gradient_accumulator.cc 38.3 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/gradient_accumulator.h"
16

J
Jiabin Yang 已提交
17 18 19
#include <algorithm>
#include <memory>
#include <utility>
20

21
#include "paddle/fluid/framework/convert_utils.h"
J
Jiabin Yang 已提交
22
#include "paddle/fluid/framework/lod_tensor.h"
23
#include "paddle/fluid/framework/selected_rows_utils.h"
J
Jiabin Yang 已提交
24
#include "paddle/fluid/imperative/layer.h"
25
#include "paddle/fluid/operators/math/selected_rows_functor.h"
26
#include "paddle/fluid/platform/bfloat16.h"
27
#include "paddle/fluid/platform/complex.h"
J
Jiabin Yang 已提交
28
#include "paddle/fluid/platform/device_context.h"
29
#include "paddle/fluid/platform/float16.h"
J
Jiabin Yang 已提交
30
#include "paddle/fluid/platform/profiler.h"
31 32
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/math_function.h"
H
hong 已提交
33 34 35
#ifdef PADDLE_WITH_XPU
#include "xpu/refactor/math.h"
#endif
36
#ifdef PADDLE_WITH_ASCEND_CL
37
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"
38
#endif
F
fwenguang 已提交
39 40 41
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
#endif
42 43 44
#ifdef PADDLE_WITH_CUSTOM_DEVICE
#include "paddle/phi/backends/device_manager.h"
#endif
J
Jiabin Yang 已提交
45 46 47 48

namespace paddle {
namespace imperative {

49 50
static void MoveOrCopyVar(framework::Variable* dst,
                          framework::Variable* src,
51 52
                          bool force_copy) {
  if (!force_copy) {
53
    VLOG(6) << "Just Move Variable when sum gradients within this graph";
54 55 56 57
    *dst = std::move(*src);
    return;
  }

58
  VLOG(6) << "Copy occurs when sum gradients within this graph";
59 60 61 62 63 64 65 66
  if (src->IsType<framework::LoDTensor>()) {
    auto& src_tensor = src->Get<framework::LoDTensor>();
    if (!dst->IsType<framework::LoDTensor>()) {
      dst->Clear();
    }
    auto* dst_tensor = dst->GetMutable<framework::LoDTensor>();
    framework::TensorCopy(src_tensor, src_tensor.place(), dst_tensor);
    dst_tensor->set_lod(src_tensor.lod());
67 68 69
  } else if (src->IsType<phi::SelectedRows>()) {
    auto& src_selected_rows = src->Get<phi::SelectedRows>();
    if (!dst->IsType<phi::SelectedRows>()) {
70 71
      dst->Clear();
    }
72
    auto* dst_selected_rows = dst->GetMutable<phi::SelectedRows>();
73 74 75 76 77 78 79
    framework::TensorCopy(src_selected_rows.value(),
                          src_selected_rows.value().place(),
                          dst_selected_rows->mutable_value());
    dst_selected_rows->set_rows(src_selected_rows.rows());
    dst_selected_rows->set_height(src_selected_rows.height());
  } else {
    PADDLE_THROW(platform::errors::PermissionDenied(
80
        "Only support LoDTensor and SelectedRows for sum gradient"));
81 82 83
  }
}

J
Jiabin Yang 已提交
84
template <typename T>
85 86
class TensorAddFunctor
    : public std::unary_function<const platform::Place&, void> {
J
Jiabin Yang 已提交
87 88 89 90
 public:
  TensorAddFunctor(int64_t numel, const T* x, T* y)
      : numel_(numel), x_(x), y_(y) {}

91
  void operator()(const platform::CPUPlace& place) const {
L
Leo Chen 已提交
92
    phi::CPUContext* ctx = dynamic_cast<phi::CPUContext*>(
J
Jiabin Yang 已提交
93
        platform::DeviceContextPool::Instance().Get(place));
L
Leo Chen 已提交
94
    auto blas = phi::funcs::GetBlas<phi::CPUContext, T>(*ctx);
J
Jiabin Yang 已提交
95 96 97
    blas.AXPY(numel_, 1., x_, y_);
  }

H
hong 已提交
98
#ifdef PADDLE_WITH_XPU
99
  void operator()(const platform::XPUPlace& place) const {
100
    using XPUType = typename XPUTypeTrait<T>::Type;
H
hong 已提交
101 102
    platform::XPUDeviceContext* ctx = dynamic_cast<platform::XPUDeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
103 104 105 106 107
    int r = xpu::add<XPUType>(ctx->x_context(),
                              reinterpret_cast<const XPUType*>(x_),
                              reinterpret_cast<const XPUType*>(y_),
                              reinterpret_cast<XPUType*>(y_),
                              static_cast<int>(numel_));
108
    PADDLE_ENFORCE_EQ(
109 110 111 112
        r,
        XPU_SUCCESS,
        platform::errors::External(
            "XPU add kernel return wrong value[%d %s]", r, XPUAPIErrorMsg[r]));
H
hong 已提交
113 114
  }
#else
115
  void operator()(const platform::XPUPlace& place) const {
116 117 118 119 120
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
  }
H
hong 已提交
121
#endif
122

123
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
124
  void operator()(const platform::CUDAPlace& place) const {
J
Jiabin Yang 已提交
125 126 127
    platform::CUDADeviceContext* ctx =
        dynamic_cast<platform::CUDADeviceContext*>(
            platform::DeviceContextPool::Instance().Get(place));
128
    auto blas = phi::funcs::GetBlas<platform::CUDADeviceContext, T>(*ctx);
J
Jiabin Yang 已提交
129 130 131
    blas.AXPY(numel_, 1., x_, y_);
  }
#else
132
  void operator()(const platform::CUDAPlace& place) const {
133
    PADDLE_THROW(platform::errors::PermissionDenied(
134 135 136 137 138 139
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
  }
#endif

