gradient_accumulator.cc 19.8 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/gradient_accumulator.h"
#include <algorithm>
#include <memory>
#include <utility>
19
#include "paddle/fluid/framework/framework.pb.h"
J
Jiabin Yang 已提交
20 21 22 23 24
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_function.h"
25
#include "paddle/fluid/operators/math/selected_rows_functor.h"
J
Jiabin Yang 已提交
26
#include "paddle/fluid/platform/device_context.h"
27
#include "paddle/fluid/platform/float16.h"
J
Jiabin Yang 已提交
28 29 30 31 32
#include "paddle/fluid/platform/profiler.h"

namespace paddle {
namespace imperative {

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
static void MoveOrCopyVar(framework::Variable* dst, framework::Variable* src,
                          bool force_copy) {
  if (!force_copy) {
    *dst = std::move(*src);
    return;
  }

  VLOG(10) << "Copy occurs when accumulating gradients";
  if (src->IsType<framework::LoDTensor>()) {
    auto& src_tensor = src->Get<framework::LoDTensor>();
    if (!dst->IsType<framework::LoDTensor>()) {
      dst->Clear();
    }
    auto* dst_tensor = dst->GetMutable<framework::LoDTensor>();
    framework::TensorCopy(src_tensor, src_tensor.place(), dst_tensor);
    dst_tensor->set_lod(src_tensor.lod());
  } else if (src->IsType<framework::SelectedRows>()) {
    auto& src_selected_rows = src->Get<framework::SelectedRows>();
    if (!dst->IsType<framework::SelectedRows>()) {
      dst->Clear();
    }
    auto* dst_selected_rows = dst->GetMutable<framework::SelectedRows>();
    framework::TensorCopy(src_selected_rows.value(),
                          src_selected_rows.value().place(),
                          dst_selected_rows->mutable_value());
    dst_selected_rows->set_rows(src_selected_rows.rows());
    dst_selected_rows->set_height(src_selected_rows.height());
  } else {
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Only support LoDTensor and SelectedRows for gradient accumulation"));
  }
}

J
Jiabin Yang 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78
template <typename T>
class TensorAddFunctor : public boost::static_visitor<> {
 public:
  TensorAddFunctor(int64_t numel, const T* x, T* y)
      : numel_(numel), x_(x), y_(y) {}

  void operator()(const platform::CPUPlace& place) {
    platform::CPUDeviceContext* ctx = dynamic_cast<platform::CPUDeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
    auto blas = operators::math::GetBlas<platform::CPUDeviceContext, T>(*ctx);
    blas.AXPY(numel_, 1., x_, y_);
  }

79 80 81 82 83 84 85
  void operator()(const platform::XPUPlace& place) {
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
  }

J
Jiabin Yang 已提交
86 87 88 89 90 91 92 93 94 95
#ifdef PADDLE_WITH_CUDA
  void operator()(const platform::CUDAPlace& place) {
    platform::CUDADeviceContext* ctx =
        dynamic_cast<platform::CUDADeviceContext*>(
            platform::DeviceContextPool::Instance().Get(place));
    auto blas = operators::math::GetBlas<platform::CUDADeviceContext, T>(*ctx);
    blas.AXPY(numel_, 1., x_, y_);
  }
#else
  void operator()(const platform::CUDAPlace& place) {
96 97 98 99
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
J
Jiabin Yang 已提交
100 101 102 103 104
  }
#endif

  // there is NO blas in CUDAPinnedPlace
  void operator()(const platform::CUDAPinnedPlace& place) {
105 106 107 108
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
J
Jiabin Yang 已提交
109 110 111 112 113 114 115 116
  }

 private:
  int64_t numel_;
  const T* x_;
  T* y_;
};

117 118 119 120 121 122 123 124 125 126
template <typename DeviceContext, typename T>
void TensorAddImpl(const framework::Tensor& src, framework::Tensor* dst,
                   const platform::Place& place) {
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  paddle::platform::DeviceContext* ctx = pool.Get(place);
  auto dev_ctx = dynamic_cast<DeviceContext*>(ctx);
  operators::math::ElementwiseAddTo<DeviceContext, T> func;
  func(dev_ctx, src, dst);
}

J
Jiabin Yang 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
void TensorAdd(const framework::Variable& src, framework::Variable* dst) {
  auto* dst_tensor = dst->GetMutable<framework::LoDTensor>();
  auto& src_tensor = src.Get<framework::LoDTensor>();

  auto numel = src_tensor.numel();

