gradient_accumulator.cc 36.5 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/gradient_accumulator.h"
16

J
Jiabin Yang 已提交
17 18 19
#include <algorithm>
#include <memory>
#include <utility>
20

21
#include "paddle/fluid/framework/convert_utils.h"
J
Jiabin Yang 已提交
22
#include "paddle/fluid/framework/lod_tensor.h"
23
#include "paddle/fluid/framework/selected_rows_utils.h"
J
Jiabin Yang 已提交
24 25
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/operators/math/blas.h"
26
#include "paddle/fluid/operators/math/selected_rows_functor.h"
27
#include "paddle/fluid/platform/complex.h"
J
Jiabin Yang 已提交
28
#include "paddle/fluid/platform/device_context.h"
29
#include "paddle/fluid/platform/float16.h"
J
Jiabin Yang 已提交
30
#include "paddle/fluid/platform/profiler.h"
31
#include "paddle/pten/kernels/funcs/math_function.h"
H
hong 已提交
32 33 34
#ifdef PADDLE_WITH_XPU
#include "xpu/refactor/math.h"
#endif
35
#ifdef PADDLE_WITH_ASCEND_CL
36
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"
37
#endif
F
fwenguang 已提交
38 39 40
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
#endif
J
Jiabin Yang 已提交
41 42 43 44

namespace paddle {
namespace imperative {

45 46 47
static void MoveOrCopyVar(framework::Variable* dst, framework::Variable* src,
                          bool force_copy) {
  if (!force_copy) {
48
    VLOG(6) << "Just Move Variable when sum gradients within this graph";
49 50 51 52
    *dst = std::move(*src);
    return;
  }

53
  VLOG(6) << "Copy occurs when sum gradients within this graph";
54 55 56 57 58 59 60 61
  if (src->IsType<framework::LoDTensor>()) {
    auto& src_tensor = src->Get<framework::LoDTensor>();
    if (!dst->IsType<framework::LoDTensor>()) {
      dst->Clear();
    }
    auto* dst_tensor = dst->GetMutable<framework::LoDTensor>();
    framework::TensorCopy(src_tensor, src_tensor.place(), dst_tensor);
    dst_tensor->set_lod(src_tensor.lod());
62 63 64
  } else if (src->IsType<pten::SelectedRows>()) {
    auto& src_selected_rows = src->Get<pten::SelectedRows>();
    if (!dst->IsType<pten::SelectedRows>()) {
65 66
      dst->Clear();
    }
67
    auto* dst_selected_rows = dst->GetMutable<pten::SelectedRows>();
68 69 70 71 72 73 74
    framework::TensorCopy(src_selected_rows.value(),
                          src_selected_rows.value().place(),
                          dst_selected_rows->mutable_value());
    dst_selected_rows->set_rows(src_selected_rows.rows());
    dst_selected_rows->set_height(src_selected_rows.height());
  } else {
    PADDLE_THROW(platform::errors::PermissionDenied(
75
        "Only support LoDTensor and SelectedRows for sum gradient"));
76 77 78
  }
}

J
Jiabin Yang 已提交
79 80 81 82 83 84
template <typename T>
class TensorAddFunctor : public boost::static_visitor<> {
 public:
  TensorAddFunctor(int64_t numel, const T* x, T* y)
      : numel_(numel), x_(x), y_(y) {}

85
  void operator()(const platform::CPUPlace& place) const {
J
Jiabin Yang 已提交
86 87 88 89 90 91
    platform::CPUDeviceContext* ctx = dynamic_cast<platform::CPUDeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
    auto blas = operators::math::GetBlas<platform::CPUDeviceContext, T>(*ctx);
    blas.AXPY(numel_, 1., x_, y_);
  }

H
hong 已提交
92
#ifdef PADDLE_WITH_XPU
93
  void operator()(const platform::XPUPlace& place) const {
94
    using XPUType = typename XPUTypeTrait<T>::Type;
H
hong 已提交
95 96
    platform::XPUDeviceContext* ctx = dynamic_cast<platform::XPUDeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
97 98 99 100 101 102 103 104
    int r = xpu::add<XPUType>(
        ctx->x_context(), reinterpret_cast<const XPUType*>(x_),
        reinterpret_cast<const XPUType*>(y_), reinterpret_cast<XPUType*>(y_),
        static_cast<int>(numel_));
    PADDLE_ENFORCE_EQ(
        r, XPU_SUCCESS,
        platform::errors::External("XPU add kernel return wrong value[%d %s]",
                                   r, XPUAPIErrorMsg[r]));
H
hong 已提交
105 106
  }
#else
107
  void operator()(const platform::XPUPlace& place) const {
108 109 110 111 112
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
  }
H
hong 已提交
113
#endif
114

115
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
116
  void operator()(const platform::CUDAPlace& place) const {
J
Jiabin Yang 已提交
117 118 119 120 121 122 123
    platform::CUDADeviceContext* ctx =
        dynamic_cast<platform::CUDADeviceContext*>(
            platform::DeviceContextPool::Instance().Get(place));
    auto blas = operators::math::GetBlas<platform::CUDADeviceContext, T>(*ctx);
    blas.AXPY(numel_, 1., x_, y_);
  }
#else
124
  void operator()(const platform::CUDAPlace& place) const {
125
    PADDLE_THROW(platform::errors::PermissionDenied(
126 127 128 129 130 131
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
  }
#endif

