fleet_base.py 34.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
16
import warnings
17
import paddle
18
from paddle.fluid.framework import dygraph_only
19
from paddle.fluid import compiler
20
from .role_maker import UserDefinedRoleMaker, PaddleCloudRoleMaker, RoleMakerBase
21
from .strategy_compiler import StrategyCompiler
22
from .distributed_strategy import DistributedStrategy
23 24 25
from .meta_optimizer_factory import MetaOptimizerFactory
from .runtime_factory import RuntimeFactory
from .util_factory import UtilFactory
26
from paddle.fluid.wrapped_decorator import wrap_decorator
27
from paddle.fluid.dygraph import parallel_helper
28

29

30 31 32 33 34 35 36 37 38 39 40 41
def _inited_runtime_handler_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._runtime_handle is None:
            raise ValueError("Fleet can not find suitable runtime handler")

        return func(*args, **kwargs)

    return __impl__


42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
def _is_non_distributed_check_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._role_maker is not None and cls._role_maker._is_non_distributed(
        ) is True:
            warnings.warn(
                "%s() function doesn't work when use non_distributed fleet." %
                (func.__name__))
            return

        return func(*args, **kwargs)

    return __impl__


58
inited_runtime_handler = wrap_decorator(_inited_runtime_handler_)
59
is_non_distributed_check = wrap_decorator(_is_non_distributed_check_)
60 61


62 63 64
class Fleet(object):
    """
    Unified API for distributed training of PaddlePaddle
65
    Please reference the https://github.com/PaddlePaddle/FleetX for details
66 67 68 69 70


    Returns:
        Fleet: A Fleet instance

71
    Example for collective training:
72 73
        .. code-block:: python

74
            import paddle.distributed.fleet as fleet
75 76 77

            fleet.init(is_collective=True)

78 79 80
            strategy = fleet.DistributedStrategy()
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
            optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

            # do distributed training


    Example for parameter server training:

        .. code-block:: python

            import paddle.distributed.fleet as fleet

            fleet.init()

            strategy = fleet.DistributedStrategy()
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
            optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)

97 98
            if fleet.is_first_worker():
                print("this is first worker")
99

100 101
            print("current node index: {}".format(fleet.worker_index()))
            print("total number of worker num: {}".format(fleet.worker_num()))
102

103 104 105
            if fleet.is_worker():
                print("this is worker")
            print("worker endpoints: {}".format(fleet.worker_endpoints(to_string=True)))
106

107 108
            print("server num: {}".format(fleet.server_num()))
            print("server endpoints: {}".format(fleet.server_endpoints(to_string=True)))
109

110 111 112
            if fleet.is_server():
                print("this is server")
            fleet.stop_worker()
113 114


115 116 117
    """

    def __init__(self):
118
        self._role_maker = None
119
        self.strategy_compiler = None
120
        self._is_collective = False
121 122
        self._runtime_handle = None
        self._util = None
123

124 125 126 127
    def init(self, role_maker=None, is_collective=False):
        """
        Initialize role_maker in Fleet.

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
        This function is responsible for the distributed architecture
        what you want to run your code behind.

        Args:
            role_maker (RoleMakerBase, optional): A ``RoleMakerBase`` containing the configuration
                of environment variables related to distributed training.If you did not initialize 
                the rolemaker by yourself, it will be automatically initialized to PaddleRoleMaker.
                The default value is None.
            is_collective (Boolean, optional): A ``Boolean`` variable determines whether the program 
                runs on the CPU or GPU. False means set distributed training using CPU, and True means
                GPU.The default value is False.The default value is False.
        Returns:
            None

        Examples1:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

        Examples2:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init(is_collective=True)

        Examples3:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                role = fleet.PaddleCloudRoleMaker
                fleet.init(role)
163