  // FIXME(minqiyang): loss_grad op will pass a zero grad of label
  // ugly fix for it
  if (numel == 0) {
    return;
  }

  PADDLE_ENFORCE_EQ(dst_tensor->numel() == numel, true,
                    "dst_numel %d vs. src_numel %d", dst_tensor->numel(),
                    numel);

  auto data_type = src_tensor.type();
  auto place = src_tensor.place();

146
#define PADDLE_TENSOR_ADD(cpp_type)                                  \
J
Jiabin Yang 已提交
147 148 149 150 151 152 153 154
  if (data_type == framework::DataTypeTrait<cpp_type>::DataType()) { \
    TensorAddFunctor<cpp_type> func(                                 \
        numel, src_tensor.data<cpp_type>(),                          \
        dst_tensor->mutable_data<cpp_type>(place));                  \
    boost::apply_visitor(func, place);                               \
    return;                                                          \
  }

155 156
  PADDLE_TENSOR_ADD(float);
  PADDLE_TENSOR_ADD(double);
J
Jiabin Yang 已提交
157

158
#undef PADDLE_TENSOR_ADD
J
Jiabin Yang 已提交
159

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
  if (data_type == framework::proto::VarType::FP16) {
    if (platform::is_gpu_place(place)) {
#ifdef PADDLE_WITH_CUDA
      return TensorAddImpl<platform::CUDADeviceContext, platform::float16>(
          src_tensor, dst_tensor, place);
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "Gradient accumulation of data type (%s) on place (%s) is not "
          "supported in imperative mode",
          framework::DataTypeToString(data_type), place));
#endif
    } else if (platform::is_cpu_place(place)) {
      return TensorAddImpl<platform::CPUDeviceContext, platform::float16>(
          src_tensor, dst_tensor, place);
    }
  }
  PADDLE_THROW(platform::errors::Unimplemented(
      "Gradient accumulation of data type (%s) on place (%s) is not "
      "supported in imperative mode",
      framework::DataTypeToString(data_type), place));
J
Jiabin Yang 已提交
180 181
}

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
void SelectedRowsAddToTensor(const framework::Variable& src,
                             framework::Variable* dst) {
  auto* dst_tensor = dst->GetMutable<framework::LoDTensor>();
  auto& src_selected_rows = src.Get<framework::SelectedRows>();
  auto place = dst_tensor->place();
  auto data_type = src_selected_rows.value().type();
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();

#define PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(dev_ctx_type, cpp_type)           \
  if (data_type == framework::DataTypeTrait<cpp_type>::DataType()) {         \
    paddle::platform::DeviceContext* dev_ctx = pool.Get(place);              \
    paddle::operators::math::SelectedRowsAddToTensor<dev_ctx_type, cpp_type> \
        functor;                                                             \
    functor(*(dynamic_cast<dev_ctx_type*>(dev_ctx)), src_selected_rows,      \
            dst_tensor);                                                     \
    return;                                                                  \
  }

#ifdef PADDLE_WITH_CUDA
  if (paddle::platform::is_gpu_place(place)) {
    PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(platform::CUDADeviceContext, float);
    PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(platform::CUDADeviceContext, double);
  } else {
#endif
    PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(platform::CPUDeviceContext, float);
    PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(platform::CPUDeviceContext, double);
#ifdef PADDLE_WITH_CUDA
  }
#endif

#undef PADDLE_SELECTED_ROWS_ADD_TO_TENSOR

  PADDLE_THROW(platform::errors::InvalidArgument(
      "Not supported data type %s for SelectedRowsAddToTensor",
      framework::DataTypeToString(data_type)));
}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
static void SelectedRowsAddTensor(
    const framework::Variable& src_selected_rows_var,
    const framework::Variable& src_tensor_var,
    framework::Variable* dst_tensor_var) {
  const auto& src_selected_rows =
      src_selected_rows_var.Get<framework::SelectedRows>();
  const auto& src_tensor = src_tensor_var.Get<framework::LoDTensor>();
  const auto& place = src_tensor.place();
  auto data_type = src_tensor.type();
  auto* dev_ctx = platform::DeviceContextPool::Instance().Get(place);

  auto* dst_tensor = dst_tensor_var->GetMutable<framework::LoDTensor>();
  dst_tensor->Resize(src_tensor.dims());
  dst_tensor->mutable_data(place, data_type);