F
fwenguang 已提交
132
#ifdef PADDLE_WITH_MLU
133
  void operator()(const platform::MLUPlace& place) const {
F
fwenguang 已提交
134 135 136 137 138 139 140
    // TODO(fwg): SUPPORT it
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
  }
#else
141
  void operator()(const platform::MLUPlace& place) const {
F
fwenguang 已提交
142 143 144 145 146 147 148
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
  }
#endif

149
#ifdef PADDLE_WITH_ASCEND_CL
150
  void operator()(const platform::NPUPlace& place) const {
151 152 153 154 155 156 157
    // TODO(zhiqiu): SUPPORT it
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
  }
#else
158
  void operator()(const platform::NPUPlace& place) const {
159
    PADDLE_THROW(platform::errors::PermissionDenied(
160 161 162
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
J
Jiabin Yang 已提交
163 164 165
  }
#endif

166
  void operator()(const platform::NPUPinnedPlace& place) const {
167 168 169 170 171
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
  }
J
Jiabin Yang 已提交
172
  // there is NO blas in CUDAPinnedPlace
173
  void operator()(const platform::CUDAPinnedPlace& place) const {
174 175 176 177
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
J
Jiabin Yang 已提交
178
  }
J
jianghaicheng 已提交
179
  // there is NO support in IPUPlace
180
  void operator()(const platform::IPUPlace& place) const {
J
jianghaicheng 已提交
181 182 183 184 185
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
  }
186 187 188 189 190 191
  void operator()(const platform::CustomPlace& place) const {
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
  }
J
Jiabin Yang 已提交
192 193 194 195

 private:
  int64_t numel_;
  const T* x_;
196
  mutable T* y_;
J
Jiabin Yang 已提交
197 198
};

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
#ifdef PADDLE_WITH_XPU
template <typename T>
void XPUTensorAddFunctor(const platform::Place& place,
                         const framework::Tensor& src, framework::Tensor* dst) {
  using XPUType = typename XPUTypeTrait<T>::Type;
  platform::XPUDeviceContext* ctx = dynamic_cast<platform::XPUDeviceContext*>(
      platform::DeviceContextPool::Instance().Get(place));
  const XPUType* x = reinterpret_cast<const XPUType*>(src.data<T>());
  XPUType* y = reinterpret_cast<XPUType*>(dst->mutable_data<T>(place));
  int r = xpu::add<XPUType>(ctx->x_context(), x, y, y,
                            static_cast<int>(src.numel()));
  PADDLE_ENFORCE_EQ(
      r, XPU_SUCCESS,
      platform::errors::External("XPU add kernel return wrong value[%d %s]", r,
                                 XPUAPIErrorMsg[r]));
}
#endif

217 218 219 220 221 222
template <typename DeviceContext, typename T>
void TensorAddImpl(const framework::Tensor& src, framework::Tensor* dst,
                   const platform::Place& place) {
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  paddle::platform::DeviceContext* ctx = pool.Get(place);
  auto dev_ctx = dynamic_cast<DeviceContext*>(ctx);
223
  pten::funcs::ElementwiseAddTo<DeviceContext, T> func;
224 225 226
  func(dev_ctx, src, dst);
}

227 228 229
template <typename TType>
TType* GetInnerMutableTensor(framework::Variable* dst) {
  auto* dst_tensor = dst->GetMutable<TType>();
230 231 232
  return dst_tensor;
}

233 234 235
template <typename TType>
TType* GetInnerMutableTensor(paddle::experimental::Tensor* dst) {
  auto* dst_tensor = static_cast<TType*>(dst->impl().get());
236 237 238
  return dst_tensor;
}

239 240 241
template <typename TType>
const TType& GetInnerTensor(const framework::Variable& src) {
  return src.Get<TType>();
242 243
}

244 245 246 247 248 249 250 251 252
template <typename TType>
TType& GetInnerTensor(const paddle::experimental::Tensor& src) {
  PADDLE_ENFORCE_EQ(
      src.initialized(), true,
      platform::errors::Fatal("We only add tensor with value if a tensor is "
                              "NOT INITILIZED, it should just move instead of "
                              "calling this method."));
  auto* src_tensor = static_cast<TType*>(src.impl().get());
  return *src_tensor;
253 254
}

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
template <typename TType>
TType* GetEmptyInnerTensor(paddle::experimental::Tensor* dst) {
  PADDLE_ENFORCE_EQ(
      dst->defined(), false,
      platform::errors::Fatal(
          "The underlying Tensor implementation should be nullptr"));
  dst->set_impl(std::make_shared<TType>());
  auto* dst_tensor = static_cast<TType*>(dst->impl().get());
  return dst_tensor;
}

template <typename TType>
TType* GetEmptyInnerTensor(paddle::imperative::VariableWrapper* dst) {
  auto* dst_tensor = dst->MutableVar()->GetMutable<TType>();
  return dst_tensor;
}

