executor.cc 19.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

D
dzhwinter 已提交
15 16
#include <algorithm>

Y
Yi Wang 已提交
17
#include "paddle/fluid/framework/executor.h"
Y
Yang Yang 已提交
18

Y
Yi Wang 已提交
19 20 21 22 23
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
G
gongweibao 已提交
24
#include "paddle/fluid/operators/detail/macros.h"
Y
Yi Wang 已提交
25
#include "paddle/fluid/platform/place.h"
X
Xin Pan 已提交
26
#include "paddle/fluid/platform/profiler.h"
Y
Yang Yu 已提交
27

D
dzhwinter 已提交
28
DECLARE_bool(benchmark);
29
DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run");
Q
qijun 已提交
30 31 32

namespace paddle {
namespace framework {
X
Xin Pan 已提交
33 34 35 36 37
namespace {
// block id starts from 0. This id is used to represent the codeblock
// wrapping the first block 0.
int kProgramId = -1;
}  // namespace
Q
qijun 已提交
38

Q
Qiao Longfei 已提交
39 40
ExecutorPrepareContext::ExecutorPrepareContext(
    const framework::ProgramDesc& prog, size_t block_id)
S
sneaxiy 已提交
41 42 43 44 45
    : prog_(prog), block_id_(block_id) {
  if (GetEagerDeletionThreshold() >= 0) {
    ref_cnts_ = GetNonPersistableReferenceCount<int>(prog_, block_id_);
  }
}
Y
Yu Yang 已提交
46

Q
Qiao Longfei 已提交
47 48 49
ExecutorPrepareContext::~ExecutorPrepareContext() {
  VLOG(5) << "destroy ExecutorPrepareContext";
}
Y
Yu Yang 已提交
50

S
sneaxiy 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
template <typename RefCntMap>
static void DeleteUnusedTensors(const Scope& scope, const OperatorBase* op,
                                GarbageCollector<Tensor>* gc,
                                RefCntMap* ref_cnts) {
  std::unordered_set<Tensor*> erase_tensors;

  auto handler = [&](const VariableNameMap& name_map) {
    for (auto& name_pair : name_map) {
      for (auto& name : name_pair.second) {
        auto it = ref_cnts->find(name);
        if (it == ref_cnts->end()) continue;
        if ((it->second)-- == 1) {
          auto* var = scope.FindVar(name);
          if (var != nullptr) {
            VLOG(10) << "Erase tensor \'" << name << "\'";
            if (var->IsType<LoDTensor>()) {
              erase_tensors.insert(var->GetMutable<LoDTensor>());
            } else if (var->IsType<SelectedRows>()) {
              erase_tensors.insert(
                  var->GetMutable<SelectedRows>()->mutable_value());
            }
          }
        }
      }
    }
  };

  handler(op->Inputs());
  handler(op->Outputs());

  if (!erase_tensors.empty()) {
    gc->Add(erase_tensors);
  }
}

D
dzhwinter 已提交
86
Executor::Executor(const platform::Place& place) : place_(place) {}
Q
qijun 已提交
87

Y
Yancey1989 已提交
88
void Executor::Close() {
W
Wu Yi 已提交
89
#ifdef PADDLE_WITH_DISTRIBUTE
Y
Yancey1989 已提交
90 91
  ::paddle::operators::distributed::RPCClient::GetInstance<
      ::paddle::operators::distributed::GRPCClient>()
Y
Yancey1989 已提交
92
      ->SendComplete();
W
Wu Yi 已提交
93
#endif
Y
Yancey1989 已提交
94
}
W
Wu Yi 已提交
95

