallel_ctx_initialized():
                warnings.warn(
                    "The dygraph parallel environment has been initialized.")
            else:
225 226 227 228 229 230 231 232 233
                # FLAGS_nccl_nrings is used for dynamic graph multi-stream communication
                if "FLAGS_nccl_nrings" in os.environ:
                    warnings.warn(
                        "You have set the environment variable FLAGS_nccl_nrings "
                        "outside the program, so the nccl_comm_num in "
                        "DistributedStrategy will not take effect here.")
                else:
                    os.environ["FLAGS_nccl_nrings"] = str(
                        self._user_defined_strategy.nccl_comm_num)
234
                paddle.distributed.init_parallel_env()
235 236 237 238 239 240 241 242

    def is_first_worker(self):
        """
        Check whether the node is the first instance of worker.

        Returns:
            bool: True if this is the first node of worker,
                  False if not.
243

244 245 246 247 248 249 250 251
        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_first_worker()

252
        """
253
        return self._role_maker._is_first_worker()
254 255 256 257 258 259 260

    def worker_index(self):
        """
        Get current worker index.

        Returns:
            int: node id
261 262 263 264

        Examples:

            .. code-block:: python
1
123malin 已提交
265

266 267 268 269
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_index()

270
        """
271
        return self._role_maker._worker_index()
272 273 274 275 276 277 278

    def worker_num(self):
        """
        Get current total worker number.

        Returns:
            int: worker numbers
1
123malin 已提交
279

280
        Examples:
1
123malin 已提交
281

282 283 284 285 286 287
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_num()

288
        """
289
        return self._role_maker._worker_num()
290

G
gongweibao 已提交
291 292 293
    def node_num(self):
        return self._role_maker._get_node_num()

294 295 296 297 298 299 300 301
    def local_rank(self):
        return self._role_maker._get_local_rank()

    def local_device_ids(self):
        return self._role_maker._get_local_device_ids()

    def world_device_ids(self):
        return self._role_maker._get_world_device_ids()
G
gongweibao 已提交
302

303 304 305 306 307 308 309
    def is_worker(self):
        """
        Check whether the node is an instance of worker.

        Returns:
            bool: True if this is a node of worker,
                  False if not.
310 311

        Examples:
1
123malin 已提交
312

313 314 315 316 317 318
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_worker()

319
        """
320
        return self._role_maker._is_worker()
321 322 323

    def worker_endpoints(self, to_string=False):
        """
324
        Get current worker endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].
325 326 327

        Returns:
            list/string: server endpoints
328 329

        Examples:
1
123malin 已提交
330

331 332 333 334 335 336
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_endpoints()

337 338
        """
        if to_string:
339
            return ",".join(self._role_maker._get_trainer_endpoints())
340
        else:
341
            return self._role_maker._get_trainer_endpoints()
342 343 344 345 346 347 348

    def server_num(self):
        """
        Get current total worker number.

        Returns:
            int: server number
349 350

        Examples:
1
123malin 已提交
351

352
            .. code-block:: python
1
123malin 已提交
353 354 355 356

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_num()
357
        """
358
        return len(self._role_maker._get_pserver_endpoints())
359 360 361 362 363 364 365

    def server_index(self):
        """
        Get current server index.

        Returns:
            int: node id
366 367

        Examples:
1
123malin 已提交
368

369 370 371 372 373 374
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_index()

375
        """
376
        return self._role_maker._server_index()
377 378 379 380 381 382 383

    def server_endpoints(self, to_string=False):
        """
        Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].

        Returns:
            list/string: server endpoints
384 385

        Examples:
1
123malin 已提交
386

387 388 389 390 391 392
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_endpoints()

393
        """
394

395
        if to_string:
396
            return ",".join(self._role_maker._get_pserver_endpoints())
397
        else:
398
            return self._role_maker._get_pserver_endpoints()
399 400 401 402 403 404 405 406

    def is_server(self):
        """
        Check whether the node is an instance of server.