F
fwenguang 已提交
140
#ifdef PADDLE_WITH_MLU
141
  void operator()(const platform::MLUPlace& place) const {
F
fwenguang 已提交
142 143 144 145 146 147 148
    // TODO(fwg): SUPPORT it
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
  }
#else
149
  void operator()(const platform::MLUPlace& place) const {
F
fwenguang 已提交
150 151 152 153 154 155 156
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
  }
#endif

157
#ifdef PADDLE_WITH_ASCEND_CL
158
  void operator()(const platform::NPUPlace& place) const {
159 160 161 162 163 164 165
    // TODO(zhiqiu): SUPPORT it
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
  }
#else
166
  void operator()(const platform::NPUPlace& place) const {
167
    PADDLE_THROW(platform::errors::PermissionDenied(
168 169 170
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
J
Jiabin Yang 已提交
171 172 173
  }
#endif

174
  void operator()(const platform::NPUPinnedPlace& place) const {
175 176 177 178 179
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
  }
J
Jiabin Yang 已提交
180
  // there is NO blas in CUDAPinnedPlace
181
  void operator()(const platform::CUDAPinnedPlace& place) const {
182 183 184 185
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
J
Jiabin Yang 已提交
186
  }
J
jianghaicheng 已提交
187
  // there is NO support in IPUPlace
188
  void operator()(const platform::IPUPlace& place) const {
J
jianghaicheng 已提交
189 190 191 192 193
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
  }
194
  void operator()(const platform::CustomPlace& place) const {
195 196 197 198 199 200 201 202
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    platform::CustomDeviceContext* ctx =
        dynamic_cast<platform::CustomDeviceContext*>(
            platform::DeviceContextPool::Instance().Get(place));
    phi::stream::Stream stream(place, ctx->stream());
    auto device = phi::DeviceManager::GetDeviceWithPlace(place);
    device->BlasAXPBY<T>(stream, static_cast<size_t>(numel_), 1., x_, 1., y_);
#else
203 204 205 206
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
207
#endif
208
  }
J
Jiabin Yang 已提交
209 210 211 212

 private:
  int64_t numel_;
  const T* x_;
213
  mutable T* y_;
J
Jiabin Yang 已提交
214 215
};

216 217 218
#ifdef PADDLE_WITH_XPU
template <typename T>
void XPUTensorAddFunctor(const platform::Place& place,
219 220
                         const framework::Tensor& src,
                         framework::Tensor* dst) {
221 222 223 224 225
  using XPUType = typename XPUTypeTrait<T>::Type;
  platform::XPUDeviceContext* ctx = dynamic_cast<platform::XPUDeviceContext*>(
      platform::DeviceContextPool::Instance().Get(place));
  const XPUType* x = reinterpret_cast<const XPUType*>(src.data<T>());
  XPUType* y = reinterpret_cast<XPUType*>(dst->mutable_data<T>(place));
226 227
  int r = xpu::add<XPUType>(
      ctx->x_context(), x, y, y, static_cast<int>(src.numel()));
228
  PADDLE_ENFORCE_EQ(
229 230 231 232
      r,
      XPU_SUCCESS,
      platform::errors::External(
          "XPU add kernel return wrong value[%d %s]", r, XPUAPIErrorMsg[r]));
233 234 235
}
#endif

236
template <typename DeviceContext, typename T>
237 238
void TensorAddImpl(const framework::Tensor& src,
                   framework::Tensor* dst,
239 240 241 242
                   const platform::Place& place) {
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  paddle::platform::DeviceContext* ctx = pool.Get(place);
  auto dev_ctx = dynamic_cast<DeviceContext*>(ctx);
243
  phi::funcs::ElementwiseAddTo<DeviceContext, T> func;
244 245 246
  func(dev_ctx, src, dst);
}

247 248 249
template <typename TType>
TType* GetInnerMutableTensor(framework::Variable* dst) {
  auto* dst_tensor = dst->GetMutable<TType>();
250 251 252
  return dst_tensor;
}

253 254 255
template <typename TType>
TType* GetInnerMutableTensor(paddle::experimental::Tensor* dst) {
  auto* dst_tensor = static_cast<TType*>(dst->impl().get());
256 257 258
  return dst_tensor;
}

259 260 261
template <typename TType>
const TType& GetInnerTensor(const framework::Variable& src) {
  return src.Get<TType>();
262 263
}

264 265 266
template <typename TType>
TType& GetInnerTensor(const paddle::experimental::Tensor& src) {
  PADDLE_ENFORCE_EQ(
267 268
      src.initialized(),
      true,
269 270 271 272 273
      platform::errors::Fatal("We only add tensor with value if a tensor is "
                              "NOT INITILIZED, it should just move instead of "
                              "calling this method."));
  auto* src_tensor = static_cast<TType*>(src.impl().get());
  return *src_tensor;
274 275
}