Y
Stash  
Yu Yang 已提交
96
void InitializeVariable(Variable* var, proto::VarType::Type var_type) {
97
  if (var_type == proto::VarType::LOD_TENSOR) {
Q
QI JUN 已提交
98
    var->GetMutable<LoDTensor>();
99
  } else if (var_type == proto::VarType::SELECTED_ROWS) {
Q
QI JUN 已提交
100
    var->GetMutable<SelectedRows>();
101
  } else if (var_type == proto::VarType::FEED_MINIBATCH) {
Q
QI JUN 已提交
102
    var->GetMutable<FeedFetchList>();
103
  } else if (var_type == proto::VarType::FETCH_LIST) {
Q
QI JUN 已提交
104
    var->GetMutable<FeedFetchList>();
105
  } else if (var_type == proto::VarType::STEP_SCOPES) {
X
Xin Pan 已提交
106
    var->GetMutable<std::vector<framework::Scope*>>();
107
  } else if (var_type == proto::VarType::LOD_RANK_TABLE) {
Y
Yu Yang 已提交
108
    var->GetMutable<LoDRankTable>();
109
  } else if (var_type == proto::VarType::LOD_TENSOR_ARRAY) {
Y
Yu Yang 已提交
110
    var->GetMutable<LoDTensorArray>();
111
  } else if (var_type == proto::VarType::PLACE_LIST) {
Y
Yang Yu 已提交
112
    var->GetMutable<platform::PlaceList>();
113
  } else if (var_type == proto::VarType::READER) {
F
fengjiayi 已提交
114
    var->GetMutable<ReaderHolder>();
T
typhoonzero 已提交
115 116
  } else if (var_type == proto::VarType::RAW) {
    // GetMutable will be called in operator
Q
QI JUN 已提交
117 118
  } else {
    PADDLE_THROW(
Y
Yu Yang 已提交
119
        "Variable type %d is not in "
F
fengjiayi 已提交
120
        "[LOD_TENSOR, SELECTED_ROWS, FEED_MINIBATCH, FETCH_LIST, "
X
Xin Pan 已提交
121
        "LOD_RANK_TABLE, PLACE_LIST, READER, RAW]",
Y
Yu Yang 已提交
122
        var_type);
Q
QI JUN 已提交
123 124 125
  }
}

L
Liu Yiqun 已提交
126 127 128
void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope,
                               int block_id) {
  auto& global_block = pdesc.Block(block_id);
129 130 131 132 133 134 135 136 137 138 139 140 141 142

  const Scope* ancestor_scope = scope;
  while (ancestor_scope->parent()) {
    ancestor_scope = ancestor_scope->parent();
  }

  if (ancestor_scope != scope) {
    for (auto& var : global_block.AllVars()) {
      if (var->Name() == framework::kEmptyVarName) {
        continue;
      }

      if (var->Persistable()) {
        auto* ptr = const_cast<Scope*>(ancestor_scope)->Var(var->Name());
143
        InitializeVariable(ptr, var->GetType());
144 145 146 147
        VLOG(3) << "Create Variable " << var->Name()
                << " global, which pointer is " << ptr;
      } else {
        auto* ptr = scope->Var(var->Name());
148
        InitializeVariable(ptr, var->GetType());
149 150 151 152 153 154 155
        VLOG(3) << "Create Variable " << var->Name()
                << " locally, which pointer is " << ptr;
      }
    }
  } else {
    for (auto& var : global_block.AllVars()) {
      auto* ptr = scope->Var(var->Name());
156
      InitializeVariable(ptr, var->GetType());
157 158 159 160 161 162
      VLOG(3) << "Create variable " << var->Name() << ", which pointer is "
              << ptr;
    }
  }
}

Y
Yu Yang 已提交
163
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
T
typhoonzero 已提交
164
                   bool create_local_scope, bool create_vars) {
X
Xin Pan 已提交
165
  platform::RecordBlock b(block_id);
166
  if (FLAGS_use_mkldnn) EnableMKLDNN(pdesc);
Q
Qiao Longfei 已提交
167 168
  auto ctx = Prepare(pdesc, block_id);
  RunPreparedContext(ctx.get(), scope, create_local_scope, create_vars);
Q
qijun 已提交
169 170
}

171 172 173 174 175 176 177
// Check whether the block already has feed operators and feed_holder.
// Return false if the block does not have any feed operators.
// If some feed operators have been prepended to the block, check that
// the info contained in these feed operators matches the feed_targets
// and feed_holder_name. Raise exception when any mismatch is found.
// Return true if the block has feed operators and holder of matching info.
static bool has_feed_operators(
178
    const BlockDesc& block,
L
Liu Yiqun 已提交
179
    const std::map<std::string, const LoDTensor*>& feed_targets,
180 181
    const std::string& feed_holder_name) {
  size_t feed_count = 0;
182
  for (auto* op : block.AllOps()) {
183 184
    if (op->Type() == kFeedOpType) {
      feed_count++;
L
Liu Yiqun 已提交
185
      // The input variable's name of feed_op should be feed_holder_name.
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
      PADDLE_ENFORCE_EQ(op->Input("X")[0], feed_holder_name,
                        "Input to feed op should be '%s'", feed_holder_name);
      std::string feed_target_name = op->Output("Out")[0];
      PADDLE_ENFORCE(
          feed_targets.find(feed_target_name) != feed_targets.end(),
          "Feed operator output name '%s' cannot be found in 'feed_targets'",
          feed_target_name);
    }
  }

  if (feed_count > 0) {
    PADDLE_ENFORCE_EQ(
        feed_count, feed_targets.size(),
        "The number of feed operators should match 'feed_targets'");

