Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
7141debe
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7141debe
编写于
10月 26, 2018
作者:
D
dzhwinter
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add cudnn back. staged.
上级
09409bad
变更
16
隐藏空白更改
内联
并排
Showing
16 changed file
with
287 addition
and
244 deletion
+287
-244
paddle/fluid/framework/executor.cc
paddle/fluid/framework/executor.cc
+50
-30
paddle/fluid/framework/op_desc.cc
paddle/fluid/framework/op_desc.cc
+34
-15
paddle/fluid/framework/op_desc.h
paddle/fluid/framework/op_desc.h
+0
-10
paddle/fluid/framework/operator.cc
paddle/fluid/framework/operator.cc
+64
-49
paddle/fluid/framework/shape_inference.h
paddle/fluid/framework/shape_inference.h
+3
-0
paddle/fluid/inference/api/api_impl.cc
paddle/fluid/inference/api/api_impl.cc
+4
-4
paddle/fluid/inference/api/demo_ci/real_data_icnet_tester.cc
paddle/fluid/inference/api/demo_ci/real_data_icnet_tester.cc
+3
-3
paddle/fluid/inference/api/demo_ci/thread_icnet_test.cc
paddle/fluid/inference/api/demo_ci/thread_icnet_test.cc
+54
-40
paddle/fluid/memory/detail/buddy_allocator.cc
paddle/fluid/memory/detail/buddy_allocator.cc
+2
-1
paddle/fluid/memory/detail/meta_cache.cc
paddle/fluid/memory/detail/meta_cache.cc
+2
-0
paddle/fluid/operators/top_k_op.cc
paddle/fluid/operators/top_k_op.cc
+1
-1
paddle/fluid/operators/top_k_op.cu
paddle/fluid/operators/top_k_op.cu
+31
-68
paddle/fluid/operators/top_k_op.h
paddle/fluid/operators/top_k_op.h
+4
-1
paddle/fluid/platform/CMakeLists.txt
paddle/fluid/platform/CMakeLists.txt
+7
-0
paddle/fluid/platform/cudnn_helper.h
paddle/fluid/platform/cudnn_helper.h
+8
-1
paddle/fluid/platform/enforce.h
paddle/fluid/platform/enforce.h
+20
-21
未找到文件。
paddle/fluid/framework/executor.cc
浏览文件 @
7141debe
...
...
@@ -299,16 +299,19 @@ std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
std
::
unique_ptr
<
ExecutorPrepareContext
>
ctx
(
new
ExecutorPrepareContext
(
program
,
block_id
));
VLOG
(
3
)
<<
"after create prepare"
;
// PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size());
// PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size());
VLOG
(
3
)
<<
"before create op_desc"
;
auto
&
block
=
program
.
Block
(
block_id
);
VLOG
(
3
)
<<
"create before"
<<
ctx
->
ops_
.
size
()
<<
" "
<<
block
.
AllOps
().
size
();
VLOG
(
3
)
<<
"create before"
<<
ctx
->
ops_
.
size
()
<<
" "
<<
block
.
AllOps
().
size
();
int
counter
=
0
;
for
(
auto
&
op_desc
:
block
.
AllOps
())
{
ctx
->
ops_
.
push_back
(
OpRegistry
::
CreateOp
(
*
op_desc
));
VLOG
(
3
)
<<
"create op "
<<
"index "
<<
++
counter
<<
" type "
<<
op_desc
->
Type
();
VLOG
(
3
)
<<
"create op "
<<
"index "
<<
++
counter
<<
" type "
<<
op_desc
->
Type
();
}
VLOG
(
3
)
<<
"create finished"
<<
ctx
->
ops_
.
size
()
<<
" "
<<
block
.
AllOps
().
size
();
VLOG
(
3
)
<<
"create finished"
<<
ctx
->
ops_
.
size
()
<<
" "
<<
block
.
AllOps
().
size
();
return
ctx
;
}
...
...
@@ -320,22 +323,25 @@ std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
for
(
auto
&
bid
:
block_ids
)
{
VLOG
(
3
)
<<
"block id"
<<
bid
;
auto
*
ctx
=
new
ExecutorPrepareContext
(
program
,
bid
);
//PADDLE_ENFORCE_LT(static_cast<size_t>(bid), program.Size());
//
PADDLE_ENFORCE_LT(static_cast<size_t>(bid), program.Size());
auto
&
block
=
program
.