276 277 278
template <typename TType>
TType* GetEmptyInnerTensor(paddle::experimental::Tensor* dst) {
  PADDLE_ENFORCE_EQ(
279 280
      dst->defined(),
      false,
281 282 283 284 285 286 287 288 289 290 291 292 293
      platform::errors::Fatal(
          "The underlying Tensor implementation should be nullptr"));
  dst->set_impl(std::make_shared<TType>());
  auto* dst_tensor = static_cast<TType*>(dst->impl().get());
  return dst_tensor;
}

template <typename TType>
TType* GetEmptyInnerTensor(paddle::imperative::VariableWrapper* dst) {
  auto* dst_tensor = dst->MutableVar()->GetMutable<TType>();
  return dst_tensor;
}

294 295
template <typename VarType>
void TensorAdd(const VarType& src, VarType* dst) {
296 297
  phi::DenseTensor* dst_tensor = GetInnerMutableTensor<phi::DenseTensor>(dst);
  const phi::DenseTensor& src_tensor = GetInnerTensor<phi::DenseTensor>(src);
J
Jiabin Yang 已提交
298 299 300 301 302 303 304 305 306

  auto numel = src_tensor.numel();

  // FIXME(minqiyang): loss_grad op will pass a zero grad of label
  // ugly fix for it
  if (numel == 0) {
    return;
  }

307
  PADDLE_ENFORCE_EQ(
308 309
      dst_tensor->numel(),
      numel,
310 311 312 313
      platform::errors::PreconditionNotMet(
          "The number of elements of source tensor and destination tensor "
          "should be equal, but got the number of elements of source tensor is "
          "%zu and the number of elements of destination tensor is %zu.",
314 315
          numel,
          dst_tensor->numel()));
J
Jiabin Yang 已提交
316

317
  auto data_type = framework::TransToProtoVarType(src_tensor.dtype());
J
Jiabin Yang 已提交
318 319
  auto place = src_tensor.place();

320 321
  PADDLE_ENFORCE_EQ(framework::TransToProtoVarType(dst_tensor->dtype()),
                    data_type,
322 323 324 325 326
                    platform::errors::PreconditionNotMet(
                        "The data type of source tensor and destination tensor "
                        "should be equal, Otherwise, the calculation results "
                        "will be incorrect."));

327 328 329 330
  // if src and dst are in different place, copy dst to src's place
  if (dst_tensor->place() != place) {
    paddle::framework::TensorCopySync(*dst_tensor, place, dst_tensor);
  }
331
#define PADDLE_TENSOR_ADD(cpp_type)                                  \
J
Jiabin Yang 已提交
332 333
  if (data_type == framework::DataTypeTrait<cpp_type>::DataType()) { \
    TensorAddFunctor<cpp_type> func(                                 \
334 335
        numel,                                                       \
        src_tensor.data<cpp_type>(),                                 \
J
Jiabin Yang 已提交
336
        dst_tensor->mutable_data<cpp_type>(place));                  \
337
    platform::VisitPlace(place, func);                               \
J
Jiabin Yang 已提交
338 339 340
    return;                                                          \
  }

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
#ifdef PADDLE_WITH_ASCEND_CL
  if (platform::is_npu_place(place)) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    platform::DeviceContext* ctx = pool.Get(place);
    auto dev_ctx = dynamic_cast<platform::NPUDeviceContext*>(ctx);
    if (data_type == framework::DataTypeTrait<float>::DataType()) {
      dst_tensor->mutable_data<float>(place);
    } else if (data_type == framework::DataTypeTrait<double>::DataType()) {
      dst_tensor->mutable_data<double>(place);
    } else if (data_type ==
               framework::DataTypeTrait<platform::float16>::DataType()) {
      dst_tensor->mutable_data<platform::float16>(place);
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Gradient accumulation of data type (%s) on place (%s) is not "
          "supported in imperative mode",
357 358
          framework::DataTypeToString(data_type),
          place));
359 360 361 362 363 364 365
    }
    const auto& runner = operators::NpuOpRunner(
        "Add", {*dst_tensor, src_tensor}, {*dst_tensor}, {});
    runner.Run(dev_ctx->stream());
    return;
  }
#endif
366

367 368 369 370 371 372 373 374 375 376 377
#ifdef PADDLE_WITH_XPU
  if (platform::is_xpu_place(place)) {
    if (data_type == framework::DataTypeTrait<float>::DataType()) {
      XPUTensorAddFunctor<float>(place, src_tensor, dst_tensor);
    } else if (data_type ==
               framework::DataTypeTrait<platform::float16>::DataType()) {
      XPUTensorAddFunctor<platform::float16>(place, src_tensor, dst_tensor);
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Gradient accumulation of data type (%s) on place (%s) is not "
          "supported in imperative mode",
378 379
          framework::DataTypeToString(data_type),
          place));
380 381 382 383 384
    }
    return;
  }
#endif

F
fwenguang 已提交
385 386 387 388 389 390 391 392 393 394 395 396 397 398
#ifdef PADDLE_WITH_MLU
  if (platform::is_mlu_place(place)) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    platform::DeviceContext* ctx = pool.Get(place);
    auto dev_ctx = dynamic_cast<platform::MLUDeviceContext*>(ctx);
    if (data_type == framework::DataTypeTrait<float>::DataType()) {
      dst_tensor->mutable_data<float>(place);
    } else if (data_type ==
               framework::DataTypeTrait<platform::float16>::DataType()) {
      dst_tensor->mutable_data<platform::float16>(place);
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Gradient accumulation of data type (%s) on place (%s) is not "
          "supported in imperative mode",
399 400
          framework::DataTypeToString(data_type),
          place));
F
fwenguang 已提交
401 402 403 404 405
    }
    static const float alpha = 1.f;
    static const float beta = 1.f;
    operators::MLUCnnlTensorDesc src_tensor_desc(src_tensor);
    operators::MLUCnnlTensorDesc dst_tensor_desc(*dst_tensor);
406 407 408 409 410 411 412 413 414 415
    PADDLE_ENFORCE_MLU_SUCCESS(
        cnnlAssignAdd(dev_ctx->cnnl_handle(),
                      static_cast<const void*>(&alpha),
                      src_tensor_desc.get(),
                      operators::GetBasePtr(&src_tensor),
                      nullptr,
                      0,
                      static_cast<const void*>(&beta),
                      dst_tensor_desc.get(),
                      operators::GetBasePtr(dst_tensor)));
F
fwenguang 已提交
416 417 418 419
    return;
  }
#endif