272 273
template <typename VarType>
void TensorAdd(const VarType& src, VarType* dst) {
274 275
  pten::DenseTensor* dst_tensor = GetInnerMutableTensor<pten::DenseTensor>(dst);
  const pten::DenseTensor& src_tensor = GetInnerTensor<pten::DenseTensor>(src);
J
Jiabin Yang 已提交
276 277 278 279 280 281 282 283 284

  auto numel = src_tensor.numel();

  // FIXME(minqiyang): loss_grad op will pass a zero grad of label
  // ugly fix for it
  if (numel == 0) {
    return;
  }

285 286 287 288 289 290 291
  PADDLE_ENFORCE_EQ(
      dst_tensor->numel(), numel,
      platform::errors::PreconditionNotMet(
          "The number of elements of source tensor and destination tensor "
          "should be equal, but got the number of elements of source tensor is "
          "%zu and the number of elements of destination tensor is %zu.",
          numel, dst_tensor->numel()));
J
Jiabin Yang 已提交
292

293
  auto data_type = framework::TransToProtoVarType(src_tensor.dtype());
J
Jiabin Yang 已提交
294 295
  auto place = src_tensor.place();

296 297
  PADDLE_ENFORCE_EQ(framework::TransToProtoVarType(dst_tensor->dtype()),
                    data_type,
298 299 300 301 302
                    platform::errors::PreconditionNotMet(
                        "The data type of source tensor and destination tensor "
                        "should be equal, Otherwise, the calculation results "
                        "will be incorrect."));

303 304 305 306
  // if src and dst are in different place, copy dst to src's place
  if (dst_tensor->place() != place) {
    paddle::framework::TensorCopySync(*dst_tensor, place, dst_tensor);
  }
307
#define PADDLE_TENSOR_ADD(cpp_type)                                  \
J
Jiabin Yang 已提交
308 309 310 311
  if (data_type == framework::DataTypeTrait<cpp_type>::DataType()) { \
    TensorAddFunctor<cpp_type> func(                                 \
        numel, src_tensor.data<cpp_type>(),                          \
        dst_tensor->mutable_data<cpp_type>(place));                  \
312
    platform::VisitPlace(place, func);                               \
J
Jiabin Yang 已提交
313 314 315
    return;                                                          \
  }

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
#ifdef PADDLE_WITH_ASCEND_CL
  if (platform::is_npu_place(place)) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    platform::DeviceContext* ctx = pool.Get(place);
    auto dev_ctx = dynamic_cast<platform::NPUDeviceContext*>(ctx);
    if (data_type == framework::DataTypeTrait<float>::DataType()) {
      dst_tensor->mutable_data<float>(place);
    } else if (data_type == framework::DataTypeTrait<double>::DataType()) {
      dst_tensor->mutable_data<double>(place);
    } else if (data_type ==
               framework::DataTypeTrait<platform::float16>::DataType()) {
      dst_tensor->mutable_data<platform::float16>(place);
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Gradient accumulation of data type (%s) on place (%s) is not "
          "supported in imperative mode",
          framework::DataTypeToString(data_type), place));
    }
    const auto& runner = operators::NpuOpRunner(
        "Add", {*dst_tensor, src_tensor}, {*dst_tensor}, {});
    runner.Run(dev_ctx->stream());
    return;
  }
#endif
340 341 342 343 344 345 346 347
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  if (platform::is_custom_place(place)) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Gradient accumulation of data type (%s) on place (%s) is not "
        "supported in imperative mode",
        framework::DataTypeToString(data_type), place));
  }
#endif
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
#ifdef PADDLE_WITH_XPU
  if (platform::is_xpu_place(place)) {
    if (data_type == framework::DataTypeTrait<float>::DataType()) {
      XPUTensorAddFunctor<float>(place, src_tensor, dst_tensor);
    } else if (data_type ==
               framework::DataTypeTrait<platform::float16>::DataType()) {
      XPUTensorAddFunctor<platform::float16>(place, src_tensor, dst_tensor);
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Gradient accumulation of data type (%s) on place (%s) is not "
          "supported in imperative mode",
          framework::DataTypeToString(data_type), place));
    }
    return;
  }
#endif

F
fwenguang 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
#ifdef PADDLE_WITH_MLU
  if (platform::is_mlu_place(place)) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    platform::DeviceContext* ctx = pool.Get(place);
    auto dev_ctx = dynamic_cast<platform::MLUDeviceContext*>(ctx);
    if (data_type == framework::DataTypeTrait<float>::DataType()) {
      dst_tensor->mutable_data<float>(place);
    } else if (data_type ==
               framework::DataTypeTrait<platform::float16>::DataType()) {
      dst_tensor->mutable_data<platform::float16>(place);
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Gradient accumulation of data type (%s) on place (%s) is not "
          "supported in imperative mode",
          framework::DataTypeToString(data_type), place));
    }
    static const float alpha = 1.f;
    static const float beta = 1.f;
    operators::MLUCnnlTensorDesc src_tensor_desc(src_tensor);
    operators::MLUCnnlTensorDesc dst_tensor_desc(*dst_tensor);
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlAssignAdd(
386
        dev_ctx->cnnl_handle(), static_cast<const void*>(&alpha),
F
fwenguang 已提交
387
        src_tensor_desc.get(), operators::GetBasePtr(&src_tensor), nullptr, 0,
388
        static_cast<const void*>(&beta), dst_tensor_desc.get(),
F
fwenguang 已提交
389 390 391 392 393
        operators::GetBasePtr(dst_tensor)));
    return;
  }
#endif

