fleet_base.py 34.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
16
import copy
17
import warnings
18
import paddle
19
from paddle.fluid.framework import dygraph_only
20
from paddle.fluid import compiler
21
from .role_maker import UserDefinedRoleMaker, PaddleCloudRoleMaker, RoleMakerBase
22
from .strategy_compiler import StrategyCompiler
23
from .distributed_strategy import DistributedStrategy
24 25 26
from .meta_optimizer_factory import MetaOptimizerFactory
from .runtime_factory import RuntimeFactory
from .util_factory import UtilFactory
27
from paddle.fluid.wrapped_decorator import wrap_decorator
28
from paddle.fluid.dygraph import parallel_helper
29

30

31 32 33 34 35 36 37 38 39 40 41 42
def _inited_runtime_handler_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._runtime_handle is None:
            raise ValueError("Fleet can not find suitable runtime handler")

        return func(*args, **kwargs)

    return __impl__


43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
def _is_non_distributed_check_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._role_maker is not None and cls._role_maker._is_non_distributed(
        ) is True:
            warnings.warn(
                "%s() function doesn't work when use non_distributed fleet." %
                (func.__name__))
            return

        return func(*args, **kwargs)

    return __impl__


59
inited_runtime_handler = wrap_decorator(_inited_runtime_handler_)
60
is_non_distributed_check = wrap_decorator(_is_non_distributed_check_)
61 62


63 64 65
class Fleet(object):
    """
    Unified API for distributed training of PaddlePaddle
66
    Please reference the https://github.com/PaddlePaddle/FleetX for details
67 68 69 70 71


    Returns:
        Fleet: A Fleet instance

72
    Example for collective training:
73 74
        .. code-block:: python

75
            import paddle.distributed.fleet as fleet
76 77 78

            fleet.init(is_collective=True)

79 80 81
            strategy = fleet.DistributedStrategy()
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
            optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

            # do distributed training


    Example for parameter server training:

        .. code-block:: python

            import paddle.distributed.fleet as fleet

            fleet.init()

            strategy = fleet.DistributedStrategy()
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
            optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)

98 99
            if fleet.is_first_worker():
                print("this is first worker")
100

101 102
            print("current node index: {}".format(fleet.worker_index()))
            print("total number of worker num: {}".format(fleet.worker_num()))
103

104 105 106
            if fleet.is_worker():
                print("this is worker")
            print("worker endpoints: {}".format(fleet.worker_endpoints(to_string=True)))
107

108 109
            print("server num: {}".format(fleet.server_num()))
            print("server endpoints: {}".format(fleet.server_endpoints(to_string=True)))
110

111 112 113
            if fleet.is_server():
                print("this is server")
            fleet.stop_worker()
114 115


116 117 118
    """

    def __init__(self):
119
        self._role_maker = None
120
        self.strategy_compiler = None
121
        self._is_collective = False
122 123
        self._runtime_handle = None
        self._util = None
124

125 126 127 128
    def init(self, role_maker=None, is_collective=False):
        """
        Initialize role_maker in Fleet.

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
        This function is responsible for the distributed architecture
        what you want to run your code behind.

        Args:
            role_maker (RoleMakerBase, optional): A ``RoleMakerBase`` containing the configuration
                of environment variables related to distributed training.If you did not initialize 
                the rolemaker by yourself, it will be automatically initialized to PaddleRoleMaker.
                The default value is None.
            is_collective (Boolean, optional): A ``Boolean`` variable determines whether the program 
                runs on the CPU or GPU. False means set distributed training using CPU, and True means
                GPU.The default value is False.The default value is False.
        Returns:
            None

        Examples1:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

        Examples2:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init(is_collective=True)

        Examples3:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                role = fleet.PaddleCloudRoleMaker
                fleet.init(role)
164

165
        """
166 167

        if role_maker is None:
168 169 170 171 172 173
            if isinstance(is_collective, bool):
                self._is_collective = is_collective
                self._role_maker = PaddleCloudRoleMaker(
                    is_collective=self._is_collective)
            else:
                raise ValueError(
174 175
                    "`is_collective` should be instance of `bool`, but got {}".
                    format(type(is_collective)))
176
        else:
177 178 179 180 181 182
            if isinstance(role_maker, RoleMakerBase):
                self._role_maker = role_maker
            else:
                raise ValueError(
                    "`role_maker` should be subclass of `RoleMakerBase`, but got {}".
                    format(type(role_maker)))
183
        self._role_maker._generate_role()
184