Block
(
bid
);
int
counter
=
0
;
VLOG
(
3
)
<<
"create before"
<<
ctx
->
ops_
.
size
()
<<
" "
<<
block
.
AllOps
().
size
();
VLOG
(
3
)
<<
"create before"
<<
ctx
->
ops_
.
size
()
<<
" "
<<
block
.
AllOps
().
size
();
for
(
auto
&
op_desc
:
block
.
AllOps
())
{
ctx
->
ops_
.
push_back
(
OpRegistry
::
CreateOp
(
*
op_desc
));
VLOG
(
3
)
<<
"create op "
<<
"index "
<<
++
counter
<<
" type "
<<
op_desc
->
Type
();
VLOG
(
3
)
<<
"create op "
<<
"index "
<<
++
counter
<<
" type "
<<
op_desc
->
Type
();
}
VLOG
(
3
)
<<
"create finished"
<<
ctx
->
ops_
.
size
()
<<
" "
<<
block
.
AllOps
().
size
();
VLOG
(
3
)
<<
"create finished"
<<
ctx
->
ops_
.
size
()
<<
" "
<<
block
.
AllOps
().
size
();
result
.
push_back
(
std
::
shared_ptr
<
ExecutorPrepareContext
>
(
ctx
));
}
return
result
;
}
// void CheckResult(const std::string op_type, ExecutorPrepareContext* ctx, Scope* local_scope) {
// void CheckResult(const std::string op_type, ExecutorPrepareContext* ctx,
// Scope* local_scope) {
// VLOG(3) << "before checking result";
// auto& dev_ctx = *platform::DeviceContextPool::Instance().Get(place_);
// std::vector<std::string> outputs;
...
...
@@ -343,7 +349,8 @@ std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
// bool found = false;
// framework::OpDesc* myop = nullptr;
// for(auto& op : block.AllOps()) {
// if(op->Type() == "load_combine" || op->Type() == "fetch" || op->Type() == "feed") return;
// if(op->Type() == "load_combine" || op->Type() == "fetch" || op->Type() ==
// "feed") return;
// if (op->Type() == op_type) {
// found = true;
// myop = op;
...
...
@@ -370,7 +377,8 @@ std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
// for(size_t i=0; i < check.numel(); ++i) {
// sum += check.data<float>()[i];
// }
// VLOG(3) << "op " << op->Type() << " output var " << var_name << " sum " << sum;
// VLOG(3) << "op " << op->Type() << " output var " << var_name << " sum "
// << sum;
// VLOG(3) << "after checking result";
// }
...
...
@@ -389,11 +397,14 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
VLOG
(
3
)
<<
"Scope ptr "
<<
local_scope
;
for
(
auto
&
op
:
ctx
->
ops_
)
{
op
->
Run
(
*
local_scope
,
place_
);
// CheckResult(op->Type(), ctx, local_scope);
if
(
FLAGS_benchmark
)
{
VLOG
(
2
)
<<
"Memory used after operator "
+
op
->
Type
()
+
" running: "
<<
memory
::
memory_usage
(
place_
);
}
// CheckResult(op->Type(), ctx, local_scope);
// if (FLAGS_benchmark) {
// VLOG(2) << "Memory used after operator " + op->Type() + " running: "
// << memory::memory_usage(place_);
// }
VLOG
(
2
)
<<
"Memory used after operator "
+
op
->
Type
()
+
" running: "
<<
memory
::
memory_usage
(
place_
);
// platform::DeviceContextPool::Instance().Get(place_)->Wait();
}
platform
::
DeviceContextPool
::
Instance
().
Get
(
place_
)
->
Wait
();
...
...
@@ -403,13 +414,15 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
// auto& block = ctx->prog_.Block(0);
// for(auto& op : block.AllOps()) {
// if(op->Type() == "load_combine" || op->Type() == "fetch" || op->Type() == "feed") continue;
// if(op->Type() == "load_combine" || op->Type() == "fetch" || op->Type() ==
// "feed") continue;
// // for(auto& real_op : ctx->ops_) {
// // if(real_op->Type() == op->Type()) {
// // VLOG(3) << real_op->Type() << " " <<place_ << " " << real_op->DebugStringEx(local_scope);
// // VLOG(3) << real_op->Type() << " " <<place_ << " " <<
// real_op->DebugStringEx(local_scope);
// // }
// // }
// //VLOG(3) << "start op output" << op->Type();
// for(auto var_name: op->InputArgumentNames()) {
// auto* var = local_scope->Var(var_name);
...