420
  PADDLE_TENSOR_ADD(float);
421

H
hong 已提交
422 423
#ifndef PADDLE_WITH_XPU
  // NOTE(phlrain): xpu only support float
424
  PADDLE_TENSOR_ADD(double);
425 426
  // NOTE(chenweihang): only support complex grad tensor accumulated,
  // support selected rows if needed in the future
427 428
  PADDLE_TENSOR_ADD(platform::complex<float>);
  PADDLE_TENSOR_ADD(platform::complex<double>);
H
hong 已提交
429
#endif
J
Jiabin Yang 已提交
430

431
#undef PADDLE_TENSOR_ADD
J
Jiabin Yang 已提交
432

433 434
  if (data_type == framework::proto::VarType::FP16) {
    if (platform::is_gpu_place(place)) {
435
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
436 437 438 439 440 441
      return TensorAddImpl<platform::CUDADeviceContext, platform::float16>(
          src_tensor, dst_tensor, place);
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "Gradient accumulation of data type (%s) on place (%s) is not "
          "supported in imperative mode",
442 443
          framework::DataTypeToString(data_type),
          place));
444 445
#endif
    } else if (platform::is_cpu_place(place)) {
L
Leo Chen 已提交
446
      return TensorAddImpl<phi::CPUContext, platform::float16>(
447 448 449
          src_tensor, dst_tensor, place);
    }
  }
450 451
  if (data_type == framework::proto::VarType::BF16) {
    if (platform::is_gpu_place(place)) {
452
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
453 454 455 456 457 458
      return TensorAddImpl<platform::CUDADeviceContext, platform::bfloat16>(
          src_tensor, dst_tensor, place);
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "Gradient accumulation of data type (%s) on place (%s) is not "
          "supported in imperative mode",
459 460
          framework::DataTypeToString(data_type),
          place));
461 462
#endif
    } else if (platform::is_cpu_place(place)) {
L
Leo Chen 已提交
463
      return TensorAddImpl<phi::CPUContext, platform::bfloat16>(
464 465 466
          src_tensor, dst_tensor, place);
    }
  }
467 468 469
  PADDLE_THROW(platform::errors::Unimplemented(
      "Gradient accumulation of data type (%s) on place (%s) is not "
      "supported in imperative mode",
470 471
      framework::DataTypeToString(data_type),
      place));
J
Jiabin Yang 已提交
472 473
}

474 475
template void TensorAdd<framework::Variable>(const framework::Variable& src,
                                             framework::Variable* dst);
476 477
template void TensorAdd<paddle::experimental::Tensor>(
    const paddle::experimental::Tensor& src, paddle::experimental::Tensor* dst);
478

479 480
template <typename VarType>
void SelectedRowsAddToTensor(const VarType& src, VarType* dst) {
481 482 483
  phi::DenseTensor* dst_tensor = GetInnerMutableTensor<phi::DenseTensor>(dst);
  const phi::SelectedRows& src_selected_rows =
      GetInnerTensor<phi::SelectedRows>(src);
484
  auto place = dst_tensor->place();
485 486
  auto data_type =
      framework::TransToProtoVarType(src_selected_rows.value().dtype());
487 488 489 490 491 492 493
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();

#define PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(dev_ctx_type, cpp_type)           \
  if (data_type == framework::DataTypeTrait<cpp_type>::DataType()) {         \
    paddle::platform::DeviceContext* dev_ctx = pool.Get(place);              \
    paddle::operators::math::SelectedRowsAddToTensor<dev_ctx_type, cpp_type> \
        functor;                                                             \
494 495
    functor(*(dynamic_cast<dev_ctx_type*>(dev_ctx)),                         \
            src_selected_rows,                                               \
496 497 498 499
            dst_tensor);                                                     \
    return;                                                                  \
  }

500
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
501 502 503 504 505
  if (paddle::platform::is_gpu_place(place)) {
    PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(platform::CUDADeviceContext, float);
    PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(platform::CUDADeviceContext, double);
  } else {
#endif
L
Leo Chen 已提交
506 507
    PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(phi::CPUContext, float);
    PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(phi::CPUContext, double);
508
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
509 510 511 512 513 514 515 516 517 518
  }
#endif

#undef PADDLE_SELECTED_ROWS_ADD_TO_TENSOR

  PADDLE_THROW(platform::errors::InvalidArgument(
      "Not supported data type %s for SelectedRowsAddToTensor",
      framework::DataTypeToString(data_type)));
}