185
        self.strategy_compiler = StrategyCompiler()
186 187 188 189 190 191
        if paddle.fluid.framework.in_dygraph_mode():
            if parallel_helper._is_parallel_ctx_initialized():
                warnings.warn(
                    "The dygraph parallel environment has been initialized.")
            else:
                paddle.distributed.init_parallel_env()
192 193 194 195 196 197 198 199

    def is_first_worker(self):
        """
        Check whether the node is the first instance of worker.

        Returns:
            bool: True if this is the first node of worker,
                  False if not.
200

201 202 203 204 205 206 207 208
        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_first_worker()

209
        """
210
        return self._role_maker._is_first_worker()
211 212 213 214 215 216 217

    def worker_index(self):
        """
        Get current worker index.

        Returns:
            int: node id
218 219 220 221 222 223 224 225

        Examples:

            .. code-block:: python
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_index()

226
        """
227
        return self._role_maker._worker_index()
228 229 230 231 232 233 234

    def worker_num(self):
        """
        Get current total worker number.

        Returns:
            int: worker numbers
235

236 237 238 239 240 241 242
        Examples:
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_num()

243
        """
244
        return self._role_maker._worker_num()
245 246 247 248 249 250 251 252

    def is_worker(self):
        """
        Check whether the node is an instance of worker.

        Returns:
            bool: True if this is a node of worker,
                  False if not.
253 254 255 256 257 258 259 260

        Examples:
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_worker()

261
        """
262
        return self._role_maker._is_worker()
263 264 265

    def worker_endpoints(self, to_string=False):
        """
266
        Get current worker endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].
267 268 269

        Returns:
            list/string: server endpoints
270 271 272 273 274 275 276 277

        Examples:
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_endpoints()

278 279
        """
        if to_string:
280
            return ",".join(self._role_maker._get_trainer_endpoints())
281
        else:
282
            return self._role_maker._get_trainer_endpoints()
283 284 285 286 287 288 289

    def server_num(self):
        """
        Get current total worker number.

        Returns:
            int: server number
290 291 292 293 294 295

        Examples:
            .. code-block:: python
            import paddle.distributed.fleet as fleet
            fleet.init()
            fleet.server_num()
296
        """
297
        return len(self._role_maker._get_pserver_endpoints())
298 299 300 301 302 303 304

    def server_index(self):
        """
        Get current server index.

        Returns:
            int: node id
305 306 307 308 309 310 311 312

        Examples:
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_index()

313
        """
314
        return self._role_maker._server_index()
315 316 317 318 319 320 321

    def server_endpoints(self, to_string=False):
        """
        Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].

        Returns:
            list/string: server endpoints
322 323 324 325 326 327 328 329

        Examples:
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_endpoints()

330
        """
331

332
        if to_string:
333
            return ",".join(self._role_maker._get_pserver_endpoints())
334
        else:
335
            return self._role_maker._get_pserver_endpoints()
336 337 338 339 340 341 342 343

    def is_server(self):
        """
        Check whether the node is an instance of server.

        Returns:
            bool: True if this is a node of server,
                  False if not.
344 345 346 347 348 349 350 351

        Examples:

            .. code-block:: python
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_server()

352
        """
353
        return self._role_maker._is_server(
354
        ) or self._role_maker._is_heter_worker()
355

356 357 358
    def set_util(self, util):
        self._util = util

359 360 361 362
    def util(self):
        """
        Utility functions that can be used under certain runtime
        return util
363 364 365 366 367 368 369 370 371 372 373 374 375

        Returns:
            UtilBase: instance of UtilBase, can use distributed ops/tools easily.