        Returns:
            bool: True if this is a node of server,
                  False if not.
407 408 409 410

        Examples:

            .. code-block:: python
1
123malin 已提交
411

412 413 414 415
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_server()

416
        """
417
        return self._role_maker._is_server(
418
        ) or self._role_maker._is_heter_worker()
419 420 421

    def barrier_worker(self):
        """
422 423 424 425
        barrier all workers

        Returns:
            None
426
        """
427
        self._role_maker._barrier("worker")
428

429
    @is_non_distributed_check
430
    @inited_runtime_handler
431 432
    def init_worker(self):
        """
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
        initialize `Communicator` for parameter server training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_worker()

451 452 453
        """
        self._runtime_handle._init_worker()

454
    @is_non_distributed_check
455
    @inited_runtime_handler
456
    def init_server(self, *args, **kwargs):
457
        """
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
        init_server executor to initialize startup program,
        if the `args` is not empty, it will run load_persistables for increment training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

477
        """
478
        self._runtime_handle._init_server(*args, **kwargs)
479

480
    @is_non_distributed_check
481
    @inited_runtime_handler
482 483
    def run_server(self):
        """
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
        run server will run pserver main program with executor.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                if fleet.is_server():
                    fleet.init_server()

502 503 504
        """
        self._runtime_handle._run_server()

505
    @is_non_distributed_check
506
    @inited_runtime_handler
507 508
    def stop_worker(self):
        """
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
        stop `Communicator` and give training complete notice to parameter server.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

526 527 528
        """
        self._runtime_handle._stop_worker()

529 530 531 532 533 534 535
    def save_inference_model(self,
                             executor,
                             dirname,
                             feeded_var_names,
                             target_vars,
                             main_program=None,
                             export_for_deployment=True):
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
        """
        save inference model for inference.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

        """

556 557 558 559
        self._runtime_handle._save_inference_model(
            executor, dirname, feeded_var_names, target_vars, main_program,
            export_for_deployment)

560
    def save_persistables(self, executor, dirname, main_program=None, mode=0):
561 562
        """

1
123malin 已提交
563
        saves all persistable tensors from :code:`main_program` to
564 565
        the folder :code:`dirname`. You can refer to

1
123malin 已提交
566 567
        The :code:`dirname` is used to specify the folder where persistable tensors
        are going to be saved. If you would like to save tensors in separate
568 569 570
        files, set :code:`filename` None.

        Args:
1
123malin 已提交
571
            executor(Executor): The executor to run for saving persistable tensors.
572 573 574 575 576
                                You can refer to :ref:`api_guide_executor_en` for
                                more details.

            dirname(str, optional): The saving directory path.
                                When you need to save the parameter to the memory, set it to None.
1
123malin 已提交
577
            main_program(Program, optional): The program whose persistbale tensors will
578 579 580 581 582 583 584 585 586 587
                                             be saved. Default: None.


        Returns:
            None

        Examples:

            .. code-block:: text

1
123malin 已提交
588 589
                import paddle
                paddle.enable_static()
590 591 592 593 594 595 596
                import paddle.distributed.fleet as fleet

                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

1
123malin 已提交
597 598
                exe = paddle.static.Executor(paddle.CPUPlace())
                fleet.save_persistables(exe, "dirname", paddle.static.default_main_program())
599 600 601

        """

602 603
        self._runtime_handle._save_persistables(executor, dirname, main_program,
                                                mode)
604

605
    def distributed_optimizer(self, optimizer, strategy=None):
606
        """
607 608 609 610 611 612 613
        Optimizer for distributed training.

        For the distributed training, this method would rebuild a new instance of DistributedOptimizer.
        Which has basic Optimizer function and special features for distributed training.

