device_context.h 8.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

13
#include <future>  // NOLINT
D
dzhwinter 已提交
14
#include <memory>
Y
yuyang18 已提交
15
#include <mutex>  // NOLINT
16
#include <string>
D
dzhwinter 已提交
17
#include <unordered_map>
18
#include <vector>
Y
Yu Yang 已提交
19
#include "paddle/fluid/memory/malloc.h"
20
#ifdef PADDLE_WITH_CUDA
Y
Yi Wang 已提交
21 22 23
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
#include "paddle/fluid/platform/gpu_info.h"
Q
QI JUN 已提交
24 25
#define EIGEN_USE_GPU
#endif
D
dzhwinter 已提交
26

T
tensor-tang 已提交
27
#ifdef PADDLE_WITH_MKLDNN
L
luotao1 已提交
28
#include "mkldnn.hpp"
T
tensor-tang 已提交
29 30
#endif

31 32
#include <map>
#include "glog/logging.h"
Y
Yi Wang 已提交
33 34
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
S
sneaxiy 已提交
35 36 37
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/stream_callback_manager.h"
#endif
Q
qijun 已提交
38
#include "unsupported/Eigen/CXX11/Tensor"
Q
QI JUN 已提交
39 40 41 42 43 44 45

namespace paddle {
namespace platform {

class DeviceContext {
 public:
  virtual ~DeviceContext() {}
L
liaogang 已提交
46
  virtual Place GetPlace() const = 0;
Q
QI JUN 已提交
47

48
  virtual void Wait() const {}
Q
QI JUN 已提交
49 50
};

Q
qijun 已提交
51 52
class CPUDeviceContext : public DeviceContext {
 public:
53
  CPUDeviceContext();
Q
qijun 已提交
54
  explicit CPUDeviceContext(CPUPlace place);
Q
qijun 已提交
55

56
  Eigen::DefaultDevice* eigen_device() const;
Q
qijun 已提交
57

L
liaogang 已提交
58
  Place GetPlace() const override;
Y
Yu Yang 已提交
59

Q
qijun 已提交
60
 private:
D
dzhwinter 已提交
61
  CPUPlace place_;
Q
qijun 已提交
62
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
Q
QI JUN 已提交
63 64
};

Y
Yang Yu 已提交
65 66 67 68 69 70 71 72
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

73
#ifdef PADDLE_WITH_CUDA
74

Q
qijun 已提交
75
class EigenCudaStreamDevice;
S
sneaxiy 已提交
76 77 78 79 80 81 82 83 84 85 86 87
class CudnnHolder {
 public:
  CudnnHolder(const cudaStream_t* stream, const CUDAPlace& place);
  ~CudnnHolder();
  cudnnHandle_t cudnn_handle() const { return cudnn_handle_; }

 private:
  friend class CudnnWorkspaceHandle;
  void ReallocateWorkspace(size_t required_workspace_len);

  template <typename Callback>
  void RunFuncImpl(Callback&& cudnn_func, size_t required_workspace_len) {
Y
Yu Yang 已提交
88
    if (required_workspace_len > WorkspaceSize()) {
S
sneaxiy 已提交
89 90
      ReallocateWorkspace(required_workspace_len);
    }
Y
Yu Yang 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    cudnn_func(WorkspacePtr());
  }

  inline void* WorkspacePtr() {
    if (workspace_) {
      return workspace_->ptr();
    } else {
      return nullptr;
    }
  }

  inline size_t WorkspaceSize() {
    if (workspace_) {
      return workspace_->size();
    } else {
      return 0;
    }
S
sneaxiy 已提交
108 109 110 111 112
  }

  std::mutex& Mutex() { return mtx_; }

  cudnnHandle_t cudnn_handle_;
Y
Yu Yang 已提交
113
  memory::AllocationPtr workspace_;
S
sneaxiy 已提交
114 115 116 117 118 119

  const cudaStream_t* stream_;  // not owned;
  const CUDAPlace place_;

  std::mutex mtx_;
};
D
dongzhihong 已提交
120

S
sneaxiy 已提交
121 122 123 124
class CudnnWorkspaceHandle {
 public:
  /*! \brief The lock would not be acquired when constructor calls.
   *  The lock would be acquired when RunFunc() is called first time. */
S
sneaxiy 已提交
125
  inline explicit CudnnWorkspaceHandle(CudnnHolder* holder) : holder_(holder) {}
S
sneaxiy 已提交
126 127 128

  /*! \brief Thread which call RunFunc() would acquire the lock first
   *  before invoking cudnn functions. */
S
sneaxiy 已提交
129 130 131 132 133 134 135 136
  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_len) {
    if (!guard_) {
      guard_.reset(new std::lock_guard<std::mutex>(holder_->Mutex()));
    }
    holder_->RunFuncImpl(std::forward<Callback>(cudnn_func),
                         required_workspace_len);
  }
S
sneaxiy 已提交
137

S
sneaxiy 已提交
138 139
  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;
S
sneaxiy 已提交
140 141 142 143 144 145

 private:
  CudnnHolder* holder_;  // not own
  std::unique_ptr<std::lock_guard<std::mutex>> guard_;
};