        Examples:

            .. code-block:: python
                import paddle.distributed.fleet as fleet
                fleet.init()
                util = fleet.util
                files = ["1.log", "2.log", "3.log", "4.log"]
                files = util.get_file_shard()

376 377 378 379 380
        """
        return self._util

    def barrier_worker(self):
        """
381 382 383 384
        barrier all workers

        Returns:
            None
385
        """
386
        self._role_maker._barrier("worker")
387

388
    @is_non_distributed_check
389
    @inited_runtime_handler
390 391
    def init_worker(self):
        """
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
        initialize `Communicator` for parameter server training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_worker()

410 411 412
        """
        self._runtime_handle._init_worker()

413
    @is_non_distributed_check
414
    @inited_runtime_handler
415
    def init_server(self, *args, **kwargs):
416
        """
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
        init_server executor to initialize startup program,
        if the `args` is not empty, it will run load_persistables for increment training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

436
        """
437
        self._runtime_handle._init_server(*args, **kwargs)
438

439
    @is_non_distributed_check
440
    @inited_runtime_handler
441 442
    def run_server(self):
        """
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
        run server will run pserver main program with executor.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                if fleet.is_server():
                    fleet.init_server()

461 462 463
        """
        self._runtime_handle._run_server()

464
    @is_non_distributed_check
465
    @inited_runtime_handler
466 467
    def stop_worker(self):
        """
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
        stop `Communicator` and give training complete notice to parameter server.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

485 486 487
        """
        self._runtime_handle._stop_worker()

488 489 490 491 492 493 494
    def save_inference_model(self,
                             executor,
                             dirname,
                             feeded_var_names,
                             target_vars,
                             main_program=None,
                             export_for_deployment=True):
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
        """
        save inference model for inference.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

        """

515 516 517 518 519
        self._runtime_handle._save_inference_model(
            executor, dirname, feeded_var_names, target_vars, main_program,
            export_for_deployment)

    def save_persistables(self, executor, dirname, main_program=None):
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
        """

        saves all persistable variables from :code:`main_program` to
        the folder :code:`dirname`. You can refer to

        The :code:`dirname` is used to specify the folder where persistable variables
        are going to be saved. If you would like to save variables in separate
        files, set :code:`filename` None.

        Args:
            executor(Executor): The executor to run for saving persistable variables.
                                You can refer to :ref:`api_guide_executor_en` for
                                more details.

            dirname(str, optional): The saving directory path.
                                When you need to save the parameter to the memory, set it to None.
            main_program(Program, optional): The program whose persistbale variables will
                                             be saved. Default: None.


        Returns:
            None

        Examples:

            .. code-block:: text

                import paddle.distributed.fleet as fleet
                import paddle.fluid as fluid

                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                exe = fluid.Executor(fluid.CPUPlace())
                fleet.save_persistables(exe, "dirname", fluid.default_main_program())

        """

560 561
        self._runtime_handle._save_persistables(executor, dirname, main_program)

562
    def distributed_optimizer(self, optimizer, strategy=None):
563
        """
564 565 566 567 568 569 570 571 572
        Optimizer for distributed training.

        For the distributed training, this method would rebuild a new instance of DistributedOptimizer.
        Which has basic Optimizer function and special features for distributed training.

        Args:
            optimizer(Optimizer): The executor to run for init server.
            strategy(DistributedStrategy): Extra properties for distributed optimizer.

573
        Returns:
574
            Fleet: instance of fleet.
575 576

        Examples:
577

578
            .. code-block:: python
579 580 581 582 583 584 585 586

                import paddle.distributed.fleet as fleet
                role = fleet.role_maker.PaddleCloudRoleMaker(is_collective=True)
                fleet.init(role)
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)

587 588
        """
        self.user_defined_optimizer = optimizer
589 590 591
        if paddle.fluid.framework.in_dygraph_mode():
            return self

592 593
        if strategy == None:
            strategy = DistributedStrategy()
594
        self.user_defined_strategy = strategy
D
Dong Daxiang 已提交
595
        self.valid_strategy = None
596 597
        return self

598 599 600
    @dygraph_only
    def distributed_model(self, model):
        """
601 602 603 604 605 606 607
        Return distributed data parallel model (Only work in dygraph mode)

        Args:
            model (Layer): the user-defind model which inherits Layer.