519 520 521 522 523 524 525 526 527
template void SelectedRowsAddToTensor(const framework::Variable& src,
                                      framework::Variable* dst);
template void SelectedRowsAddToTensor(const paddle::experimental::Tensor& src,
                                      paddle::experimental::Tensor* dst);

template <typename VarType>
void SelectedRowsAddTensor(const VarType& src_selected_rows_var,
                           const VarType& src_tensor_var,
                           VarType* dst_tensor_var) {
528 529 530 531
  const phi::SelectedRows& src_selected_rows =
      GetInnerTensor<phi::SelectedRows>(src_selected_rows_var);
  const phi::DenseTensor& src_tensor =
      GetInnerTensor<phi::DenseTensor>(src_tensor_var);
532
  const auto& place = src_tensor.place();
533
  auto data_type = framework::TransToProtoVarType(src_tensor.dtype());
534 535
  auto* dev_ctx = platform::DeviceContextPool::Instance().Get(place);

536 537
  phi::DenseTensor* dst_tensor =
      GetInnerMutableTensor<phi::DenseTensor>(dst_tensor_var);
538
  dst_tensor->Resize(src_tensor.dims());
539 540
  dst_tensor->mutable_data(place, src_tensor.dtype());

541 542 543 544
#define PADDLE_SELECTED_ROWS_ADD_TENSOR(dev_ctx_type, cpp_type)            \
  if (data_type == framework::DataTypeTrait<cpp_type>::DataType()) {       \
    paddle::operators::math::SelectedRowsAddTensor<dev_ctx_type, cpp_type> \
        functor;                                                           \
545 546 547 548
    functor(*(dynamic_cast<dev_ctx_type*>(dev_ctx)),                       \
            src_selected_rows,                                             \
            src_tensor,                                                    \
            dst_tensor);                                                   \
549 550 551
    return;                                                                \
  }

552
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
553 554 555 556 557
  if (platform::is_gpu_place(place)) {
    PADDLE_SELECTED_ROWS_ADD_TENSOR(platform::CUDADeviceContext, float);
    PADDLE_SELECTED_ROWS_ADD_TENSOR(platform::CUDADeviceContext, double);
  } else {
#endif
L
Leo Chen 已提交
558 559
    PADDLE_SELECTED_ROWS_ADD_TENSOR(phi::CPUContext, float);
    PADDLE_SELECTED_ROWS_ADD_TENSOR(phi::CPUContext, double);
560
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
561 562 563 564 565 566 567 568 569 570
  }
#endif

  PADDLE_THROW(platform::errors::InvalidArgument(
      "Not supported data type %s for SelectedRowsAddToTensor",
      framework::DataTypeToString(data_type)));

#undef PADDLE_SELECTED_ROWS_ADD_TENSOR
}

571 572 573 574 575 576 577 578 579 580 581 582
template void SelectedRowsAddTensor(
    const framework::Variable& src_selected_rows_var,
    const framework::Variable& src_tensor_var,
    framework::Variable* dst_tensor_var);
template void SelectedRowsAddTensor(
    const paddle::experimental::Tensor& src_selected_rows_var,
    const paddle::experimental::Tensor& src_tensor_var,
    paddle::experimental::Tensor* dst_tensor_var);

// Note(chenweihang): when two selected rows need to be added,
//   adding one to another is not equal to merging two selected rows
//   to one then add it to a empty selected rows, the after is correct
583 584 585
template <typename ReturnVarType, typename VarType>
std::shared_ptr<ReturnVarType> SelectedRowsMerge(const VarType& src1,
                                                 const VarType& src2) {
586 587 588 589
  const phi::SelectedRows& src_selected_rows1 =
      GetInnerTensor<phi::SelectedRows>(src1);
  const phi::SelectedRows& src_selected_rows2 =
      GetInnerTensor<phi::SelectedRows>(src2);
590

591
  auto place = src_selected_rows1.value().place();
592 593
  auto data_type =
      framework::TransToProtoVarType(src_selected_rows1.value().dtype());
594 595
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();

596
  std::vector<const phi::SelectedRows*> src_selected_rows;
597 598
  src_selected_rows.emplace_back(&src_selected_rows1);
  src_selected_rows.emplace_back(&src_selected_rows2);
599 600

  auto dst_var = std::make_shared<ReturnVarType>("Temp");
601 602
  phi::SelectedRows* dst_selected_rows =
      GetEmptyInnerTensor<phi::SelectedRows>(dst_var.get());
603

604 605 606 607 608 609 610 611 612
#define PADDLE_SELECTED_ROWS_ADD(dev_ctx_type, cpp_type)               \
  if (data_type == framework::DataTypeTrait<cpp_type>::DataType()) {   \
    paddle::platform::DeviceContext* dev_ctx = pool.Get(place);        \
    paddle::operators::math::scatter::MergeAdd<dev_ctx_type, cpp_type> \
        merge_add;                                                     \
    merge_add(*(dynamic_cast<dev_ctx_type*>(dev_ctx)),                 \
              src_selected_rows,                                       \
              dst_selected_rows);                                      \
    return dst_var;                                                    \
613 614
  }

615
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
616 617 618 619 620
  if (paddle::platform::is_gpu_place(place)) {
    PADDLE_SELECTED_ROWS_ADD(platform::CUDADeviceContext, float);
    PADDLE_SELECTED_ROWS_ADD(platform::CUDADeviceContext, double);
  } else {
#endif
L
Leo Chen 已提交
621 622
    PADDLE_SELECTED_ROWS_ADD(phi::CPUContext, float);
    PADDLE_SELECTED_ROWS_ADD(phi::CPUContext, double);
623
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
624 625 626 627 628 629 630 631 632
  }
#endif

#undef PADDLE_SELECTED_ROWS_ADD
  PADDLE_THROW(platform::errors::InvalidArgument(
      "Not supported data type %s for SelectedRowsMerge",
      framework::DataTypeToString(data_type)));
}