394
  PADDLE_TENSOR_ADD(float);
395

H
hong 已提交
396 397
#ifndef PADDLE_WITH_XPU
  // NOTE(phlrain): xpu only support float
398
  PADDLE_TENSOR_ADD(double);
399 400
  // NOTE(chenweihang): only support complex grad tensor accumulated,
  // support selected rows if needed in the future
401 402
  PADDLE_TENSOR_ADD(platform::complex<float>);
  PADDLE_TENSOR_ADD(platform::complex<double>);
H
hong 已提交
403
#endif
J
Jiabin Yang 已提交
404

405
#undef PADDLE_TENSOR_ADD
J
Jiabin Yang 已提交
406

407 408
  if (data_type == framework::proto::VarType::FP16) {
    if (platform::is_gpu_place(place)) {
409
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
      return TensorAddImpl<platform::CUDADeviceContext, platform::float16>(
          src_tensor, dst_tensor, place);
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "Gradient accumulation of data type (%s) on place (%s) is not "
          "supported in imperative mode",
          framework::DataTypeToString(data_type), place));
#endif
    } else if (platform::is_cpu_place(place)) {
      return TensorAddImpl<platform::CPUDeviceContext, platform::float16>(
          src_tensor, dst_tensor, place);
    }
  }
  PADDLE_THROW(platform::errors::Unimplemented(
      "Gradient accumulation of data type (%s) on place (%s) is not "
      "supported in imperative mode",
      framework::DataTypeToString(data_type), place));
J
Jiabin Yang 已提交
427 428
}

429 430
template void TensorAdd<framework::Variable>(const framework::Variable& src,
                                             framework::Variable* dst);
431 432
template void TensorAdd<paddle::experimental::Tensor>(
    const paddle::experimental::Tensor& src, paddle::experimental::Tensor* dst);
433

434 435 436 437 438
template <typename VarType>
void SelectedRowsAddToTensor(const VarType& src, VarType* dst) {
  pten::DenseTensor* dst_tensor = GetInnerMutableTensor<pten::DenseTensor>(dst);
  const pten::SelectedRows& src_selected_rows =
      GetInnerTensor<pten::SelectedRows>(src);
439
  auto place = dst_tensor->place();
440 441
  auto data_type =
      framework::TransToProtoVarType(src_selected_rows.value().dtype());
442 443 444 445 446 447 448 449 450 451 452 453
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();

#define PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(dev_ctx_type, cpp_type)           \
  if (data_type == framework::DataTypeTrait<cpp_type>::DataType()) {         \
    paddle::platform::DeviceContext* dev_ctx = pool.Get(place);              \
    paddle::operators::math::SelectedRowsAddToTensor<dev_ctx_type, cpp_type> \
        functor;                                                             \
    functor(*(dynamic_cast<dev_ctx_type*>(dev_ctx)), src_selected_rows,      \
            dst_tensor);                                                     \
    return;                                                                  \
  }

454
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
455 456 457 458 459 460 461
  if (paddle::platform::is_gpu_place(place)) {
    PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(platform::CUDADeviceContext, float);
    PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(platform::CUDADeviceContext, double);
  } else {
#endif
    PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(platform::CPUDeviceContext, float);
    PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(platform::CPUDeviceContext, double);
462
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
463 464 465 466 467 468 469 470 471 472
  }
#endif

#undef PADDLE_SELECTED_ROWS_ADD_TO_TENSOR

  PADDLE_THROW(platform::errors::InvalidArgument(
      "Not supported data type %s for SelectedRowsAddToTensor",
      framework::DataTypeToString(data_type)));
}

473 474 475 476 477 478 479 480 481 482 483 484 485
template void SelectedRowsAddToTensor(const framework::Variable& src,
                                      framework::Variable* dst);
template void SelectedRowsAddToTensor(const paddle::experimental::Tensor& src,
                                      paddle::experimental::Tensor* dst);

template <typename VarType>
void SelectedRowsAddTensor(const VarType& src_selected_rows_var,
                           const VarType& src_tensor_var,
                           VarType* dst_tensor_var) {
  const pten::SelectedRows& src_selected_rows =
      GetInnerTensor<pten::SelectedRows>(src_selected_rows_var);
  const pten::DenseTensor& src_tensor =
      GetInnerTensor<pten::DenseTensor>(src_tensor_var);
486
  const auto& place = src_tensor.place();
487
  auto data_type = framework::TransToProtoVarType(src_tensor.dtype());
488 489
  auto* dev_ctx = platform::DeviceContextPool::Instance().Get(place);

490 491
  pten::DenseTensor* dst_tensor =
      GetInnerMutableTensor<pten::DenseTensor>(dst_tensor_var);
492
  dst_tensor->Resize(src_tensor.dims());
493 494
  dst_tensor->mutable_data(place, src_tensor.dtype());