        Returns:
            distributed data parallel model which inherits Layer.
608 609

        Examples:
610

611 612
            .. code-block:: python

613 614 615 616 617 618 619 620 621
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet

                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
622

623 624
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656

                # 1. enable dynamic mode
                paddle.disable_static()

                # 2. initialize fleet environment
                fleet.init(is_collective=True)

                # 3. create layer & optimizer
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

                # 4. get data_parallel model using fleet
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

                # 5. run layer
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss = dp_layer.scale_loss(loss)
                loss.backward()
                dp_layer.apply_collective_grads()

                adam.step()
                adam.clear_grad()

657

658 659 660 661 662 663 664 665 666
        """
        assert model is not None
        self.model = paddle.DataParallel(model)
        return self.model

    @dygraph_only
    def state_dict(self):
        """
        Get state dict information from optimizer.
667
        (Only work in dygraph mode)
668 669 670 671 672 673 674

        Returns: 
            state_dict(dict) : dict contains all the Tensor used by optimizer

        Examples:
            .. code-block:: python

675 676 677 678 679 680
                import numpy as np
                import paddle
                from paddle.distributed import fleet

                paddle.disable_static()
                fleet.init(is_collective=True)
681

682 683
                value = np.arange(26).reshape(2, 13).astype("float32")
                a = paddle.fluid.dygraph.to_variable(value)
684

685 686
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
687

688 689 690
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
                state_dict = adam.state_dict()
691 692 693 694 695 696 697 698
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.state_dict()

    @dygraph_only
    def set_state_dict(self, state_dict):
        """
        Load optimizer state dict.
699
        (Only work in dygraph mode)
700 701 702 703

        Args: 
            state_dict(dict) : Dict contains all the Tensor needed by optimizer

704 705
        Returns:
            None
706 707 708 709

        Examples:
            .. code-block:: python

710 711 712
                import numpy as np
                import paddle
                from paddle.distributed import fleet
713

714 715 716 717 718
                paddle.disable_static()
                fleet.init(is_collective=True)

                value = np.arange(26).reshape(2, 13).astype("float32")
                a = paddle.fluid.dygraph.to_variable(value)
719

720 721
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
722

723 724 725 726 727 728
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
                state_dict = adam.state_dict()
                paddle.framework.save(state_dict, "paddle_dy")
                para_state_dict, opti_state_dict = paddle.framework.load( "paddle_dy")
                adam.set_state_dict(opti_state_dict)
729 730 731 732 733 734 735 736
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.set_state_dict(state_dict)

    @dygraph_only
    def set_lr(self, value):
        """
        Set the value of the learning rate manually in the optimizer. 
737
        (Only work in dygraph mode)
738

739 740 741
        Args:
            value (float|Tensor): the value of learning rate

742 743
        Returns: 
            None 
744 745 746 747

        Examples:
            .. code-block:: python

748 749 750
                import numpy as np
                import paddle
                from paddle.distributed import fleet
751

752 753
                paddle.disable_static()
                fleet.init(is_collective=True)
754

755 756
                value = np.arange(26).reshape(2, 13).astype("float32")
                a = paddle.fluid.dygraph.to_variable(value)
757

758 759
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
760

761 762 763 764 765 766 767 768 769 770 771 772 773 774
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

                lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                for i in range(5):
                    adam.set_lr(lr_list[i])
                    lr = adam.get_lr()
                    print("current lr is {}".format(lr))
                # Print:
                #    current lr is 0.2
                #    current lr is 0.3
                #    current lr is 0.4
                #    current lr is 0.5
                #    current lr is 0.6
775 776 777 778 779 780 781 782
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.set_lr(value)

    @dygraph_only
    def get_lr(self):
        """
        Get current step learning rate.
783
        (Only work in dygraph mode)
784 785 786 787 788 789 790

        Returns:
            float: The learning rate of the current step.