...
@@ -418,19 +431,21 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
// auto* tensor = var->GetMutable<framework::LoDTensor>();
// framework::Tensor check;
// VLOG(3) << "before tensor copy";
// framework::TensorCopy(*tensor, platform::CPUPlace(), dev_ctx, &check);
// VLOG(3) << "after tensor copy";
// float sum = .0;
// for(size_t i=0; i < check.numel(); ++i) {
// if(std::type_index(check.type()) == std::type_index(typeid(int64_t))) {
// if(std::type_index(check.type()) == std::type_index(typeid(int64_t)))
// {
// sum += static_cast<float>(check.data<int64_t>()[i]);
// } else {
// sum += check.data<float>()[i];
// }
// }
// VLOG(3) << "op " << op->Type() << " input var " << var_name << " sum " << sum;
// VLOG(3) << "op " << op->Type() << " input var " << var_name << " sum "
// << sum;
// }
// VLOG(3) << "op " << op->Type() << "input finished";
...
...
@@ -442,23 +457,28 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
// framework::Tensor check;
// VLOG(3) << "before tensor copy";
// if(op->Type() == "batch_norm" && platform::is_gpu_place(place_)) {
// VLOG(3) << "op " << op->Type() << " output var " << var_name << " " << tensor->numel();
// VLOG(3) << "op " << op->Type() << " output var " << var_name << " "
// << tensor->numel();
// tensor->mutable_data<float>(place_);
// framework::TensorCopy(*tensor, platform::CPUPlace(), dev_ctx, &check);
// framework::TensorCopy(*tensor, platform::CPUPlace(), dev_ctx,
// &check);
// } else {
// framework::TensorCopy(*tensor, platform::CPUPlace(), dev_ctx, &check);
// framework::TensorCopy(*tensor, platform::CPUPlace(), dev_ctx,
// &check);
// }
// VLOG(3) << "after tensor copy";
// float sum = .0;
// for(size_t i=0; i < check.numel(); ++i) {
// if(std::type_index(check.type()) == std::type_index(typeid(int64_t))) {
// if(std::type_index(check.type()) == std::type_index(typeid(int64_t)))
// {
// sum += static_cast<float>(check.data<int64_t>()[i]);
// } else {
// sum += check.data<float>()[i];
// }
// }
// VLOG(3) << "op " << op->Type() << " output var " << var_name << " sum " << sum;
// VLOG(3) << "op " << op->Type() << " output var " << var_name << " sum "
// << sum;
// }
// }
...
...
paddle/fluid/framework/op_desc.cc
浏览文件 @
7141debe
...
...
@@ -50,19 +50,41 @@ class CompileTimeInferShapeContext : public InferShapeContext {
const
std
::
vector
<
std
::
string
>
&
Outputs
(
const
std
::
string
&
name
)
const
override
;
void
ShareDim
(
const
std
::
string
&
in
,
const
std
::
string
&
out
,
size_t
i
=
0
,
size_t
j
=
0
)
override
{
PADDLE_ENFORCE_LT
(
i
,
Inputs
(
in
).
size
());
PADDLE_ENFORCE_LT
(
j
,
Outputs
(
out
).
size
());
const
std
::
string
&
input_n
=
Inputs
(
in
)[
i
];
const
std
::
string
&
output_n
=
Outputs
(
out
)[
j
];
PADDLE_ENFORCE
(
input_n
!=
framework
::
kEmptyVarName
,
"The %s[%d] is @EMPTY@"
,
in
,
i
);
PADDLE_ENFORCE
(
output_n
!=
framework
::
kEmptyVarName
,
"The %s[%d] is @EMPTY@"
,
out
,
j
);
auto
*
in_var
=
block_
.
FindVarRecursive
(
input_n
);
auto
*
out_var
=
block_
.