#define PADDLE_SELECTED_ROWS_ADD_TENSOR(dev_ctx_type, cpp_type)            \
  if (data_type == framework::DataTypeTrait<cpp_type>::DataType()) {       \
    paddle::operators::math::SelectedRowsAddTensor<dev_ctx_type, cpp_type> \
        functor;                                                           \
    functor(*(dynamic_cast<dev_ctx_type*>(dev_ctx)), src_selected_rows,    \
            src_tensor, dst_tensor);                                       \
    return;                                                                \
  }

#ifdef PADDLE_WITH_CUDA
  if (platform::is_gpu_place(place)) {
    PADDLE_SELECTED_ROWS_ADD_TENSOR(platform::CUDADeviceContext, float);
    PADDLE_SELECTED_ROWS_ADD_TENSOR(platform::CUDADeviceContext, double);
  } else {
#endif
    PADDLE_SELECTED_ROWS_ADD_TENSOR(platform::CPUDeviceContext, float);
    PADDLE_SELECTED_ROWS_ADD_TENSOR(platform::CPUDeviceContext, double);
#ifdef PADDLE_WITH_CUDA
  }
#endif

  PADDLE_THROW(platform::errors::InvalidArgument(
      "Not supported data type %s for SelectedRowsAddToTensor",
      framework::DataTypeToString(data_type)));

#undef PADDLE_SELECTED_ROWS_ADD_TENSOR
}

262 263 264
// Note(chenweihang): when two selected rows need to be added,
//   adding one to another is not equal to merging two selected rows
//   to one then add it to a empty selected rows, the after is correct
265 266
std::shared_ptr<VariableWrapper> SelectedRowsMerge(
    const framework::Variable& src1, const framework::Variable& src2) {
267 268 269 270 271 272 273 274 275
  auto& src_selected_rows1 = src1.Get<framework::SelectedRows>();
  auto& src_selected_rows2 = src2.Get<framework::SelectedRows>();
  auto place = src_selected_rows1.value().place();
  auto data_type = src_selected_rows1.value().type();
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();

  std::vector<const framework::SelectedRows*> src_selected_rows;
  src_selected_rows.emplace_back(&src_selected_rows1);
  src_selected_rows.emplace_back(&src_selected_rows2);
276
  auto dst_var = std::make_shared<VariableWrapper>("Temp");
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
  auto* dst_selected_rows =
      dst_var->MutableVar()->GetMutable<framework::SelectedRows>();

#define PADDLE_SELECTED_ROWS_ADD(dev_ctx_type, cpp_type)                  \
  if (data_type == framework::DataTypeTrait<cpp_type>::DataType()) {      \
    paddle::platform::DeviceContext* dev_ctx = pool.Get(place);           \
    paddle::operators::math::scatter::MergeAdd<dev_ctx_type, cpp_type>    \
        merge_add;                                                        \
    merge_add(*(dynamic_cast<dev_ctx_type*>(dev_ctx)), src_selected_rows, \
              dst_selected_rows);                                         \
    return dst_var;                                                       \
  }

#ifdef PADDLE_WITH_CUDA
  if (paddle::platform::is_gpu_place(place)) {
    PADDLE_SELECTED_ROWS_ADD(platform::CUDADeviceContext, float);
    PADDLE_SELECTED_ROWS_ADD(platform::CUDADeviceContext, double);
  } else {
#endif
    PADDLE_SELECTED_ROWS_ADD(platform::CPUDeviceContext, float);
    PADDLE_SELECTED_ROWS_ADD(platform::CPUDeviceContext, double);
#ifdef PADDLE_WITH_CUDA
  }
#endif

#undef PADDLE_SELECTED_ROWS_ADD

  PADDLE_THROW(platform::errors::InvalidArgument(
      "Not supported data type %s for SelectedRowsMerge",
      framework::DataTypeToString(data_type)));
}

309
void VariableWrapperAdd(std::shared_ptr<VariableWrapper> var,
310
                        VariableWrapper* var_, bool unchange_input) {
311 312 313 314 315 316 317 318 319 320 321 322 323 324
  auto& src = var->Var();
  auto* dst = var_->MutableVar();
  if (dst->IsType<framework::LoDTensor>()) {
    if (src.IsType<framework::LoDTensor>()) {
      TensorAdd(src, dst);
    } else if (src.IsType<framework::SelectedRows>()) {
      SelectedRowsAddToTensor(src, dst);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unexpected branch, output variable type is %s",
          framework::ToTypeName(dst->Type())));
    }
  } else {
    if (src.IsType<framework::LoDTensor>()) {
325 326 327 328 329 330 331 332 333
      if (unchange_input) {
        framework::Variable new_dst;
        SelectedRowsAddTensor(*dst, src, &new_dst);
        *dst = std::move(new_dst);
      } else {
        auto* src_mutable = var->MutableVar();
        SelectedRowsAddToTensor(*dst, src_mutable);
        *dst = std::move(*(var->MutableVar()));
      }
334
    } else if (src.IsType<framework::SelectedRows>()) {
335
      auto temp = SelectedRowsMerge(src, *dst);
336 337 338 339 340 341 342 343 344
      *dst = std::move(*(temp->MutableVar()));
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unexpected branch, output variable type is %s",
          framework::ToTypeName(dst->Type())));
    }
  }
}