164
        """
165 166

        if role_maker is None:
167 168 169 170 171 172
            if isinstance(is_collective, bool):
                self._is_collective = is_collective
                self._role_maker = PaddleCloudRoleMaker(
                    is_collective=self._is_collective)
            else:
                raise ValueError(
173 174
                    "`is_collective` should be instance of `bool`, but got {}".
                    format(type(is_collective)))
175
        else:
176 177 178 179 180 181
            if isinstance(role_maker, RoleMakerBase):
                self._role_maker = role_maker
            else:
                raise ValueError(
                    "`role_maker` should be subclass of `RoleMakerBase`, but got {}".
                    format(type(role_maker)))
182
        self.strategy_compiler = StrategyCompiler()
183 184 185 186 187 188
        if paddle.fluid.framework.in_dygraph_mode():
            if parallel_helper._is_parallel_ctx_initialized():
                warnings.warn(
                    "The dygraph parallel environment has been initialized.")
            else:
                paddle.distributed.init_parallel_env()
189
        return None
190 191 192 193 194 195 196 197

    def is_first_worker(self):
        """
        Check whether the node is the first instance of worker.

        Returns:
            bool: True if this is the first node of worker,
                  False if not.
198

199 200 201 202 203 204 205 206
        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_first_worker()

207 208 209 210 211 212 213 214 215
        """
        return self._role_maker.is_first_worker()

    def worker_index(self):
        """
        Get current worker index.

        Returns:
            int: node id
216 217 218 219 220 221 222 223

        Examples:

            .. code-block:: python
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_index()

224 225 226 227 228 229 230 231 232
        """
        return self._role_maker.worker_index()

    def worker_num(self):
        """
        Get current total worker number.

        Returns:
            int: worker numbers
233 234 235 236 237 238 239 240
        
        Examples:
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_num()

241 242 243 244 245 246 247 248 249 250
        """
        return self._role_maker.worker_num()

    def is_worker(self):
        """
        Check whether the node is an instance of worker.

        Returns:
            bool: True if this is a node of worker,
                  False if not.
251 252 253 254 255 256 257 258

        Examples:
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_worker()

259 260 261 262 263
        """
        return self._role_maker.is_worker()

    def worker_endpoints(self, to_string=False):
        """
264
        Get current worker endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].
265 266 267

        Returns:
            list/string: server endpoints
268 269 270 271 272 273 274 275

        Examples:
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_endpoints()

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
        """
        '''
        if to_string:
            return ",".join(self._role_maker.get_trainer_endpoints())
        else:
            return self._role_maker.get_trainer_endpoints()
        '''
        return ["127.0.0.1:1001", "127.0.0.1:1002"]

    def server_num(self):
        """
        Get current total worker number.

        Returns:
            int: server number
291 292 293 294 295 296

        Examples:
            .. code-block:: python
            import paddle.distributed.fleet as fleet
            fleet.init()
            fleet.server_num()
297 298 299 300 301 302 303 304 305
        """
        return len(self._role_maker.get_pserver_endpoints())

    def server_index(self):
        """
        Get current server index.

        Returns:
            int: node id
306 307 308 309 310 311 312 313

        Examples:
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_index()

314 315 316 317 318 319 320 321 322
        """
        return self._role_maker.server_index()

    def server_endpoints(self, to_string=False):
        """
        Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].

        Returns:
            list/string: server endpoints
323 324 325 326 327 328 329 330

        Examples:
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_endpoints()

331
        """
332

333 334 335 336 337 338 339 340 341 342 343 344
        if to_string:
            return ",".join(self._role_maker.get_pserver_endpoints())
        else:
            return self._role_maker.get_pserver_endpoints()

    def is_server(self):
        """
        Check whether the node is an instance of server.

        Returns:
            bool: True if this is a node of server,
                  False if not.
345 346 347 348 349 350 351 352

        Examples:

            .. code-block:: python
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_server()

353
        """
354 355
        return self._role_maker.is_server(
        ) or self._role_maker._is_heter_worker()
356 357 358 359 360 361

    @property
    def util(self):
        """
        Utility functions that can be used under certain runtime
        return util
362 363 364 365 366 367 368 369 370 371 372 373 374

        Returns:
            UtilBase: instance of UtilBase, can use distributed ops/tools easily.