        Examples:
            .. code-block:: python

791 792 793 794 795 796
                import numpy as np
                import paddle
                from paddle.distributed import fleet

                paddle.disable_static()
                fleet.init(is_collective=True)
797

798 799
                value = np.arange(26).reshape(2, 13).astype("float32")
                a = paddle.fluid.dygraph.to_variable(value)
800

801 802
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
803

804 805
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
806

807 808
                lr = adam.get_lr()
                print(lr) # 0.01
809 810 811 812 813 814 815 816
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.get_lr()

    @dygraph_only
    def step(self):
        """
        Execute the optimizer once.
817
        (Only work in dygraph mode)
818

819 820
        Returns:
            None
821 822 823 824

        Examples:
            .. code-block:: python

825 826 827
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet
828

829 830 831 832 833
                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
834

835 836
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876

                # 1. enable dynamic mode
                paddle.disable_static()

                # 2. initialize fleet environment
                fleet.init(is_collective=True)

                # 3. create layer & optimizer
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

                # 4. get data_parallel model using fleet
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

                # 5. run layer
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss = dp_layer.scale_loss(loss)
                loss.backward()
                dp_layer.apply_collective_grads()

                adam.step()
                adam.clear_grad()


        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.step()

    @dygraph_only
    def clear_grad(self):
        """
877 878
        Clear the gradients of all optimized parameters for model.
        (Only work in dygraph mode)
879

880 881
        Returns: 
            None
882 883 884 885

        Examples:
            .. code-block:: python

886 887 888
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet
889

890 891 892 893 894
                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
895

896 897
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933

                # 1. enable dynamic mode
                paddle.disable_static()

                # 2. initialize fleet environment
                fleet.init(is_collective=True)

                # 3. create layer & optimizer
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

                # 4. get data_parallel model using fleet
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

                # 5. run layer
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss = dp_layer.scale_loss(loss)
                loss.backward()
                dp_layer.apply_collective_grads()

                adam.step()
                adam.clear_grad()

        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.clear_grad()

934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        """
        Add distributed operations to minimize ``loss`` by updating ``parameter_list``.

        Args:
            loss (Variable): A ``Variable`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
957 958
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
959 960 961
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
962
            .. code-block:: python
963

964 965
                import paddle
                import paddle.distributed.fleet as fleet
966

967 968 969 970 971 972 973 974 975 976 977 978
                fc_1 = paddle.fluid.layers.fc(input=input_x, size=hid_dim, act='tanh')
                fc_2 = paddle.fluid.layers.fc(input=fc_1, size=hid_dim, act='tanh')
                prediction = paddle.fluid.layers.fc(input=[fc_2], size=label_dim, act='softmax')
                cost = paddle.fluid.layers.cross_entropy(input=prediction, label=input_y)
                avg_cost = paddle.fluid.layers.mean(x=cost)

                role = fleet.role_maker.PaddleCloudRoleMaker(is_collective=True)
                fleet.init(role)
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
                optimizer.minimize(avg_cost)
979

980
                # for more examples, please reference https://github.com/PaddlePaddle/FleetX
981 982

        """
983 984 985 986 987
        if paddle.fluid.framework.in_dygraph_mode():
            # imitate target optimizer retrieval
            target_opt = self.user_defined_optimizer
            return target_opt.minimize(loss)

988
        context = {}
989 990
        # cache original feed forward program
        self.origin_main_program = loss.block.program
991 992
        context["origin_main_program"] = self.origin_main_program
        context["loss"] = loss
993 994
        if startup_program == None:
            self.origin_startup_program = \
995 996
                paddle.static.default_startup_program().clone(for_test=False)
            startup_program = paddle.static.default_startup_program()
997 998 999
        else:
            self.origin_startup_program = \
                startup_program.clone(for_test=False)
1000

1001 1002
        context["origin_startup_program"] = startup_program
        context["role_maker"] = self._role_maker
1003 1004 1005 1006 1007

        # compile time
        distributed_optimizer_list = \
            MetaOptimizerFactory()._get_valid_meta_optimizers(
                self.user_defined_optimizer)
D
Dong Daxiang 已提交
1008

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
        context["user_defined_strategy"] = copy.copy(self.user_defined_strategy)

        # trigger the auto-parallel in very strict condition
        # strategy = DistributedStrategy()
        # strategy.auto = True
        # optimizer = paddle.optimizer.SGD(learning_rate=0.1)
        # optimizer = fleet.distributed_optimizer(optimizer, strategy)
        if self.user_defined_strategy._is_strict_auto():
            # turn on all the strategy for each optimizer
            for opt in distributed_optimizer_list:
1019
                opt._enable_strategy(self.user_defined_strategy, context)
1020