345 346
static platform::Place GetPlaceOfVar(
    const std::shared_ptr<VariableWrapper>& var) {
347 348 349 350 351 352 353 354 355 356 357 358
  platform::Place place;
  if (var->Var().IsType<framework::LoDTensor>()) {
    place = var->Var().Get<framework::LoDTensor>().place();
  } else if (var->Var().IsType<framework::SelectedRows>()) {
    place = var->Var().Get<framework::SelectedRows>().place();
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "only support LoDTensor and SelectedRows in dygraph"));
  }
  return place;
}

359
void EagerGradientAccumulator::Add(std::shared_ptr<VariableWrapper> var,
360 361 362 363 364 365 366 367 368
                                   size_t trace_id, bool unchange_input) {
  /**
   * If var has grad node, it indicates that this var would be an input
   * of a grad op. Therefore, it should not be changed.
   */
  if (var->HasGradNode()) {
    unchange_input = true;
  }

J
Jiabin Yang 已提交
369
  auto* dst_var = var_->MutableVar();
370
  platform::Place place = GetPlaceOfVar(var);
371 372 373
  if (!var_->OverridedStopGradient()) {
    VLOG(3) << "Sum Gradient for: " << var_->Name();
    if (cur_cnt_ == 0) {
374
      MoveOrCopyVar(dst_var, var->MutableVar(), unchange_input);
375
    } else {
376
      VariableWrapperAdd(var, var_, unchange_input);
377
    }
J
Jiabin Yang 已提交
378
  } else {
379 380
    if (!var_->Var().IsInitialized() ||
        !var_->Var().Get<framework::LoDTensor>().IsInitialized()) {
381 382
      VLOG(6) << "Set StopGradient Grad: " << var_->Name() << " as zero ";

383
      auto* dev_ctx = platform::DeviceContextPool::Instance().Get(place);
384 385 386 387 388 389 390 391 392 393 394 395
      if (!var_->Var().IsInitialized()) {
        auto* tensor = var_->MutableVar()->GetMutable<framework::LoDTensor>();
        VLOG(6) << "Dims of " << var_->Name() << " is set as: "
                << var->Var().Get<framework::LoDTensor>().dims();
        tensor->Resize(var->Var().Get<framework::LoDTensor>().dims());
        tensor->mutable_data(place, var->DataType());
        operators::math::set_constant(*dev_ctx, tensor, 0.0);
      } else {
        auto* tensor = var_->MutableVar()->GetMutable<framework::LoDTensor>();
        tensor->mutable_data(place, var->DataType());
        operators::math::set_constant(*dev_ctx, tensor, 0.0);
      }
396
    }
J
Jiabin Yang 已提交
397 398
  }
  ++cur_cnt_;
399 400 401 402 403 404

  if (var_->Var().IsType<framework::LoDTensor>()) {
    var_->SetType(framework::proto::VarType::LOD_TENSOR);
  } else if (var_->Var().IsType<framework::SelectedRows>()) {
    var_->SetType(framework::proto::VarType::SELECTED_ROWS);
  }
J
Jiabin Yang 已提交
405 406
}

407
void SortedGradientAccumulator::Add(std::shared_ptr<VariableWrapper> var,
408
                                    size_t trace_id, bool unchange_input) {
J
Jiabin Yang 已提交
409
  auto* dst_var = var_->MutableVar();
410
  platform::Place place = GetPlaceOfVar(var);
411 412
  if (!var_->OverridedStopGradient()) {
    if (ref_cnt_ == 1) {
413 414
      MoveOrCopyVar(dst_var, var->MutableVar(),
                    unchange_input || var->HasGradNode());
415 416 417 418 419
    } else {
      if (tmp_grad_vars_.empty()) {
        tmp_grad_vars_.reserve(ref_cnt_);
      }