        Examples:

            .. code-block:: python
                import paddle.distributed.fleet as fleet
                fleet.init()
                util = fleet.util
                files = ["1.log", "2.log", "3.log", "4.log"]
                files = util.get_file_shard()

375 376 377 378 379 380 381
        """
        return self._util

    @util.setter
    def util(self, util):
        """
        Set Utility functions for userd-defined runtime
382 383 384

        Returns:
            None
385 386 387 388 389
        """
        self._util = util

    def barrier_worker(self):
        """
390 391 392 393
        barrier all workers

        Returns:
            None
394 395 396
        """
        self._role_maker.barrier_worker()

397
    @is_non_distributed_check
398
    @inited_runtime_handler
399 400
    def init_worker(self):
        """
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
        initialize `Communicator` for parameter server training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_worker()

419 420 421
        """
        self._runtime_handle._init_worker()

422
    @is_non_distributed_check
423
    @inited_runtime_handler
424
    def init_server(self, *args, **kwargs):
425
        """
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
        init_server executor to initialize startup program,
        if the `args` is not empty, it will run load_persistables for increment training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

445
        """
446
        self._runtime_handle._init_server(*args, **kwargs)
447

448
    @is_non_distributed_check
449
    @inited_runtime_handler
450 451
    def run_server(self):
        """
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
        run server will run pserver main program with executor.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                if fleet.is_server():
                    fleet.init_server()

470 471 472
        """
        self._runtime_handle._run_server()

473
    @is_non_distributed_check
474
    @inited_runtime_handler
475 476
    def stop_worker(self):
        """
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
        stop `Communicator` and give training complete notice to parameter server.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

494 495 496
        """
        self._runtime_handle._stop_worker()

497 498 499 500 501 502 503
    def save_inference_model(self,
                             executor,
                             dirname,
                             feeded_var_names,
                             target_vars,
                             main_program=None,
                             export_for_deployment=True):
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
        """
        save inference model for inference.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

        """

524 525 526 527 528
        self._runtime_handle._save_inference_model(
            executor, dirname, feeded_var_names, target_vars, main_program,
            export_for_deployment)

    def save_persistables(self, executor, dirname, main_program=None):
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
        """

        saves all persistable variables from :code:`main_program` to
        the folder :code:`dirname`. You can refer to

        The :code:`dirname` is used to specify the folder where persistable variables
        are going to be saved. If you would like to save variables in separate
        files, set :code:`filename` None.

        Args:
            executor(Executor): The executor to run for saving persistable variables.
                                You can refer to :ref:`api_guide_executor_en` for
                                more details.

            dirname(str, optional): The saving directory path.
                                When you need to save the parameter to the memory, set it to None.
            main_program(Program, optional): The program whose persistbale variables will
                                             be saved. Default: None.


        Returns:
            None

        Examples:

            .. code-block:: text

                import paddle.distributed.fleet as fleet
                import paddle.fluid as fluid

                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                exe = fluid.Executor(fluid.CPUPlace())
                fleet.save_persistables(exe, "dirname", fluid.default_main_program())

        """

569 570
        self._runtime_handle._save_persistables(executor, dirname, main_program)

571
    def distributed_optimizer(self, optimizer, strategy=None):
572
        """
573 574 575 576 577 578 579 580 581
        Optimizer for distributed training.

        For the distributed training, this method would rebuild a new instance of DistributedOptimizer.
        Which has basic Optimizer function and special features for distributed training.

        Args:
            optimizer(Optimizer): The executor to run for init server.
            strategy(DistributedStrategy): Extra properties for distributed optimizer.

582
        Returns:
583
            Fleet: instance of fleet.
584 585

        Examples:
586

587
            .. code-block:: python
588 589 590 591 592 593 594 595

                import paddle.distributed.fleet as fleet
                role = fleet.role_maker.PaddleCloudRoleMaker(is_collective=True)
                fleet.init(role)
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)

596 597
        """
        self.user_defined_optimizer = optimizer
598 599 600
        if paddle.fluid.framework.in_dygraph_mode():
            return self

601 602
        if strategy == None:
            strategy = DistributedStrategy()
603
        self.user_defined_strategy = strategy
D
Dong Daxiang 已提交
604
        self.valid_strategy = None
605 606
        return self

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
    @dygraph_only
    def distributed_model(self, model):
        """
        Return dygraph distributed data parallel model (Layer)
        Only work in dygraph mode