495 496 497 498 499 500 501 502 503
#define PADDLE_SELECTED_ROWS_ADD_TENSOR(dev_ctx_type, cpp_type)            \
  if (data_type == framework::DataTypeTrait<cpp_type>::DataType()) {       \
    paddle::operators::math::SelectedRowsAddTensor<dev_ctx_type, cpp_type> \
        functor;                                                           \
    functor(*(dynamic_cast<dev_ctx_type*>(dev_ctx)), src_selected_rows,    \
            src_tensor, dst_tensor);                                       \
    return;                                                                \
  }

504
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
505 506 507 508 509 510 511
  if (platform::is_gpu_place(place)) {
    PADDLE_SELECTED_ROWS_ADD_TENSOR(platform::CUDADeviceContext, float);
    PADDLE_SELECTED_ROWS_ADD_TENSOR(platform::CUDADeviceContext, double);
  } else {
#endif
    PADDLE_SELECTED_ROWS_ADD_TENSOR(platform::CPUDeviceContext, float);
    PADDLE_SELECTED_ROWS_ADD_TENSOR(platform::CPUDeviceContext, double);
512
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
513 514 515 516 517 518 519 520 521 522
  }
#endif

  PADDLE_THROW(platform::errors::InvalidArgument(
      "Not supported data type %s for SelectedRowsAddToTensor",
      framework::DataTypeToString(data_type)));

#undef PADDLE_SELECTED_ROWS_ADD_TENSOR
}

523 524 525 526 527 528 529 530 531 532 533 534
template void SelectedRowsAddTensor(
    const framework::Variable& src_selected_rows_var,
    const framework::Variable& src_tensor_var,
    framework::Variable* dst_tensor_var);
template void SelectedRowsAddTensor(
    const paddle::experimental::Tensor& src_selected_rows_var,
    const paddle::experimental::Tensor& src_tensor_var,
    paddle::experimental::Tensor* dst_tensor_var);

// Note(chenweihang): when two selected rows need to be added,
//   adding one to another is not equal to merging two selected rows
//   to one then add it to a empty selected rows, the after is correct
535 536 537 538 539 540 541 542
template <typename ReturnVarType, typename VarType>
std::shared_ptr<ReturnVarType> SelectedRowsMerge(const VarType& src1,
                                                 const VarType& src2) {
  const pten::SelectedRows& src_selected_rows1 =
      GetInnerTensor<pten::SelectedRows>(src1);
  const pten::SelectedRows& src_selected_rows2 =
      GetInnerTensor<pten::SelectedRows>(src2);

543
  auto place = src_selected_rows1.value().place();
544 545
  auto data_type =
      framework::TransToProtoVarType(src_selected_rows1.value().dtype());
546 547
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();

548
  std::vector<const pten::SelectedRows*> src_selected_rows;
549 550
  src_selected_rows.emplace_back(&src_selected_rows1);
  src_selected_rows.emplace_back(&src_selected_rows2);
551 552 553 554

  auto dst_var = std::make_shared<ReturnVarType>("Temp");
  pten::SelectedRows* dst_selected_rows =
      GetEmptyInnerTensor<pten::SelectedRows>(dst_var.get());
555 556 557 558 559 560 561 562 563 564 565

#define PADDLE_SELECTED_ROWS_ADD(dev_ctx_type, cpp_type)                  \
  if (data_type == framework::DataTypeTrait<cpp_type>::DataType()) {      \
    paddle::platform::DeviceContext* dev_ctx = pool.Get(place);           \
    paddle::operators::math::scatter::MergeAdd<dev_ctx_type, cpp_type>    \
        merge_add;                                                        \
    merge_add(*(dynamic_cast<dev_ctx_type*>(dev_ctx)), src_selected_rows, \
              dst_selected_rows);                                         \
    return dst_var;                                                       \
  }

566
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
567 568 569 570 571 572 573
  if (paddle::platform::is_gpu_place(place)) {
    PADDLE_SELECTED_ROWS_ADD(platform::CUDADeviceContext, float);
    PADDLE_SELECTED_ROWS_ADD(platform::CUDADeviceContext, double);
  } else {
#endif
    PADDLE_SELECTED_ROWS_ADD(platform::CPUDeviceContext, float);
    PADDLE_SELECTED_ROWS_ADD(platform::CPUDeviceContext, double);
574
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
575 576 577 578 579 580 581 582 583
  }
#endif

#undef PADDLE_SELECTED_ROWS_ADD
  PADDLE_THROW(platform::errors::InvalidArgument(
      "Not supported data type %s for SelectedRowsMerge",
      framework::DataTypeToString(data_type)));
}

584 585 586 587 588 589
template std::shared_ptr<paddle::experimental::Tensor> SelectedRowsMerge(
    const paddle::experimental::Tensor& src1,
    const paddle::experimental::Tensor& src2);
template std::shared_ptr<paddle::imperative::VariableWrapper> SelectedRowsMerge(
    const framework::Variable& src1, const framework::Variable& src2);