        Args:
            optimizer(Optimizer): The executor to run for init server.
614 615 616 617 618
            strategy(DistributedStrategy): Extra properties for distributed optimizer. 
                It is recommended to use DistributedStrategy in fleet.init(). The strategy
                here is for compatibility. If the strategy in fleet.distributed_optimizer() 
                is not None, then it will overwrite the DistributedStrategy in fleet.init(), 
                which will take effect in distributed training.
619

620
        Returns:
621
            Fleet: instance of fleet.
622 623

        Examples:
624

625
            .. code-block:: python
626

1
123malin 已提交
627
                import paddle
628
                import paddle.distributed.fleet as fleet
1
123malin 已提交
629
                fleet.init(is_collective=True)
630 631 632 633
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)

634 635
        """
        self.user_defined_optimizer = optimizer
636

637 638
        if strategy is not None:
            warnings.warn(
S
ShenLiang 已提交
639 640 641 642
                "It is recommended to use DistributedStrategy "
                "in fleet.init(). The strategy here is only for compatibility. "
                "If the strategy in fleet.distributed_optimizer() is "
                "not None, then it will overwrite the DistributedStrategy in fleet.init(), "
643 644
                "which will take effect in distributed training.")
            self._user_defined_strategy = copy.deepcopy(strategy)
D
Dong Daxiang 已提交
645 646

        self._context = {}
647 648
        return self

649
    @dygraph_only
650
    def distributed_model(self, model):
651
        """
652 653 654 655 656 657 658
        Return distributed data parallel model (Only work in dygraph mode)

        Args:
            model (Layer): the user-defind model which inherits Layer.

        Returns:
            distributed data parallel model which inherits Layer.
659 660

        Examples:
661

662 663
            .. code-block:: python

664 665 666 667 668 669 670 671 672
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet

                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
673

674 675
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
676

1
123malin 已提交
677
                # 1. initialize fleet environment
678 679
                fleet.init(is_collective=True)

1
123malin 已提交
680
                # 2. create layer & optimizer
681 682 683 684 685
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
686
                # 3. get data_parallel model using fleet
687 688 689
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
690
                # 4. run layer
691 692 693 694 695 696 697 698 699 700 701 702
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()

703

704 705
        """
        assert model is not None
706 707
        self.model = paddle.DataParallel(
            model,
708 709 710
            comm_buffer_size=self._user_defined_strategy.fuse_grad_size_in_MB,
            last_comm_buffer_size=self._user_defined_strategy.
            last_comm_group_size_MB)
711 712 713 714 715 716
        return self.model

    @dygraph_only
    def state_dict(self):
        """
        Get state dict information from optimizer.
717
        (Only work in dygraph mode)
718 719 720 721 722 723 724

        Returns: 
            state_dict(dict) : dict contains all the Tensor used by optimizer

        Examples:
            .. code-block:: python

725 726 727 728 729
                import numpy as np
                import paddle
                from paddle.distributed import fleet

                fleet.init(is_collective=True)
730

731
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
732
                a = paddle.to_tensor(value)
733

734 735
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
736

737 738 739
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
                state_dict = adam.state_dict()
740 741 742 743 744 745 746 747
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.state_dict()

    @dygraph_only
    def set_state_dict(self, state_dict):
        """
        Load optimizer state dict.
748
        (Only work in dygraph mode)
749 750 751 752

        Args: 
            state_dict(dict) : Dict contains all the Tensor needed by optimizer

753 754
        Returns:
            None
755 756 757 758

        Examples:
            .. code-block:: python

759 760 761
                import numpy as np
                import paddle
                from paddle.distributed import fleet
762

763 764 765
                fleet.init(is_collective=True)

                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
766
                a = paddle.to_tensor(value)
767

768 769
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
770

771 772 773
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
                state_dict = adam.state_dict()
1
123malin 已提交
774 775 776
                paddle.save(state_dict, "paddle_dy")
                para_state_dict = paddle.load("paddle_dy")
                adam.set_state_dict(para_state_dict)
777 778 779 780 781 782 783 784
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.set_state_dict(state_dict)