633 634 635 636 637 638
template std::shared_ptr<paddle::experimental::Tensor> SelectedRowsMerge(
    const paddle::experimental::Tensor& src1,
    const paddle::experimental::Tensor& src2);
template std::shared_ptr<paddle::imperative::VariableWrapper> SelectedRowsMerge(
    const framework::Variable& src1, const framework::Variable& src2);

639
void VariableWrapperAdd(std::shared_ptr<VariableWrapper> var,
640 641
                        VariableWrapper* dst_var,
                        bool unchange_input) {
642
  auto& src = var->Var();
643
  auto* dst = dst_var->MutableVar();
644 645
  if (dst->IsType<framework::LoDTensor>()) {
    if (src.IsType<framework::LoDTensor>()) {
646
      TensorAdd<framework::Variable>(src, dst);
647
    } else if (src.IsType<phi::SelectedRows>()) {
648 649 650 651 652 653 654 655
      SelectedRowsAddToTensor(src, dst);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unexpected branch, output variable type is %s",
          framework::ToTypeName(dst->Type())));
    }
  } else {
    if (src.IsType<framework::LoDTensor>()) {
656 657 658 659 660 661 662 663 664
      if (unchange_input) {
        framework::Variable new_dst;
        SelectedRowsAddTensor(*dst, src, &new_dst);
        *dst = std::move(new_dst);
      } else {
        auto* src_mutable = var->MutableVar();
        SelectedRowsAddToTensor(*dst, src_mutable);
        *dst = std::move(*(var->MutableVar()));
      }
665
    } else if (src.IsType<phi::SelectedRows>()) {
666
      auto temp = SelectedRowsMerge<VariableWrapper>(src, *dst);
667 668 669 670 671 672 673 674 675
      *dst = std::move(*(temp->MutableVar()));
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unexpected branch, output variable type is %s",
          framework::ToTypeName(dst->Type())));
    }
  }
}

676 677
static platform::Place GetPlaceOfVar(
    const std::shared_ptr<VariableWrapper>& var) {
678 679 680
  platform::Place place;
  if (var->Var().IsType<framework::LoDTensor>()) {
    place = var->Var().Get<framework::LoDTensor>().place();
681 682
  } else if (var->Var().IsType<phi::SelectedRows>()) {
    place = var->Var().Get<phi::SelectedRows>().place();
683 684 685 686 687 688 689
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "only support LoDTensor and SelectedRows in dygraph"));
  }
  return place;
}

690 691
void GradientAccumulator::AccumulateGrad() {
  /**
692 693
   * If the leaf gradient has been calculated done, the inner_var_
   * should be added to the var_.
694 695 696 697
   */
  if (!var_->IsLeafGrad() || !SumGradCompleted() || !HasInnerVar()) {
    return;
  }
698 699
  PADDLE_ENFORCE_EQ(HasInnerVar(),
                    true,
700 701 702
                    platform::errors::InvalidArgument(
                        "Leaf tensor should have inner var to store results of "
                        "this auto-grad"));
703 704
  PADDLE_ENFORCE_EQ(inner_var_->Var().IsInitialized(),
                    true,
705
                    platform::errors::InvalidArgument(
706
                        "Interior var of Leaf tensor should be initialized."));
707 708 709
  auto* src = inner_var_->MutableVar();
  auto* dst = var_->MutableVar();
  if (!var_->IsEmpty()) {
710 711 712
    VLOG(6) << "Leaf Var(" << var_->Name()
            << ")'s Gradient has been initizlized, will accumulate on "
               "previous gradient.";
713 714
    if (dst->IsType<framework::LoDTensor>()) {
      if (src->IsType<framework::LoDTensor>()) {
715
        TensorAdd<framework::Variable>(*src, dst);
716
      } else if (src->IsType<phi::SelectedRows>()) {
717 718
        SelectedRowsAddToTensor(*src, dst);
      }
719
    } else if (dst->IsType<phi::SelectedRows>()) {
720 721 722
      if (src->IsType<framework::LoDTensor>()) {
        SelectedRowsAddToTensor(*dst, src);
        *dst = std::move(*src);
723
      } else if (src->IsType<phi::SelectedRows>()) {
724
        auto temp = SelectedRowsMerge<VariableWrapper>(*src, *dst);
725 726 727 728 729 730 731
        *dst = std::move(*(temp->MutableVar()));
      }
    } else {
      PADDLE_THROW(platform::errors::PermissionDenied(
          "Only support LoDTensor and SelectedRows for gradient var"));
    }
  } else {
732 733 734
    VLOG(6)
        << "Leaf Var(" << var_->Name()
        << ")'s Gradient has not been initialized, not accumulate. Just move";
735 736 737
    *(dst) = std::move(*src);
    var_->SetType(inner_var_->Type());
    var_->SetDataType(inner_var_->DataType());
738
    var_->SetIsEmpty(false);
739 740 741 742
  }
  inner_var_.reset();
}