146
class CUDADeviceContext : public DeviceContext {
Q
QI JUN 已提交
147
 public:
D
dzhwinter 已提交
148
  explicit CUDADeviceContext(CUDAPlace place);
149
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
150

151
  /*! \brief  Wait for all operations completion in the stream. */
152
  void Wait() const override;
Q
QI JUN 已提交
153

154
  /*! \brief  Return place in the device context. */
L
liaogang 已提交
155
  Place GetPlace() const override;
156

K
Kexin Zhao 已提交
157
  /*! \brief  Return compute capability in the device context. */
K
Kexin Zhao 已提交
158 159
  int GetComputeCapability() const;

160 161 162
  /*! \brief  Return the max physical thread count in the device context */
  int GetMaxPhysicalThreadCount() const;

163 164 165 166
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

  /*! \brief  Return cublas handle in the device context. */
167
  cublasHandle_t cublas_handle() const;
168 169

  /*! \brief  Return cudnn  handle in the device context. */
170
  cudnnHandle_t cudnn_handle() const;
171

S
sneaxiy 已提交
172 173 174 175 176 177 178 179 180
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
  CudnnWorkspaceHandle cudnn_workspace_handle() const;

Q
init  
qijun 已提交
181
  /*! \brief  Return cuda stream in the device context. */
182
  cudaStream_t stream() const;
Q
QI JUN 已提交
183

Y
Yu Yang 已提交
184 185
  template <typename Callback>
  void RecordEvent(cudaEvent_t ev, Callback callback) {
Y
yuyang18 已提交
186
    std::lock_guard<std::mutex> guard(mtx_);
Y
Yu Yang 已提交
187 188 189 190
    callback();
    PADDLE_ENFORCE(cudaEventRecord(ev, stream_));
  }

S
sneaxiy 已提交
191 192 193 194 195 196 197 198 199 200 201
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    std::lock_guard<std::mutex> guard(callback_mtx_);
    callback_manager_->AddCallback(callback);
  }

  void WaitStreamCallback() const {
    std::lock_guard<std::mutex> guard(callback_mtx_);
    callback_manager_->Wait();
  }

Q
QI JUN 已提交
202
 private:
D
dzhwinter 已提交
203
  CUDAPlace place_;
Q
QI JUN 已提交
204

Q
qijun 已提交
205
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
Q
init  
qijun 已提交
206
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
207
  std::unique_ptr<CudnnHolder> cudnn_holder_;
208 209
  cudaStream_t stream_;
  cublasHandle_t cublas_handle_;
210

C
chengduo 已提交
211 212 213 214 215
  int compute_capability_;
  int runtime_version_;
  int driver_version_;
  int multi_process_;
  int max_threads_per_mp_;
Y
yuyang18 已提交
216

S
sneaxiy 已提交
217 218 219 220 221 222
  mutable std::mutex mtx_;

  // This lock is only used by callback
  // If we use mtx_ for StreamCallbackManager, deadlock may occur sometimes
  mutable std::mutex callback_mtx_;
  std::unique_ptr<StreamCallbackManager> callback_manager_;
Q
QI JUN 已提交
223
};
Q
qijun 已提交
224

Y
Yang Yu 已提交
225 226
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
227
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
228 229
};

C
chengduoZH 已提交
230
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
231 232 233 234 235 236
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

  Place GetPlace() const override;
C
chengduoZH 已提交
237

C
chengduoZH 已提交
238 239 240 241 242 243 244 245 246 247 248
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
249
#endif
Q
qijun 已提交
250

T
tensor-tang 已提交
251
#ifdef PADDLE_WITH_MKLDNN
S
Sylwester Fraczek 已提交
252 253 254 255 256 257
using KeyBlob = std::unordered_map<std::string, std::shared_ptr<void>>;
using BlobMap = std::unordered_map<int, std::shared_ptr<KeyBlob>>;

void set_cur_thread_id(int);
int get_cur_thread_id(void);

T
tensor-tang 已提交
258 259 260 261 262
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
263
  const mkldnn::engine& GetEngine() const { return engine_; }
T
tensor-tang 已提交
264

265 266
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
267

268 269
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
270 271

 private:
272
  mkldnn::engine engine_;
273 274
  std::shared_ptr<BlobMap> p_blobmap_;
  std::shared_ptr<std::mutex> p_mutex_;
T
tensor-tang 已提交
275 276 277
};
#endif

D
dzhwinter 已提交
278 279 280 281 282
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
283
  static DeviceContextPool& Instance() {
D
dzhwinter 已提交
284 285 286 287 288
    PADDLE_ENFORCE_NOT_NULL(pool, "Need to Create DeviceContextPool first!");
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
289
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
290 291 292 293 294 295 296
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
297
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
298

Y
Yang Yu 已提交
299 300 301 302 303 304 305
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

306 307
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
308 309
 private:
  static DeviceContextPool* pool;
310 311
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
312 313 314
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
315 316
}  // namespace platform
}  // namespace paddle