        Examples:
            .. code-block:: python
            import paddle
            import paddle.nn as nn
            from paddle.distributed import fleet

            class LinearNet(nn.Layer):
                def __init__(self):
                    super(LinearNet, self).__init__()
                    self._linear1 = nn.Linear(10, 10)
                    self._linear2 = nn.Linear(10, 1)

                def forward(self, x):
                    return self._linear2(self._linear1(x))

            def train():
                # 1. enable dynamic mode
                paddle.disable_static()

                # 2. initialize fleet environment
                fleet.init(is_collective=True)

                # 3. create layer & optimizer
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

                # 4. get data_parallel model using fleet
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

                # 5. run layer
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss = dp_layer.scale_loss(loss)
                loss.backward()
                dp_layer.apply_collective_grads()

                adam.step()
                adam.clear_grad()

            if __name__ == '__main__':
                paddle.distributed.spawn(train)
        """
        assert model is not None
        self.model = paddle.DataParallel(model)
        return self.model

    @dygraph_only
    def state_dict(self):
        """
        Get state dict information from optimizer.
        Only work in dygraph mode

        Returns: 
            state_dict(dict) : dict contains all the Tensor used by optimizer

        Examples:
            .. code-block:: python
            import numpy as np
            import paddle
            from paddle.distributed import fleet

            paddle.disable_static()
            fleet.init(is_collective=True)

            value = np.arange(26).reshape(2, 13).astype("float32")
            a = paddle.fluid.dygraph.to_variable(value)

            layer = paddle.nn.Linear(13, 5)
            adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())

            adam = fleet.distributed_optimizer(adam)
            dp_layer = fleet.distributed_model(layer)
            state_dict = adam.state_dict()
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.state_dict()

    @dygraph_only
    def set_state_dict(self, state_dict):
        """
        Load optimizer state dict.
        Only work in dygraph mode

        Args: 
            state_dict(dict) : Dict contains all the Tensor needed by optimizer

        Returns: None 

        Examples:
            .. code-block:: python
            import numpy as np
            import paddle
            from paddle.distributed import fleet

            paddle.disable_static()
            fleet.init(is_collective=True)

            value = np.arange(26).reshape(2, 13).astype("float32")
            a = paddle.fluid.dygraph.to_variable(value)

            layer = paddle.nn.Linear(13, 5)
            adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())

            adam = fleet.distributed_optimizer(adam)
            dp_layer = fleet.distributed_model(layer)
            state_dict = adam.state_dict()
            paddle.framework.save(state_dict, "paddle_dy")
            para_state_dict, opti_state_dict = paddle.framework.load( "paddle_dy")
            adam.set_state_dict(opti_state_dict)
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.set_state_dict(state_dict)

    @dygraph_only
    def set_lr(self, value):
        """
        Set the value of the learning rate manually in the optimizer. 
        Only work in dygraph mode
 
        Args:
            value (float|Tensor): the value of learning rate

        Returns: None 

        Examples:
            .. code-block:: python
            import numpy as np
            import paddle
            from paddle.distributed import fleet

            paddle.disable_static()
            fleet.init(is_collective=True)

            value = np.arange(26).reshape(2, 13).astype("float32")
            a = paddle.fluid.dygraph.to_variable(value)

            layer = paddle.nn.Linear(13, 5)
            adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())

            adam = fleet.distributed_optimizer(adam)
            dp_layer = fleet.distributed_model(layer)

            lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
            for i in range(5):
                adam.set_lr(lr_list[i])
                lr = adam.get_lr()
                print("current lr is {}".format(lr))
            # Print:
            #    current lr is 0.2
            #    current lr is 0.3
            #    current lr is 0.4
            #    current lr is 0.5
            #    current lr is 0.6
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.set_lr(value)

    @dygraph_only
    def get_lr(self):
        """
        Get current step learning rate.
        Only work in dygraph mode

        Returns:
            float: The learning rate of the current step.