420
      tmp_grad_vars_.emplace_back(std::move(var), trace_id, unchange_input);
421 422 423 424 425

      if (tmp_grad_vars_.size() != ref_cnt_) {
        return;
      }

426 427 428 429 430 431 432 433 434 435
      std::sort(tmp_grad_vars_.begin(), tmp_grad_vars_.end(),
                [](const SavedVarInfo& info1, const SavedVarInfo& info2) {
                  return info1.trace_id > info2.trace_id;
                });

      for (auto& var_info : tmp_grad_vars_) {
        if (var_info.var->HasGradNode()) {
          var_info.unchange_input = true;
        }
      }
436

437 438 439 440
#ifdef PADDLE_WITH_CUDA
      if (paddle::platform::is_gpu_place(place)) {
        bool dst_varbase_is_initialized = false;
        // accumulate selected rows firstly
441 442 443
        for (auto& var_info : tmp_grad_vars_) {
          if (!var_info.var->Var().IsType<framework::SelectedRows>()) {
            continue;
444
          }
445

446 447
          if (!dst_varbase_is_initialized) {
            dst_varbase_is_initialized = true;
448 449 450 451
            MoveOrCopyVar(dst_var, var_info.var->MutableVar(),
                          var_info.unchange_input);
          } else {
            VariableWrapperAdd(var_info.var, var_, var_info.unchange_input);
452
          }
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471

          var_info.var = nullptr;
        }

        for (auto& var_info : tmp_grad_vars_) {
          if (!var_info.var) {
            continue;
          }

          PADDLE_ENFORCE_EQ(var_info.var->Var().IsType<framework::LoDTensor>(),
                            true, platform::errors::PermissionDenied(
                                      "Gradient var must be LoDTensor"));

          if (!dst_varbase_is_initialized) {
            dst_varbase_is_initialized = true;
            MoveOrCopyVar(dst_var, var_info.var->MutableVar(),
                          var_info.unchange_input);
          } else {
            VariableWrapperAdd(var_info.var, var_, var_info.unchange_input);
472
          }
473 474

          var_info.var = nullptr;
475 476 477
        }
      } else {
#endif
478 479
        MoveOrCopyVar(dst_var, tmp_grad_vars_[0].var->MutableVar(),
                      tmp_grad_vars_[0].unchange_input);
480
        for (size_t i = 1; i < tmp_grad_vars_.size(); ++i) {
481 482 483
          VariableWrapperAdd(tmp_grad_vars_[i].var, var_,
                             tmp_grad_vars_[i].unchange_input);
          tmp_grad_vars_[i].var = nullptr;
484 485
        }
#ifdef PADDLE_WITH_CUDA
486
      }
487
#endif
488
      tmp_grad_vars_.clear();
J
Jiabin Yang 已提交
489
    }
490 491 492 493 494
  } else {
    if (!var_->Var().IsInitialized() ||
        !var_->Var().Get<framework::LoDTensor>().IsInitialized()) {
      VLOG(6) << "Set StopGradient Grad: " << var->Name() << " as zero";
      auto* dev_ctx = platform::DeviceContextPool::Instance().Get(place);
495 496 497 498 499 500 501 502 503 504 505 506
      if (!var_->Var().IsInitialized()) {
        auto* tensor = var_->MutableVar()->GetMutable<framework::LoDTensor>();
        VLOG(6) << "Dims of " << var_->Name() << " is set as: "
                << var->Var().Get<framework::LoDTensor>().dims();
        tensor->Resize(var->Var().Get<framework::LoDTensor>().dims());
        tensor->mutable_data(place, var->DataType());
        operators::math::set_constant(*dev_ctx, tensor, 0.0);
      } else {
        auto* tensor = var_->MutableVar()->GetMutable<framework::LoDTensor>();
        tensor->mutable_data(place, var->DataType());
        operators::math::set_constant(*dev_ctx, tensor, 0.0);
      }
J
Jiabin Yang 已提交
507
    }
508
    // looks like tmp_grad_vars will not have any member but just in case
J
Jiabin Yang 已提交
509 510
    tmp_grad_vars_.clear();
  }
511 512 513 514 515 516

  if (var_->Var().IsType<framework::LoDTensor>()) {
    var_->SetType(framework::proto::VarType::LOD_TENSOR);
  } else if (var_->Var().IsType<framework::SelectedRows>()) {
    var_->SetType(framework::proto::VarType::SELECTED_ROWS);
  }
J
Jiabin Yang 已提交
517 518 519 520
}

}  // namespace imperative
}  // namespace paddle