590
void VariableWrapperAdd(std::shared_ptr<VariableWrapper> var,
591
                        VariableWrapper* dst_var, bool unchange_input) {
592
  auto& src = var->Var();
593
  auto* dst = dst_var->MutableVar();
594 595
  if (dst->IsType<framework::LoDTensor>()) {
    if (src.IsType<framework::LoDTensor>()) {
596
      TensorAdd<framework::Variable>(src, dst);
597
    } else if (src.IsType<pten::SelectedRows>()) {
598 599 600 601 602 603 604 605
      SelectedRowsAddToTensor(src, dst);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unexpected branch, output variable type is %s",
          framework::ToTypeName(dst->Type())));
    }
  } else {
    if (src.IsType<framework::LoDTensor>()) {
606 607 608 609 610 611 612 613 614
      if (unchange_input) {
        framework::Variable new_dst;
        SelectedRowsAddTensor(*dst, src, &new_dst);
        *dst = std::move(new_dst);
      } else {
        auto* src_mutable = var->MutableVar();
        SelectedRowsAddToTensor(*dst, src_mutable);
        *dst = std::move(*(var->MutableVar()));
      }
615
    } else if (src.IsType<pten::SelectedRows>()) {
616
      auto temp = SelectedRowsMerge<VariableWrapper>(src, *dst);
617 618 619 620 621 622 623 624 625
      *dst = std::move(*(temp->MutableVar()));
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unexpected branch, output variable type is %s",
          framework::ToTypeName(dst->Type())));
    }
  }
}

626 627
static platform::Place GetPlaceOfVar(
    const std::shared_ptr<VariableWrapper>& var) {
628 629 630
  platform::Place place;
  if (var->Var().IsType<framework::LoDTensor>()) {
    place = var->Var().Get<framework::LoDTensor>().place();
631 632
  } else if (var->Var().IsType<pten::SelectedRows>()) {
    place = var->Var().Get<pten::SelectedRows>().place();
633 634 635 636 637 638 639
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "only support LoDTensor and SelectedRows in dygraph"));
  }
  return place;
}

640 641
void GradientAccumulator::AccumulateGrad() {
  /**
642 643
   * If the leaf gradient has been calculated done, the inner_var_
   * should be added to the var_.
644 645 646 647 648 649 650 651 652 653
   */
  if (!var_->IsLeafGrad() || !SumGradCompleted() || !HasInnerVar()) {
    return;
  }
  PADDLE_ENFORCE_EQ(HasInnerVar(), true,
                    platform::errors::InvalidArgument(
                        "Leaf tensor should have inner var to store results of "
                        "this auto-grad"));
  PADDLE_ENFORCE_EQ(inner_var_->Var().IsInitialized(), true,
                    platform::errors::InvalidArgument(
654
                        "Interior var of Leaf tensor should be initialized."));
655 656 657
  auto* src = inner_var_->MutableVar();
  auto* dst = var_->MutableVar();
  if (!var_->IsEmpty()) {
658 659 660
    VLOG(6) << "Leaf Var(" << var_->Name()
            << ")'s Gradient has been initizlized, will accumulate on "
               "previous gradient.";
661 662
    if (dst->IsType<framework::LoDTensor>()) {
      if (src->IsType<framework::LoDTensor>()) {
663
        TensorAdd<framework::Variable>(*src, dst);
664
      } else if (src->IsType<pten::SelectedRows>()) {
665 666
        SelectedRowsAddToTensor(*src, dst);
      }
667
    } else if (dst->IsType<pten::SelectedRows>()) {
668 669 670
      if (src->IsType<framework::LoDTensor>()) {
        SelectedRowsAddToTensor(*dst, src);
        *dst = std::move(*src);
671
      } else if (src->IsType<pten::SelectedRows>()) {
672
        auto temp = SelectedRowsMerge<VariableWrapper>(*src, *dst);
673 674 675 676 677 678 679
        *dst = std::move(*(temp->MutableVar()));
      }
    } else {
      PADDLE_THROW(platform::errors::PermissionDenied(
          "Only support LoDTensor and SelectedRows for gradient var"));
    }
  } else {
680 681 682
    VLOG(6)
        << "Leaf Var(" << var_->Name()
        << ")'s Gradient has not been initialized, not accumulate. Just move";
683 684 685
    *(dst) = std::move(*src);
    var_->SetType(inner_var_->Type());
    var_->SetDataType(inner_var_->DataType());
686
    var_->SetIsEmpty(false);
687 688 689 690
  }
  inner_var_.reset();
}

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
void GradientAccumulator::CallGradientHooks() {
  PADDLE_ENFORCE_EQ(var_->IsLeafGrad(), true,
                    platform::errors::Unavailable(
                        "Only leaf gradient Tensor can deal with by gradient "
                        "hook in gradient accumulator."));
  PADDLE_ENFORCE_EQ(
      SumGradCompleted(), true,
      platform::errors::PreconditionNotMet(
          "Only can call gradient hooks after sum gradient completed."));
  PADDLE_ENFORCE_EQ(
      HasInnerVar(), true,
      platform::errors::PreconditionNotMet(
          "Leaf Tensor's inner var is nullptr when call gradient hook."));
  PADDLE_ENFORCE_EQ(
      inner_var_->Var().IsInitialized(), true,
      platform::errors::PreconditionNotMet("Leaf Tensor's inner var "
                                           "is not initialized when "
                                           "call gradient hook."));
709 710
  if (var_->HasVariableWrapperHook()) {
    VLOG(3) << "Call " << var_->GetVariableWrapperHooks().size()
711 712 713 714
            << " hooks of leaf gradient accumulator's inner var `"
            << var_->Name() << "`.";
    auto tmp_var = inner_var_;
    VLOG(3) << "Input var " << var_->Name() << "'s hook size - "
715 716
            << var_->GetVariableWrapperHooks().size();
    for (const auto& hook_pair : var_->GetVariableWrapperHooks()) {
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
      tmp_var = (*hook_pair.second)(tmp_var);
    }
    inner_var_ = tmp_var;
  }
}