743
void GradientAccumulator::CallGradientHooks() {
744 745
  PADDLE_ENFORCE_EQ(var_->IsLeafGrad(),
                    true,
746 747 748 749
                    platform::errors::Unavailable(
                        "Only leaf gradient Tensor can deal with by gradient "
                        "hook in gradient accumulator."));
  PADDLE_ENFORCE_EQ(
750 751
      SumGradCompleted(),
      true,
752 753 754
      platform::errors::PreconditionNotMet(
          "Only can call gradient hooks after sum gradient completed."));
  PADDLE_ENFORCE_EQ(
755 756
      HasInnerVar(),
      true,
757 758 759
      platform::errors::PreconditionNotMet(
          "Leaf Tensor's inner var is nullptr when call gradient hook."));
  PADDLE_ENFORCE_EQ(
760 761
      inner_var_->Var().IsInitialized(),
      true,
762 763 764
      platform::errors::PreconditionNotMet("Leaf Tensor's inner var "
                                           "is not initialized when "
                                           "call gradient hook."));
765 766
  if (var_->HasVariableWrapperHook()) {
    VLOG(3) << "Call " << var_->GetVariableWrapperHooks().size()
767 768 769 770
            << " hooks of leaf gradient accumulator's inner var `"
            << var_->Name() << "`.";
    auto tmp_var = inner_var_;
    VLOG(3) << "Input var " << var_->Name() << "'s hook size - "
771 772
            << var_->GetVariableWrapperHooks().size();
    for (const auto& hook_pair : var_->GetVariableWrapperHooks()) {
773
      tmp_var = (*hook_pair.second)(tmp_var);
L
Leo Chen 已提交
774
      CheckVar(inner_var_, tmp_var);
775 776 777 778 779 780 781
    }
    inner_var_ = tmp_var;
  }
}

void GradientAccumulator::CallReduceHooks() {
  PADDLE_ENFORCE_EQ(
782 783
      var_->IsLeafGrad(),
      true,
784 785
      platform::errors::Unavailable("Only leaf gradient Tensor can deal with "
                                    "by reduce hook in gradient accumulator."));
786 787
  PADDLE_ENFORCE_EQ(SumGradCompleted(),
                    true,
788 789 790
                    platform::errors::PreconditionNotMet(
                        "Only can call reduce hooks after the gradient "
                        "summation is completed in current batch."));
791 792
  PADDLE_ENFORCE_EQ(HasInnerVar(),
                    false,
793 794 795 796
                    platform::errors::PreconditionNotMet(
                        "Only can call reduce hooks after the "
                        "gradient accumulation is completed in "
                        "current batch or across batchs."));
797 798
  if (var_->HasVoidHook()) {
    for (const auto& hook : var_->GetVoidHooks()) {
799
      VLOG(3) << "call gradient accumulator backward hooks.";
800
      (*hook)();
801 802 803 804
    }
  }
}

805
void EagerGradientAccumulator::SumGrad(std::shared_ptr<VariableWrapper> var,
806 807
                                       size_t trace_id,
                                       bool unchange_input) {
808 809 810 811 812 813 814 815
  /**
   * If var has grad node, it indicates that this var would be an input
   * of a grad op. Therefore, it should not be changed.
   */
  if (var->HasGradNode()) {
    unchange_input = true;
  }

816
  auto* dst_var = Var();
817
  platform::Place place = GetPlaceOfVar(var);
818 819 820
  if (!dst_var->OverridedStopGradient()) {
    if (CurCnt() == 0) {
      MoveOrCopyVar(dst_var->MutableVar(), var->MutableVar(), unchange_input);
821
    } else {
822 823 824
      VLOG(6) << "Sum Gradient for: " << dst_var->Name()
              << " within this graph.";
      VariableWrapperAdd(var, dst_var, unchange_input);
825
    }
J
Jiabin Yang 已提交
826
  } else {
827 828 829
    if (!dst_var->Var().IsInitialized() ||
        !dst_var->Var().Get<framework::LoDTensor>().IsInitialized()) {
      VLOG(6) << "Set StopGradient Grad: " << dst_var->Name() << " as zero ";
830
      auto* dev_ctx = platform::DeviceContextPool::Instance().Get(place);
831 832 833 834
      if (!dst_var->Var().IsInitialized()) {
        auto* tensor =
            dst_var->MutableVar()->GetMutable<framework::LoDTensor>();
        VLOG(6) << "Dims of " << dst_var->Name() << " is set as: "
835 836
                << var->Var().Get<framework::LoDTensor>().dims();
        tensor->Resize(var->Var().Get<framework::LoDTensor>().dims());
837
        tensor->mutable_data(place,
838
                             framework::TransToPhiDataType(var->DataType()));
839
        phi::funcs::set_constant(*dev_ctx, tensor, 0.0);
840
      } else {
841 842
        auto* tensor =
            dst_var->MutableVar()->GetMutable<framework::LoDTensor>();
843
        tensor->mutable_data(place,
844
                             framework::TransToPhiDataType(var->DataType()));
845
        phi::funcs::set_constant(*dev_ctx, tensor, 0.0);
846
      }
847
    }
J
Jiabin Yang 已提交
848
  }
849

850 851 852 853
  // Type may be changed after OP run, such as VarTypeInference
  // so synchronous VariableWrapper with Variable.
  if (dst_var->Var().IsType<framework::LoDTensor>()) {
    dst_var->SetType(framework::proto::VarType::LOD_TENSOR);
854
  } else if (dst_var->Var().IsType<phi::SelectedRows>()) {
855
    dst_var->SetType(framework::proto::VarType::SELECTED_ROWS);
856
  }
857

858
  // Increase curent count
859
  IncreaseCurCnt();
J
Jiabin Yang 已提交
860 861
}

862
void SortedGradientAccumulator::SumGrad(std::shared_ptr<VariableWrapper> var,
863 864
                                        size_t trace_id,
                                        bool unchange_input) {
865
  auto* dst_var = Var();
866
  platform::Place place = GetPlaceOfVar(var);
867
  if (!dst_var->OverridedStopGradient()) {
868
    if (ref_cnt_ == 1) {
869 870
      MoveOrCopyVar(dst_var->MutableVar(),
                    var->MutableVar(),
871
                    unchange_input || var->HasGradNode());
872 873 874 875 876
    } else {
      if (tmp_grad_vars_.empty()) {
        tmp_grad_vars_.reserve(ref_cnt_);
      }