201
    if (!feed_holder_name.empty()) {
L
Liu Yiqun 已提交
202
      // When feed operator are present, so should be feed_holder.
203 204 205 206 207 208 209
      auto var = block.FindVar(feed_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              feed_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FEED_MINIBATCH,
                        "'%s' variable should be 'FEED_MINIBATCH' type",
                        feed_holder_name);
    }
210 211 212 213 214 215 216 217 218 219 220 221
  }

  return feed_count > 0;
}

// Check whether the block already has fetch operators and fetch_holder.
// Return false if the block does not have any fetch operators.
// If some fetch operators have been appended to the block, check that
// the info contained in these fetch operators matches the fetch_targets
// and fetch_holder_name. Raise exception when any mismatch is found.
// Return true if the block has fetch operators and holder of matching info.
static bool has_fetch_operators(
L
Liu Yiqun 已提交
222 223
    const BlockDesc& block,
    const std::map<std::string, LoDTensor*>& fetch_targets,
224 225
    const std::string& fetch_holder_name) {
  size_t fetch_count = 0;
226
  for (auto* op : block.AllOps()) {
227 228
    if (op->Type() == kFetchOpType) {
      fetch_count++;
L
Liu Yiqun 已提交
229
      // The output variable's name of fetch_op should be fetch_holder_name.
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
      PADDLE_ENFORCE_EQ(op->Output("Out")[0], fetch_holder_name,
                        "Output of fetch op should be '%s'", fetch_holder_name);
      std::string fetch_target_name = op->Input("X")[0];
      PADDLE_ENFORCE(
          fetch_targets.find(fetch_target_name) != fetch_targets.end(),
          "Fetch operator input name '%s' cannot be found in 'fetch_targets'",
          fetch_target_name);
    }
  }

  if (fetch_count > 0) {
    PADDLE_ENFORCE_EQ(
        fetch_count, fetch_targets.size(),
        "The number of fetch operators should match 'fetch_targets'");

245
    if (!fetch_holder_name.empty()) {
L
Liu Yiqun 已提交
246
      // When fetch operator are present, so should be fetch_holder.
247 248 249 250 251 252 253
      auto var = block.FindVar(fetch_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              fetch_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FETCH_LIST,
                        "'%s' variable should be 'FETCH_LIST' type",
                        fetch_holder_name);
    }
254 255 256 257 258 259
  }

  return fetch_count > 0;
}

void Executor::Run(const ProgramDesc& program, Scope* scope,
260 261
                   std::map<std::string, const LoDTensor*>* feed_targets,
                   std::map<std::string, LoDTensor*>* fetch_targets,
W
Wu Yi 已提交
262 263
                   bool create_local_scope, bool create_vars,
                   const std::string& feed_holder_name,
264
                   const std::string& fetch_holder_name) {
X
Xin Pan 已提交
265
  platform::RecordBlock b(kProgramId);
266
  if (FLAGS_use_mkldnn) EnableMKLDNN(program);
267
  bool has_feed_ops =
268
      has_feed_operators(program.Block(0), *feed_targets, feed_holder_name);
269
  bool has_fetch_ops =
270
      has_fetch_operators(program.Block(0), *fetch_targets, fetch_holder_name);
271 272

  ProgramDesc* copy_program = const_cast<ProgramDesc*>(&program);
S
sneaxiy 已提交
273
  std::unique_ptr<ProgramDesc> unique_ptr_of_copy_program;
274
  if (!has_feed_ops || !has_fetch_ops) {
S
sneaxiy 已提交
275 276
    unique_ptr_of_copy_program.reset(new ProgramDesc(program));
    copy_program = unique_ptr_of_copy_program.get();
277
  }
278 279
  auto* global_block = copy_program->MutableBlock(0);