void GradientAccumulator::CallReduceHooks() {
  PADDLE_ENFORCE_EQ(
      var_->IsLeafGrad(), true,
      platform::errors::Unavailable("Only leaf gradient Tensor can deal with "
                                    "by reduce hook in gradient accumulator."));
  PADDLE_ENFORCE_EQ(SumGradCompleted(), true,
                    platform::errors::PreconditionNotMet(
                        "Only can call reduce hooks after the gradient "
                        "summation is completed in current batch."));
  PADDLE_ENFORCE_EQ(HasInnerVar(), false,
                    platform::errors::PreconditionNotMet(
                        "Only can call reduce hooks after the "
                        "gradient accumulation is completed in "
                        "current batch or across batchs."));
737 738
  if (var_->HasVoidHook()) {
    for (const auto& hook : var_->GetVoidHooks()) {
739
      VLOG(3) << "call gradient accumulator backward hooks.";
740
      (*hook)();
741 742 743 744
    }
  }
}

745 746
void EagerGradientAccumulator::SumGrad(std::shared_ptr<VariableWrapper> var,
                                       size_t trace_id, bool unchange_input) {
747 748 749 750 751 752 753 754
  /**
   * If var has grad node, it indicates that this var would be an input
   * of a grad op. Therefore, it should not be changed.
   */
  if (var->HasGradNode()) {
    unchange_input = true;
  }

755
  auto* dst_var = Var();
756
  platform::Place place = GetPlaceOfVar(var);
757 758 759
  if (!dst_var->OverridedStopGradient()) {
    if (CurCnt() == 0) {
      MoveOrCopyVar(dst_var->MutableVar(), var->MutableVar(), unchange_input);
760
    } else {
761 762 763
      VLOG(6) << "Sum Gradient for: " << dst_var->Name()
              << " within this graph.";
      VariableWrapperAdd(var, dst_var, unchange_input);
764
    }
J
Jiabin Yang 已提交
765
  } else {
766 767 768
    if (!dst_var->Var().IsInitialized() ||
        !dst_var->Var().Get<framework::LoDTensor>().IsInitialized()) {
      VLOG(6) << "Set StopGradient Grad: " << dst_var->Name() << " as zero ";
769
      auto* dev_ctx = platform::DeviceContextPool::Instance().Get(place);
770 771 772 773
      if (!dst_var->Var().IsInitialized()) {
        auto* tensor =
            dst_var->MutableVar()->GetMutable<framework::LoDTensor>();
        VLOG(6) << "Dims of " << dst_var->Name() << " is set as: "
774 775
                << var->Var().Get<framework::LoDTensor>().dims();
        tensor->Resize(var->Var().Get<framework::LoDTensor>().dims());
776 777
        tensor->mutable_data(place,
                             framework::TransToPtenDataType(var->DataType()));
778
        pten::funcs::set_constant(*dev_ctx, tensor, 0.0);
779
      } else {
780 781
        auto* tensor =
            dst_var->MutableVar()->GetMutable<framework::LoDTensor>();
782 783
        tensor->mutable_data(place,
                             framework::TransToPtenDataType(var->DataType()));
784
        pten::funcs::set_constant(*dev_ctx, tensor, 0.0);
785
      }
786
    }
J
Jiabin Yang 已提交
787
  }
788

789 790 791 792
  // Type may be changed after OP run, such as VarTypeInference
  // so synchronous VariableWrapper with Variable.
  if (dst_var->Var().IsType<framework::LoDTensor>()) {
    dst_var->SetType(framework::proto::VarType::LOD_TENSOR);
793
  } else if (dst_var->Var().IsType<pten::SelectedRows>()) {
794
    dst_var->SetType(framework::proto::VarType::SELECTED_ROWS);
795
  }
796

797
  // Increase curent count
798
  IncreaseCurCnt();
J
Jiabin Yang 已提交
799 800
}

801 802 803
void SortedGradientAccumulator::SumGrad(std::shared_ptr<VariableWrapper> var,
                                        size_t trace_id, bool unchange_input) {
  auto* dst_var = Var();
804
  platform::Place place = GetPlaceOfVar(var);
805
  if (!dst_var->OverridedStopGradient()) {
806
    if (ref_cnt_ == 1) {
807
      MoveOrCopyVar(dst_var->MutableVar(), var->MutableVar(),
808
                    unchange_input || var->HasGradNode());
809 810 811 812 813
    } else {
      if (tmp_grad_vars_.empty()) {
        tmp_grad_vars_.reserve(ref_cnt_);
      }