        Examples:
            .. code-block:: python
            import numpy as np
            import paddle
            from paddle.distributed import fleet

            paddle.disable_static()
            fleet.init(is_collective=True)

            value = np.arange(26).reshape(2, 13).astype("float32")
            a = paddle.fluid.dygraph.to_variable(value)

            layer = paddle.nn.Linear(13, 5)
            adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())

            adam = fleet.distributed_optimizer(adam)
            dp_layer = fleet.distributed_model(layer)

            lr = adam.get_lr()
            print(lr) # 0.01
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.get_lr()

    @dygraph_only
    def step(self):
        """
        Execute the optimizer once.
        Only work in dygraph mode

        Returns: None

        Examples:
            .. code-block:: python

            import paddle
            import paddle.nn as nn
            from paddle.distributed import fleet

            class LinearNet(nn.Layer):
                def __init__(self):
                    super(LinearNet, self).__init__()
                    self._linear1 = nn.Linear(10, 10)
                    self._linear2 = nn.Linear(10, 1)

                def forward(self, x):
                    return self._linear2(self._linear1(x))

            def train():
                # 1. enable dynamic mode
                paddle.disable_static()

                # 2. initialize fleet environment
                fleet.init(is_collective=True)

                # 3. create layer & optimizer
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

                # 4. get data_parallel model using fleet
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

                # 5. run layer
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss = dp_layer.scale_loss(loss)
                loss.backward()
                dp_layer.apply_collective_grads()

                adam.step()
                adam.clear_grad()

            if __name__ == '__main__':
                paddle.distributed.spawn(train)

        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.step()

    @dygraph_only
    def clear_grad(self):
        """
        Execute the optimizer once.
        Only work in dygraph mode
 
        Returns: None

        Examples:
            .. code-block:: python

            import paddle
            import paddle.nn as nn
            from paddle.distributed import fleet

            class LinearNet(nn.Layer):
                def __init__(self):
                    super(LinearNet, self).__init__()
                    self._linear1 = nn.Linear(10, 10)
                    self._linear2 = nn.Linear(10, 1)

                def forward(self, x):
                    return self._linear2(self._linear1(x))

            def train():
                # 1. enable dynamic mode
                paddle.disable_static()

                # 2. initialize fleet environment
                fleet.init(is_collective=True)

                # 3. create layer & optimizer
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

                # 4. get data_parallel model using fleet
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

                # 5. run layer
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss = dp_layer.scale_loss(loss)
                loss.backward()
                dp_layer.apply_collective_grads()

                adam.step()
                adam.clear_grad()

            if __name__ == '__main__':
                paddle.distributed.spawn(train)
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.clear_grad()

936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        """
        Add distributed operations to minimize ``loss`` by updating ``parameter_list``.

        Args:
            loss (Variable): A ``Variable`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
959 960
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
961 962 963
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
964
            .. code-block:: python
965

966 967
                import paddle
                import paddle.distributed.fleet as fleet
968

969 970 971 972 973 974 975 976 977 978 979 980
                fc_1 = paddle.fluid.layers.fc(input=input_x, size=hid_dim, act='tanh')
                fc_2 = paddle.fluid.layers.fc(input=fc_1, size=hid_dim, act='tanh')
                prediction = paddle.fluid.layers.fc(input=[fc_2], size=label_dim, act='softmax')
                cost = paddle.fluid.layers.cross_entropy(input=prediction, label=input_y)
                avg_cost = paddle.fluid.layers.mean(x=cost)

                role = fleet.role_maker.PaddleCloudRoleMaker(is_collective=True)
                fleet.init(role)
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
                optimizer.minimize(avg_cost)
981

982
                # for more examples, please reference https://github.com/PaddlePaddle/FleetX
983 984

        """
985 986 987 988 989
        if paddle.fluid.framework.in_dygraph_mode():
            # imitate target optimizer retrieval
            target_opt = self.user_defined_optimizer
            return target_opt.minimize(loss)

990
        context = {}
991 992
        # cache original feed forward program
        self.origin_main_program = loss.block.program
993 994
        context["origin_main_program"] = self.origin_main_program
        context["loss"] = loss
995 996
        if startup_program == None:
            self.origin_startup_program = \
997 998
                paddle.static.default_startup_program().clone(for_test=False)
            startup_program = paddle.static.default_startup_program()
999 1000 1001
        else:
            self.origin_startup_program = \
                startup_program.clone(for_test=False)
1002

1003 1004
        context["origin_startup_program"] = startup_program
        context["role_maker"] = self._role_maker
1005 1006 1007 1008 1009