280
  if (!has_feed_ops) {
281 282
    // create feed_holder variable
    auto* feed_holder = global_block->Var(feed_holder_name);
283
    feed_holder->SetType(proto::VarType::FEED_MINIBATCH);
284 285 286
    feed_holder->SetPersistable(true);

    int i = 0;
287
    for (auto& feed_target : (*feed_targets)) {
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
      std::string var_name = feed_target.first;
      VLOG(3) << "feed target's name: " << var_name;

      // prepend feed op
      auto* op = global_block->PrependOp();
      op->SetType(kFeedOpType);
      op->SetInput("X", {feed_holder_name});
      op->SetOutput("Out", {var_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

303
  if (!has_fetch_ops) {
304 305
    // create fetch_holder variable
    auto* fetch_holder = global_block->Var(fetch_holder_name);
306
    fetch_holder->SetType(proto::VarType::FETCH_LIST);
307 308 309
    fetch_holder->SetPersistable(true);

    int i = 0;
310
    for (auto& fetch_target : (*fetch_targets)) {
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
      std::string var_name = fetch_target.first;
      VLOG(3) << "fetch target's name: " << var_name;

      // append fetch op
      auto* op = global_block->AppendOp();
      op->SetType(kFetchOpType);
      op->SetInput("X", {var_name});
      op->SetOutput("Out", {fetch_holder_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

326
  auto ctx = Prepare(*copy_program, 0);
W
Wu Yi 已提交
327 328 329
  RunPreparedContext(ctx.get(), scope, feed_targets, fetch_targets,
                     create_local_scope, create_vars, feed_holder_name,
                     fetch_holder_name);
330 331
}

Q
Qiao Longfei 已提交
332 333
std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
    const ProgramDesc& program, int block_id) {
D
dzhwinter 已提交
334
  VLOG(3) << "before create prepare" << block_id << " " << program.Size();
Q
Qiyang Min 已提交
335 336
  std::unique_ptr<ExecutorPrepareContext> ctx(
      new ExecutorPrepareContext(program, block_id));
D
dzhwinter 已提交
337
  VLOG(3) << "after create prepare";
D
dzhwinter 已提交
338
  // PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size());
D
dzhwinter 已提交
339
  VLOG(3) << "before create op_desc";
Y
Yu Yang 已提交
340
  auto& block = program.Block(block_id);
D
dzhwinter 已提交
341 342
  VLOG(3) << "create before" << ctx->ops_.size() << " "
          << block.AllOps().size();
D
dzhwinter 已提交
343
  int counter = 0;
Y
Yu Yang 已提交
344 345
  for (auto& op_desc : block.AllOps()) {
    ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
D
dzhwinter 已提交
346 347
    VLOG(3) << "create op "
            << "index " << ++counter << " type " << op_desc->Type();
Y
Yu Yang 已提交
348
  }
D
dzhwinter 已提交
349 350
  VLOG(3) << "create finished" << ctx->ops_.size() << " "
          << block.AllOps().size();
Q
Qiyang Min 已提交
351
  return ctx;
Y
Yu Yang 已提交
352 353
}

T
refine  
typhoonzero 已提交
354
std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
T
typhoonzero 已提交
355
    const ProgramDesc& program, const std::vector<int>& block_ids) {
D
dzhwinter 已提交
356
  VLOG(3) << "inside prepare";
T
typhoonzero 已提交
357
  std::vector<std::shared_ptr<ExecutorPrepareContext>> result;
D
dzhwinter 已提交
358
  VLOG(3) << "before go through block_ids";
T
typhoonzero 已提交
359
  for (auto& bid : block_ids) {
D
dzhwinter 已提交
360
    VLOG(3) << "block id" << bid;
T
typhoonzero 已提交
361
    auto* ctx = new ExecutorPrepareContext(program, bid);
D
dzhwinter 已提交
362
    // PADDLE_ENFORCE_LT(static_cast<size_t>(bid), program.Size());
T
typhoonzero 已提交
363
    auto& block = program.Block(bid);
D
dzhwinter 已提交
364
    int counter = 0;
D
dzhwinter 已提交
365 366
    VLOG(3) << "create before" << ctx->ops_.size() << " "
            << block.AllOps().size();
T
typhoonzero 已提交
367 368
    for (auto& op_desc : block.AllOps()) {
      ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
D
dzhwinter 已提交
369 370
      VLOG(3) << "create op "
              << "index " << ++counter << " type " << op_desc->Type();
T
typhoonzero 已提交
371
    }
D
dzhwinter 已提交
372 373
    VLOG(3) << "create finished" << ctx->ops_.size() << " "
            << block.AllOps().size();
T
typhoonzero 已提交
374 375 376 377 378
    result.push_back(std::shared_ptr<ExecutorPrepareContext>(ctx));
  }
  return result;
}