    @dygraph_only
    def set_lr(self, value):
        """
        Set the value of the learning rate manually in the optimizer. 
785
        (Only work in dygraph mode)
786

787 788 789
        Args:
            value (float|Tensor): the value of learning rate

790 791
        Returns: 
            None 
792 793 794 795

        Examples:
            .. code-block:: python

796 797 798
                import numpy as np
                import paddle
                from paddle.distributed import fleet
799

800
                fleet.init(is_collective=True)
801

802
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
803
                a = paddle.to_tensor(value)
804

805 806
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
807

808 809 810 811 812 813 814 815 816 817 818 819 820 821
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

                lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                for i in range(5):
                    adam.set_lr(lr_list[i])
                    lr = adam.get_lr()
                    print("current lr is {}".format(lr))
                # Print:
                #    current lr is 0.2
                #    current lr is 0.3
                #    current lr is 0.4
                #    current lr is 0.5
                #    current lr is 0.6
822 823 824 825 826 827 828 829
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.set_lr(value)

    @dygraph_only
    def get_lr(self):
        """
        Get current step learning rate.
830
        (Only work in dygraph mode)
831 832 833 834 835

        Returns:
            float: The learning rate of the current step.

        Examples:
1
123malin 已提交
836

837 838
            .. code-block:: python

839 840 841 842 843
                import numpy as np
                import paddle
                from paddle.distributed import fleet

                fleet.init(is_collective=True)
844

845
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
846
                a = paddle.to_tensor(value)
847

848 849
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
850

851 852
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
853

854 855
                lr = adam.get_lr()
                print(lr) # 0.01
856 857 858 859 860 861 862 863
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.get_lr()

    @dygraph_only
    def step(self):
        """
        Execute the optimizer once.
864
        (Only work in dygraph mode)
865

866 867
        Returns:
            None
868 869

        Examples:
1
123malin 已提交
870

871 872
            .. code-block:: python

873 874 875
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet
876

877 878 879 880 881
                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
882

883 884
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
885

1
123malin 已提交
886
                # 1. initialize fleet environment
887 888
                fleet.init(is_collective=True)

1
123malin 已提交
889
                # 2. create layer & optimizer
890 891 892 893 894
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
895
                # 3. get data_parallel model using fleet
896 897 898
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
899
                # 4. run layer
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()


        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.step()

    @dygraph_only
    def clear_grad(self):
        """
920 921
        Clear the gradients of all optimized parameters for model.
        (Only work in dygraph mode)
922

923 924
        Returns: 
            None
925 926

        Examples:
1
123malin 已提交
927

928 929
            .. code-block:: python

930 931 932
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet
933

934 935 936 937 938
                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
939

940 941
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
942

1
123malin 已提交
943
                # 1. initialize fleet environment
944 945
                fleet.init(is_collective=True)

1
123malin 已提交
946
                # 2. create layer & optimizer
947 948 949 950 951
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
952
                # 3. get data_parallel model using fleet
953 954 955
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
956
                # 4. run layer
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()

        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.clear_grad()

D
Dong Daxiang 已提交
973 974 975 976 977 978 979 980 981
    def _final_strategy(self):
        if "valid_strategy" not in self._context:
            print(
                "WARNING: You may need to call minimize function before this function is called"
            )
            return {}
        else:
            return self._context["valid_strategy"]

982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
    def _get_applied_meta_list(self):
        if "applied_meta_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_meta_list called"
            )
            return []
        else:
            return self._context["applied_meta_list"]

    def _get_applied_graph_list(self):
        if "applied_graph_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_graph_list called"
            )
            return []
        else:
            return self._context["applied_graph_list"]

1000 1001 1002 1003 1004 1005 1006 1007 1008
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        """
        Add distributed operations to minimize ``loss`` by updating ``parameter_list``.