814
      tmp_grad_vars_.emplace_back(std::move(var), trace_id, unchange_input);
815 816 817 818 819

      if (tmp_grad_vars_.size() != ref_cnt_) {
        return;
      }

820 821
      VLOG(6) << "Sum Gradient for: " << dst_var->Name()
              << " within this graph.";
822 823 824 825 826 827 828 829 830 831
      std::sort(tmp_grad_vars_.begin(), tmp_grad_vars_.end(),
                [](const SavedVarInfo& info1, const SavedVarInfo& info2) {
                  return info1.trace_id > info2.trace_id;
                });

      for (auto& var_info : tmp_grad_vars_) {
        if (var_info.var->HasGradNode()) {
          var_info.unchange_input = true;
        }
      }
832

833
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
834
      if (paddle::platform::is_gpu_place(place)) {
835
        // sum selected rows firstly
836
        for (auto& var_info : tmp_grad_vars_) {
837
          if (!var_info.var->Var().IsType<pten::SelectedRows>()) {
838
            continue;
839
          }
840

841 842
          if (CurCnt() == 0) {
            MoveOrCopyVar(dst_var->MutableVar(), var_info.var->MutableVar(),
843 844
                          var_info.unchange_input);
          } else {
845
            VariableWrapperAdd(var_info.var, dst_var, var_info.unchange_input);
846
          }
847 848

          var_info.var = nullptr;
849 850
          // Increase count
          IncreaseCurCnt();
851 852 853 854 855 856 857 858 859 860
        }

        for (auto& var_info : tmp_grad_vars_) {
          if (!var_info.var) {
            continue;
          }

          PADDLE_ENFORCE_EQ(var_info.var->Var().IsType<framework::LoDTensor>(),
                            true, platform::errors::PermissionDenied(
                                      "Gradient var must be LoDTensor"));
861 862
          if (CurCnt() == 0) {
            MoveOrCopyVar(dst_var->MutableVar(), var_info.var->MutableVar(),
863 864
                          var_info.unchange_input);
          } else {
865
            VariableWrapperAdd(var_info.var, dst_var, var_info.unchange_input);
866
          }
867 868

          var_info.var = nullptr;
869 870
          // Increase count
          IncreaseCurCnt();
871 872 873
        }
      } else {
#endif
874 875 876 877 878 879
        for (auto& var_info : tmp_grad_vars_) {
          if (!var_info.var) {
            continue;
          }
          PADDLE_ENFORCE_EQ(
              var_info.var->Var().IsType<framework::LoDTensor>() ||
880
                  var_info.var->Var().IsType<pten::SelectedRows>(),
881 882 883 884 885 886 887 888 889 890 891 892
              true, platform::errors::PermissionDenied("The type of Gradient "
                                                       "var must be LoDTensor "
                                                       "or SelectedRows"));
          if (CurCnt() == 0) {
            MoveOrCopyVar(dst_var->MutableVar(), var_info.var->MutableVar(),
                          var_info.unchange_input);
          } else {
            VariableWrapperAdd(var_info.var, dst_var, var_info.unchange_input);
          }
          var_info.var = nullptr;
          // Increase count
          IncreaseCurCnt();
893
        }
894
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
895
      }
896
#endif
897
      tmp_grad_vars_.clear();
J
Jiabin Yang 已提交
898
    }
899
  } else {
900 901
    if (!dst_var->Var().IsInitialized() ||
        !dst_var->Var().Get<framework::LoDTensor>().IsInitialized()) {
902 903
      VLOG(6) << "Set StopGradient Grad: " << var->Name() << " as zero";
      auto* dev_ctx = platform::DeviceContextPool::Instance().Get(place);
904 905 906 907
      if (!dst_var->Var().IsInitialized()) {
        auto* tensor =
            dst_var->MutableVar()->GetMutable<framework::LoDTensor>();
        VLOG(6) << "Dims of " << dst_var->Name() << " is set as: "
908 909
                << var->Var().Get<framework::LoDTensor>().dims();
        tensor->Resize(var->Var().Get<framework::LoDTensor>().dims());
910 911
        tensor->mutable_data(place,
                             framework::TransToPtenDataType(var->DataType()));
912
        pten::funcs::set_constant(*dev_ctx, tensor, 0.0);
913
      } else {
914 915
        auto* tensor =
            dst_var->MutableVar()->GetMutable<framework::LoDTensor>();
916 917
        tensor->mutable_data(place,
                             framework::TransToPtenDataType(var->DataType()));
918
        pten::funcs::set_constant(*dev_ctx, tensor, 0.0);
919
      }
J
Jiabin Yang 已提交
920
    }
921
    // looks like tmp_grad_vars will not have any member but just in case
J
Jiabin Yang 已提交
922 923
    tmp_grad_vars_.clear();
  }
924

925 926
  if (dst_var->Var().IsType<framework::LoDTensor>()) {
    dst_var->SetType(framework::proto::VarType::LOD_TENSOR);
927
  } else if (dst_var->Var().IsType<pten::SelectedRows>()) {
928
    dst_var->SetType(framework::proto::VarType::SELECTED_ROWS);
929
  }
J
Jiabin Yang 已提交
930 931 932 933
}

}  // namespace imperative
}  // namespace paddle