D
dzhwinter 已提交
379 380
// void CheckResult(const std::string op_type, ExecutorPrepareContext* ctx,
// Scope* local_scope) {
D
dzhwinter 已提交
381 382 383 384 385 386 387
//     VLOG(3) << "before checking result";
//   auto& dev_ctx = *platform::DeviceContextPool::Instance().Get(place_);
//   std::vector<std::string> outputs;
//   auto& block = ctx->prog_.Block(0);
//   bool found = false;
//   framework::OpDesc* myop = nullptr;
//   for(auto& op : block.AllOps()) {
D
dzhwinter 已提交
388 389
//     if(op->Type() == "load_combine" || op->Type() == "fetch" || op->Type() ==
//     "feed") return;
D
dzhwinter 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
//     if (op->Type() == op_type) {
//         found = true;
//         myop = op;
//         break;
//       }
//     }
//   }
//   if(!found) {
//     VLOG(3) << "not found op!";
//     return;
//   }
//     auto* op = myop;
//      VLOG(3) << "start op output" << op->Type();
//     for(auto var_name: op->OutputArgumentNames()) {
//       auto* var = local_scope->Var(var_name);
//       auto* var_desc = block.FindVar(var_name);
//       if (var_desc->Persistable()) continue;
//       auto* tensor = var->GetMutable<framework::LoDTensor>();
//       framework::Tensor check;
//       VLOG(3) << "before tensor copy";
//       framework::TensorCopy(*tensor, platform::CPUPlace(), dev_ctx, &check);
//       VLOG(3) << "after tensor copy";
//       float sum = .0;
//       for(size_t i=0; i < check.numel(); ++i) {
//           sum += check.data<float>()[i];
//       }
D
dzhwinter 已提交
416 417
//       VLOG(3) << "op " << op->Type() << " output var " << var_name << " sum "
//       << sum;
D
dzhwinter 已提交
418 419 420
//   VLOG(3) << "after checking result";
// }

Y
Yu Yang 已提交
421
void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
Q
qiaolongfei 已提交
422 423
                                  bool create_local_scope, bool create_vars,
                                  bool keep_kids) {
D
dzhwinter 已提交
424
  VLOG(3) << "RunPreparedContext inside";
Y
Yu Yang 已提交
425 426 427 428
  Scope* local_scope = scope;
  if (create_vars) {
    if (create_local_scope) {
      local_scope = &scope->NewScope();
429 430
    }
    CreateVariables(ctx->prog_, local_scope, ctx->block_id_);
L
Liu Yiqun 已提交
431
  }
Y
Yu Yang 已提交
432

S
sneaxiy 已提交
433 434
  int64_t max_memory_size = GetEagerDeletionThreshold();
  std::unique_ptr<GarbageCollector<Tensor>> gc;
S
sneaxiy 已提交
435 436 437 438 439 440
  // WhileOp would set keep_kids to false
  // WhileGradOp would need the scopes created in WhileOp
  // Perhaps, we should not perform eager deletion in WhileOp
  // The scopes and variables created by WhileOp would be deleted
  // in WhileGradOp.
  if (max_memory_size >= 0 && !keep_kids) {
S
sneaxiy 已提交
441
    ctx->ResetReferenceCount();
S
sneaxiy 已提交
442 443 444 445 446 447 448 449 450 451 452 453 454
#ifdef PADDLE_WITH_CUDA
    if (platform::is_gpu_place(place_)) {
      gc.reset(new DefaultStreamGarbageCollector<Tensor>(
          boost::get<platform::CUDAPlace>(place_), max_memory_size));
    } else {
#endif
      gc.reset(new CPUGarbageCollector<Tensor>(
          boost::get<platform::CPUPlace>(place_), max_memory_size));
#ifdef PADDLE_WITH_CUDA
    }
#endif
  }

Y
Yu Yang 已提交
455
  for (auto& op : ctx->ops_) {
456
    op->Run(*local_scope, place_);
S
sneaxiy 已提交
457 458

    if (gc != nullptr) {
S
sneaxiy 已提交
459 460
      DeleteUnusedTensors(*local_scope, op.get(), gc.get(),
                          &(ctx->cur_ref_cnts_));
S
sneaxiy 已提交
461
    }
Y
Yang Yang 已提交
462