        Args:
1
123malin 已提交
1009
            loss (Tensor): A ``Tensor`` containing the value to minimize.
1010 1011 1012
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
1
123malin 已提交
1013
            parameter_list (Iterable, optional): Iterable of ``Tensor`` or ``Tensor.name`` to update
1014 1015
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1
123malin 已提交
1016
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
1017 1018 1019 1020
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
1
123malin 已提交
1021
            by minimize and a list of (param, grad) tensor pairs, param is
1022
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1023 1024
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
1025 1026 1027
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
1
123malin 已提交
1028

1029
            .. code-block:: python
1030

1031
                import paddle
1
123malin 已提交
1032
                paddle.enable_static()
1033
                import paddle.distributed.fleet as fleet
1
123malin 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
                import paddle.nn.functional as F

                hid_dim = 10
                label_dim = 2
                input_x = paddle.static.data(name='x', shape=[None, 13], dtype='float32')
                input_y = paddle.static.data(name='y', shape=[None, 1], dtype='int64')
                fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim, activation='tanh')
                fc_2 = paddle.static.nn.fc(x=fc_1, size=hid_dim, activation='tanh')
                prediction = paddle.static.nn.fc(x=[fc_2], size=label_dim, activation='softmax')
                cost = F.cross_entropy(input=prediction, label=input_y)
                avg_cost = paddle.mean(x=cost)
1045

1
123malin 已提交
1046
                fleet.init(is_collective=True)
1047 1048 1049 1050
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
                optimizer.minimize(avg_cost)
1051

1052
                # for more examples, please reference https://github.com/PaddlePaddle/FleetX
1053 1054

        """
D
Dong Daxiang 已提交
1055 1056 1057
        context = {}
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
1058 1059 1060
        if paddle.fluid.framework.in_dygraph_mode():
            # imitate target optimizer retrieval
            target_opt = self.user_defined_optimizer
D
Dong Daxiang 已提交
1061
            self._context = context
1062 1063
            return target_opt.minimize(loss)

1064 1065
        # cache original feed forward program
        self.origin_main_program = loss.block.program
1066 1067
        context["origin_main_program"] = self.origin_main_program
        context["loss"] = loss
1068 1069
        if startup_program == None:
            self.origin_startup_program = \
1070 1071
                paddle.static.default_startup_program().clone(for_test=False)
            startup_program = paddle.static.default_startup_program()
1072 1073 1074
        else:
            self.origin_startup_program = \
                startup_program.clone(for_test=False)
1075

1076 1077
        context["origin_startup_program"] = startup_program
        context["role_maker"] = self._role_maker
1078 1079 1080 1081 1082

        # compile time
        distributed_optimizer_list = \
            MetaOptimizerFactory()._get_valid_meta_optimizers(
                self.user_defined_optimizer)
D
Dong Daxiang 已提交
1083

D
Dong Daxiang 已提交
1084 1085 1086
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
        copy_user_defined_strategy = copy.deepcopy(self._user_defined_strategy)
1087 1088 1089 1090 1091 1092

        # trigger the auto-parallel in very strict condition
        # strategy = DistributedStrategy()
        # strategy.auto = True
        # optimizer = paddle.optimizer.SGD(learning_rate=0.1)
        # optimizer = fleet.distributed_optimizer(optimizer, strategy)
D
Dong Daxiang 已提交
1093
        if copy_user_defined_strategy._is_strict_auto():
1094 1095
            # turn on all the strategy for each optimizer
            for opt in distributed_optimizer_list:
D
Dong Daxiang 已提交
1096
                opt._enable_strategy(copy_user_defined_strategy, context)
1097