877
      tmp_grad_vars_.emplace_back(std::move(var), trace_id, unchange_input);
878 879 880 881 882

      if (tmp_grad_vars_.size() != ref_cnt_) {
        return;
      }

883 884
      VLOG(6) << "Sum Gradient for: " << dst_var->Name()
              << " within this graph.";
885 886
      std::sort(tmp_grad_vars_.begin(),
                tmp_grad_vars_.end(),
887 888 889 890 891 892 893 894 895
                [](const SavedVarInfo& info1, const SavedVarInfo& info2) {
                  return info1.trace_id > info2.trace_id;
                });

      for (auto& var_info : tmp_grad_vars_) {
        if (var_info.var->HasGradNode()) {
          var_info.unchange_input = true;
        }
      }
896

897
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
898
      if (paddle::platform::is_gpu_place(place)) {
899
        // sum selected rows firstly
900
        for (auto& var_info : tmp_grad_vars_) {
901
          if (!var_info.var->Var().IsType<phi::SelectedRows>()) {
902
            continue;
903
          }
904

905
          if (CurCnt() == 0) {
906 907
            MoveOrCopyVar(dst_var->MutableVar(),
                          var_info.var->MutableVar(),
908 909
                          var_info.unchange_input);
          } else {
910
            VariableWrapperAdd(var_info.var, dst_var, var_info.unchange_input);
911
          }
912 913

          var_info.var = nullptr;
914 915
          // Increase count
          IncreaseCurCnt();
916 917 918 919 920 921 922 923
        }

        for (auto& var_info : tmp_grad_vars_) {
          if (!var_info.var) {
            continue;
          }

          PADDLE_ENFORCE_EQ(var_info.var->Var().IsType<framework::LoDTensor>(),
924 925 926
                            true,
                            platform::errors::PermissionDenied(
                                "Gradient var must be LoDTensor"));
927
          if (CurCnt() == 0) {
928 929
            MoveOrCopyVar(dst_var->MutableVar(),
                          var_info.var->MutableVar(),
930 931
                          var_info.unchange_input);
          } else {
932
            VariableWrapperAdd(var_info.var, dst_var, var_info.unchange_input);
933
          }
934 935

          var_info.var = nullptr;
936 937
          // Increase count
          IncreaseCurCnt();
938 939 940
        }
      } else {
#endif
941 942 943 944 945 946
        for (auto& var_info : tmp_grad_vars_) {
          if (!var_info.var) {
            continue;
          }
          PADDLE_ENFORCE_EQ(
              var_info.var->Var().IsType<framework::LoDTensor>() ||
947
                  var_info.var->Var().IsType<phi::SelectedRows>(),
948 949 950 951
              true,
              platform::errors::PermissionDenied("The type of Gradient "
                                                 "var must be LoDTensor "
                                                 "or SelectedRows"));
952
          if (CurCnt() == 0) {
953 954
            MoveOrCopyVar(dst_var->MutableVar(),
                          var_info.var->MutableVar(),
955 956 957 958 959 960 961
                          var_info.unchange_input);
          } else {
            VariableWrapperAdd(var_info.var, dst_var, var_info.unchange_input);
          }
          var_info.var = nullptr;
          // Increase count
          IncreaseCurCnt();
962
        }
963
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
964
      }
965
#endif
966
      tmp_grad_vars_.clear();
J
Jiabin Yang 已提交
967
    }
968
  } else {
969 970
    if (!dst_var->Var().IsInitialized() ||
        !dst_var->Var().Get<framework::LoDTensor>().IsInitialized()) {
971 972
      VLOG(6) << "Set StopGradient Grad: " << var->Name() << " as zero";
      auto* dev_ctx = platform::DeviceContextPool::Instance().Get(place);
973 974 975 976
      if (!dst_var->Var().IsInitialized()) {
        auto* tensor =
            dst_var->MutableVar()->GetMutable<framework::LoDTensor>();
        VLOG(6) << "Dims of " << dst_var->Name() << " is set as: "
977 978
                << var->Var().Get<framework::LoDTensor>().dims();
        tensor->Resize(var->Var().Get<framework::LoDTensor>().dims());
979
        tensor->mutable_data(place,
980
                             framework::TransToPhiDataType(var->DataType()));
981
        phi::funcs::set_constant(*dev_ctx, tensor, 0.0);
982
      } else {
983 984
        auto* tensor =
            dst_var->MutableVar()->GetMutable<framework::LoDTensor>();
985
        tensor->mutable_data(place,
986
                             framework::TransToPhiDataType(var->DataType()));
987
        phi::funcs::set_constant(*dev_ctx, tensor, 0.0);
988
      }
J
Jiabin Yang 已提交
989
    }
990
    // looks like tmp_grad_vars will not have any member but just in case
J
Jiabin Yang 已提交
991 992
    tmp_grad_vars_.clear();
  }
993

994 995
  if (dst_var->Var().IsType<framework::LoDTensor>()) {
    dst_var->SetType(framework::proto::VarType::LOD_TENSOR);
996
  } else if (dst_var->Var().IsType<phi::SelectedRows>()) {
997
    dst_var->SetType(framework::proto::VarType::SELECTED_ROWS);
998
  }
J
Jiabin Yang 已提交
999 1000 1001 1002
}

}  // namespace imperative
}  // namespace paddle