1021 1022
        valid_optimizer_list = []
        valid_graph_optimizer_list = []
D
Dong Daxiang 已提交
1023
        can_not_apply_optimizer_list = []
1024 1025 1026 1027 1028 1029 1030
        # recall meta optimizers for ranking
        for opt in distributed_optimizer_list:
            opt._set_basic_info(loss, self._role_maker,
                                self.user_defined_optimizer,
                                self.user_defined_strategy)
            if opt._can_apply() and not opt._is_graph_out():
                valid_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1031
            elif opt._can_apply() and opt._is_graph_out():
1032
                valid_graph_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1033 1034
            else:
                can_not_apply_optimizer_list.append(opt)
1035
        # combine recalled meta optimizers to be a valid meta optimizer
D
Dong Daxiang 已提交
1036
        meta_optimizer, graph_optimizer = \
1037 1038 1039 1040
            self.strategy_compiler.generate_optimizer(
                loss, self._role_maker, self.user_defined_optimizer,
                self.user_defined_strategy, valid_optimizer_list,
                valid_graph_optimizer_list)
D
Dong Daxiang 已提交
1041

D
Dong Daxiang 已提交
1042 1043
        valid_strategy = self.strategy_compiler._get_valid_strategy(
            self.user_defined_strategy, can_not_apply_optimizer_list)
1044 1045 1046

        context["valid_strategy"] = valid_strategy

D
Dong Daxiang 已提交
1047
        self.valid_strategy = valid_strategy
1048
        self.valid_strategy._enable_env()
D
Dong Daxiang 已提交
1049

1050 1051
        optimize_ops = []
        params_grads = []
1052

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
        if self._role_maker._is_non_distributed() and not self._is_collective:
            if self._runtime_handle is None:
                self._runtime_handle = RuntimeFactory()._create_runtime(context)

            compiled_program = compiler.CompiledProgram(
                self.origin_main_program).with_data_parallel(
                    loss_name=loss.name, share_vars_from=None)
            loss.block.program._graph = compiled_program
            return self.user_defined_optimizer.minimize(
                loss,
                startup_program=startup_program,
                parameter_list=parameter_list,
                no_grad_set=no_grad_set)

1067 1068 1069 1070 1071 1072
        if meta_optimizer:
            optimize_ops, params_grads = meta_optimizer.minimize(
                loss,
                startup_program=startup_program,
                parameter_list=parameter_list,
                no_grad_set=no_grad_set)
1073

1074
            default_program = paddle.static.default_main_program()
1075 1076 1077 1078

            if id(default_program) != id(loss.block.program):
                paddle.fluid.framework.switch_main_program(loss.block.program)

1079 1080 1081 1082 1083 1084
        else:
            optimize_ops, params_grads = self.user_defined_optimizer.minimize(
                loss,
                startup_program=startup_program,
                parameter_list=parameter_list,
                no_grad_set=no_grad_set)
1085

1086 1087
        context["program_optimize_ops"] = optimize_ops
        context["program_params_grads"] = params_grads
1088

1089
        if graph_optimizer:
D
Dong Daxiang 已提交
1090
            optimize_ops, params_grads = graph_optimizer.minimize(
1091 1092 1093 1094 1095 1096 1097 1098
                loss,
                startup_program=startup_program,
                parameter_list=parameter_list,
                no_grad_set=no_grad_set)
            # since we do not encourage users to use graph operations
            # if a graph optimizer takes effect, mostly
            # optimizers_ops and params_grads are None
            # i.e. users can not modify current computation graph anymore
1099 1100 1101
            context["graph_optimize_ops"] = optimize_ops
            context["graph_optimize_grads"] = params_grads

1102
        if self._runtime_handle is None:
1103
            self._runtime_handle = RuntimeFactory()._create_runtime(context)
1104 1105

        if self._util is None:
1106
            self._util = UtilFactory()._create_util(context)
1107 1108

        return optimize_ops, params_grads