        # compile time
        distributed_optimizer_list = \
            MetaOptimizerFactory()._get_valid_meta_optimizers(
                self.user_defined_optimizer)
D
Dong Daxiang 已提交
1010

1011 1012
        valid_optimizer_list = []
        valid_graph_optimizer_list = []
D
Dong Daxiang 已提交
1013
        can_not_apply_optimizer_list = []
1014 1015 1016 1017 1018 1019 1020
        # recall meta optimizers for ranking
        for opt in distributed_optimizer_list:
            opt._set_basic_info(loss, self._role_maker,
                                self.user_defined_optimizer,
                                self.user_defined_strategy)
            if opt._can_apply() and not opt._is_graph_out():
                valid_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1021
            elif opt._can_apply() and opt._is_graph_out():
1022
                valid_graph_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1023 1024
            else:
                can_not_apply_optimizer_list.append(opt)
1025
        # combine recalled meta optimizers to be a valid meta optimizer
D
Dong Daxiang 已提交
1026
        meta_optimizer, graph_optimizer = \
1027 1028 1029 1030
            self.strategy_compiler.generate_optimizer(
                loss, self._role_maker, self.user_defined_optimizer,
                self.user_defined_strategy, valid_optimizer_list,
                valid_graph_optimizer_list)
D
Dong Daxiang 已提交
1031

D
Dong Daxiang 已提交
1032 1033
        valid_strategy = self.strategy_compiler._get_valid_strategy(
            self.user_defined_strategy, can_not_apply_optimizer_list)
1034 1035 1036

        context["valid_strategy"] = valid_strategy

D
Dong Daxiang 已提交
1037
        self.valid_strategy = valid_strategy
1038
        self.valid_strategy._enable_env()
D
Dong Daxiang 已提交
1039

1040 1041
        optimize_ops = []
        params_grads = []
1042

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
        if self._role_maker._is_non_distributed() and not self._is_collective:
            if self._runtime_handle is None:
                self._runtime_handle = RuntimeFactory()._create_runtime(context)

            compiled_program = compiler.CompiledProgram(
                self.origin_main_program).with_data_parallel(
                    loss_name=loss.name, share_vars_from=None)
            loss.block.program._graph = compiled_program
            return self.user_defined_optimizer.minimize(
                loss,
                startup_program=startup_program,
                parameter_list=parameter_list,
                no_grad_set=no_grad_set)

1057 1058 1059 1060 1061 1062
        if meta_optimizer:
            optimize_ops, params_grads = meta_optimizer.minimize(
                loss,
                startup_program=startup_program,
                parameter_list=parameter_list,
                no_grad_set=no_grad_set)
1063

1064
            default_program = paddle.static.default_main_program()
1065 1066 1067 1068

            if id(default_program) != id(loss.block.program):
                paddle.fluid.framework.switch_main_program(loss.block.program)

1069 1070 1071 1072 1073 1074
        else:
            optimize_ops, params_grads = self.user_defined_optimizer.minimize(
                loss,
                startup_program=startup_program,
                parameter_list=parameter_list,
                no_grad_set=no_grad_set)
1075

1076 1077
        context["program_optimize_ops"] = optimize_ops
        context["program_params_grads"] = params_grads
1078

1079
        if graph_optimizer:
D
Dong Daxiang 已提交
1080
            optimize_ops, params_grads = graph_optimizer.minimize(
1081 1082 1083 1084 1085 1086 1087 1088
                loss,
                startup_program=startup_program,
                parameter_list=parameter_list,
                no_grad_set=no_grad_set)
            # since we do not encourage users to use graph operations
            # if a graph optimizer takes effect, mostly
            # optimizers_ops and params_grads are None
            # i.e. users can not modify current computation graph anymore
1089 1090 1091
            context["graph_optimize_ops"] = optimize_ops
            context["graph_optimize_grads"] = params_grads

1092
        if self._runtime_handle is None:
1093
            self._runtime_handle = RuntimeFactory()._create_runtime(context)
1094 1095

        if self._util is None:
1096
            self._util = UtilFactory()._create_util(context)
1097 1098

        return optimize_ops, params_grads