1098 1099
        valid_optimizer_list = []
        valid_graph_optimizer_list = []
D
Dong Daxiang 已提交
1100
        can_not_apply_optimizer_list = []
1101 1102 1103 1104
        # recall meta optimizers for ranking
        for opt in distributed_optimizer_list:
            opt._set_basic_info(loss, self._role_maker,
                                self.user_defined_optimizer,
D
Dong Daxiang 已提交
1105
                                copy_user_defined_strategy)
1106 1107
            if opt._can_apply() and not opt._is_graph_out():
                valid_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1108
            elif opt._can_apply() and opt._is_graph_out():
1109
                valid_graph_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1110 1111
            else:
                can_not_apply_optimizer_list.append(opt)
1112
        # combine recalled meta optimizers to be a valid meta optimizer
D
Dong Daxiang 已提交
1113
        meta_optimizer, graph_optimizer = \
1114 1115
            self.strategy_compiler.generate_optimizer(
                loss, self._role_maker, self.user_defined_optimizer,
D
Dong Daxiang 已提交
1116
                copy_user_defined_strategy, valid_optimizer_list,
1117
                valid_graph_optimizer_list)
D
Dong Daxiang 已提交
1118

D
Dong Daxiang 已提交
1119
        valid_strategy = self.strategy_compiler._get_valid_strategy(
D
Dong Daxiang 已提交
1120 1121 1122
            copy_user_defined_strategy, can_not_apply_optimizer_list)

        context["valid_strategy"] = copy.deepcopy(valid_strategy)
1123

1124 1125 1126 1127 1128 1129
        applied_meta_list = self.strategy_compiler._get_applied_meta_list()
        applied_graph_list = self.strategy_compiler._get_applied_graph_list()

        context['applied_meta_list'] = applied_meta_list
        context['applied_graph_list'] = applied_graph_list

D
Dong Daxiang 已提交
1130
        self._context = context
1131

D
Dong Daxiang 已提交
1132
        self.valid_strategy = valid_strategy
1133
        self.valid_strategy._enable_env()
D
Dong Daxiang 已提交
1134

1135 1136
        optimize_ops = []
        params_grads = []
1137

1138 1139 1140 1141 1142 1143 1144 1145 1146
        if self._role_maker._is_non_distributed() and not self._is_collective:
            if self._runtime_handle is None:
                self._runtime_handle = RuntimeFactory()._create_runtime(context)

            compiled_program = compiler.CompiledProgram(
                self.origin_main_program).with_data_parallel(
                    loss_name=loss.name, share_vars_from=None)
            loss.block.program._graph = compiled_program
            return self.user_defined_optimizer.minimize(
M
MRXLT 已提交
1147
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1148

1149 1150
        if meta_optimizer:
            optimize_ops, params_grads = meta_optimizer.minimize(
M
MRXLT 已提交
1151
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1152

1153
            default_program = paddle.static.default_main_program()
1154 1155 1156 1157

            if id(default_program) != id(loss.block.program):
                paddle.fluid.framework.switch_main_program(loss.block.program)

1158 1159
        else:
            optimize_ops, params_grads = self.user_defined_optimizer.minimize(
M
MRXLT 已提交
1160
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1161

1162 1163
        context["program_optimize_ops"] = optimize_ops
        context["program_params_grads"] = params_grads
1164

1165
        if graph_optimizer:
D
Dong Daxiang 已提交
1166
            optimize_ops, params_grads = graph_optimizer.minimize(
M
MRXLT 已提交
1167
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1168 1169 1170 1171
            # since we do not encourage users to use graph operations
            # if a graph optimizer takes effect, mostly
            # optimizers_ops and params_grads are None
            # i.e. users can not modify current computation graph anymore
1172 1173 1174
            context["graph_optimize_ops"] = optimize_ops
            context["graph_optimize_grads"] = params_grads

1175
        if self._runtime_handle is None:
1176
            self._runtime_handle = RuntimeFactory()._create_runtime(context)
1177

1178 1179
        import paddle.distributed.fleet as fleet
        fleet.util._set_strategy(context["valid_strategy"])
1180 1181

        return optimize_ops, params_grads