Y
Yu Yang 已提交
463 464 465 466 467
    if (FLAGS_benchmark) {
      VLOG(2) << "Memory used after operator " + op->Type() + " running: "
              << memory::memory_usage(place_);
    }
  }
S
sneaxiy 已提交
468

S
sneaxiy 已提交
469
  if (gc != nullptr) {
S
sneaxiy 已提交
470
    gc->Wait();
S
sneaxiy 已提交
471
  } else {
S
sneaxiy 已提交
472
    platform::DeviceContextPool::Instance().Get(place_)->Wait();
Y
Yu Yang 已提交
473
  }
D
dzhwinter 已提交
474

Q
qiaolongfei 已提交
475
  if (local_scope != scope) {
Y
Yu Yang 已提交
476
    scope->DeleteScope(local_scope);
477
  } else {
Q
qiaolongfei 已提交
478 479 480 481 482
    if (!keep_kids) {
      // By default, we should delete all kid scopes after run executor because
      // some operators may create local scope when running, such as while_op.
      // But when while_op also create a local executor to run it's sub block,
      // the sub scopes it created should not be dropped immediately, because
Q
qiaolongfei 已提交
483 484
      // while_grad_op will use some variables created during while_op run, so
      // we need to keep the kids and wait for the outer executor to drop them.
Q
qiaolongfei 已提交
485 486
      scope->DropKids();
    }
Y
Yu Yang 已提交
487
  }
Q
qiaolongfei 已提交
488

Y
Yu Yang 已提交
489 490 491 492 493 494 495 496
  if (FLAGS_benchmark) {
    VLOG(2) << "-------------------------------------------------------";
    VLOG(2) << "Memory used after deleting local scope: "
            << memory::memory_usage(place_);
    VLOG(2) << "-------------------------------------------------------";
  }
}

497 498
void Executor::RunPreparedContext(
    ExecutorPrepareContext* ctx, Scope* scope,
499
    std::map<std::string, const LoDTensor*>* feed_targets,
W
Wu Yi 已提交
500 501 502
    std::map<std::string, LoDTensor*>* fetch_targets, bool create_local_scope,
    bool create_vars, const std::string& feed_holder_name,
    const std::string& fetch_holder_name) {
503 504
  auto& global_block = ctx->prog_.Block(ctx->block_id_);

505
  PADDLE_ENFORCE(
506
      has_feed_operators(global_block, *feed_targets, feed_holder_name),
507 508
      "Program in ExecutorPrepareContext should has feed_ops.");
  PADDLE_ENFORCE(
509
      has_fetch_operators(global_block, *fetch_targets, fetch_holder_name),
510 511
      "Program in the prepared context should has fetch_ops.");

512 513 514 515 516
  // map the data of feed_targets to feed_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFeedOpType) {
      std::string feed_target_name = op->Output("Out")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
517 518
      SetFeedVariable(scope, *(*feed_targets)[feed_target_name],
                      feed_holder_name, idx);
519 520 521
    }
  }

W
Wu Yi 已提交
522
  RunPreparedContext(ctx, scope, create_local_scope, create_vars);
523 524 525 526 527 528

  // obtain the data of fetch_targets from fetch_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFetchOpType) {
      std::string fetch_target_name = op->Input("X")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
529
      *(*fetch_targets)[fetch_target_name] =
530 531 532 533 534
          GetFetchVariable(*scope, fetch_holder_name, idx);
    }
  }
}

535 536 537 538 539 540 541 542 543 544 545
void Executor::EnableMKLDNN(const ProgramDesc& program) {
#ifdef PADDLE_WITH_MKLDNN
  VLOG(3) << "use_mkldnn=True";
  for (size_t bid = 0; bid < program.Size(); ++bid) {
    auto* block = const_cast<ProgramDesc&>(program).MutableBlock(bid);
    for (auto* op : block->AllOps()) {
      if (op->HasAttr("use_mkldnn")) {
        op->SetAttr("use_mkldnn", true);
      }
    }
  }
546 547 548
#else
  LOG(WARNING)
      << "'MKLDNN' is not supported, Please re-compile with WITH_MKLDNN option";
549 550 551
#endif
}

Q
qijun 已提交
552 553
}  // namespace framework
}  // namespace paddle