FindVarRecursive
(
output_n
);
PADDLE_ENFORCE
(
in_var
->
GetType
()
==
out_var
->
GetType
(),
"The type of %s and %s is not the same."
,
input_n
,
output_n
);
SetDim
(
output_n
,
GetDim
(
input_n
));
}
void
ShareLoD
(
const
std
::
string
&
in
,
const
std
::
string
&
out
,
size_t
i
=
0
,
size_t
j
=
0
)
const
override
{
PADDLE_ENFORCE_LT
(
i
,
Inputs
(
in
).
size
());
PADDLE_ENFORCE_LT
(
j
,
Outputs
(
out
).
size
());
PADDLE_ENFORCE
(
Inputs
(
in
)[
i
]
!=
framework
::
kEmptyVarName
,
"The %s[%d] is @EMPTY@"
,
in
,
i
);
PADDLE_ENFORCE
(
Outputs
(
out
)[
j
]
!=
framework
::
kEmptyVarName
,
"The %s[%d] is @EMPTY@"
,
out
,
j
);
auto
*
in_var
=
block_
.
FindVarRecursive
(
Inputs
(
in
)[
i
]);
auto
*
out_var
=
block_
.
FindVarRecursive
(
Outputs
(
out
)[
j
]);
if
(
in_var
->
GetType
()
!=
proto
::
VarType
::
LOD_TENSOR
)
{
VLOG
(
3
)
<<
"input "
<<
in
<<
" is not LodTensor"
;
return
;
}
PADDLE_ENFORCE_EQ
(
in_var
->
GetType
(),
proto
::
VarType
::
LOD_TENSOR
,
"The %d-th output of Output(%s) must be LoDTensor."
,
j
,
out
);
out_var
->
SetLoDLevel
(
in_var
->
GetLoDLevel
());
}
...
...
@@ -441,7 +463,10 @@ static void InitInferShapeFuncs() {
for
(
auto
&
kern_pair
:
OperatorWithKernel
::
AllOpKernels
())
{
auto
op_type
=
kern_pair
.
first
;
auto
&
op_info
=
info_map
.
at
(
op_type
);
auto
it
=
info_map
.
find
(
op_type
);
PADDLE_ENFORCE
(
it
!=
info_map
.
end
(),
"%s has not been registered"
,
op_type
);
auto
&
op_info
=
it
->
second
;
auto
op
=
static_cast
<
OperatorWithKernel
*>
(
op_info
.
Creator
()(
""
,
VariableNameMap
{},
VariableNameMap
{},
AttributeMap
{}));
if
(
op_info
.
infer_shape_
)
{
// infer_shape has been registered.
...
...
@@ -490,20 +515,14 @@ void OpDesc::InferShape(const BlockDesc &block) const {
}
void
OpDesc
::
InferVarType
(
BlockDesc
*
block
)
const
{
// There are a few places that var type can be set.
// When VarDesc is created, default set to LOD_TENSOR.
// When output variable is created, default is defaut set to LOD_TENSOR.
// We limit here to be the only place that operator defines its customized
// var type inference. Hence, we don't do any "default" setting here.
auto
&
info
=
OpInfoMap
::
Instance
().
Get
(
this
->
Type
());
if
(
info
.
infer_var_type_
)
{
info
.
infer_var_type_
(
*
this
,
block
);
}
else
{
// all output type is LoDTensor by default
VLOG
(
10
)
<<
this
->
Type
()
<<
" has not registered InferVarType. Set output variables to "
"LOD_TENSOR"
;
for
(
auto
&
out_pair
:
this
->
outputs_
)
{
for
(
auto
&
out_var_name
:
out_pair
.
second
)
{
block
->
FindRecursiveOrCreateVar
(
out_var_name
)
.
SetType
(
proto
::
VarType
::
LOD_TENSOR
);
}
}
}
}
...
...
paddle/fluid/framework/op_desc.h
浏览文件 @
7141debe
...
...
@@ -100,16 +100,6 @@ class OpDesc {
std
::
vector
<
std
::
string
>
InputNames
()
const
{
return
MapKeys
(
inputs_
);
}
std
::
vector
<
std
::
string
>
OutputNames
()
const
{
return
MapKeys
(
outputs_
);
}
void
SetInputMap
(
const
VariableNameMap
&
input
)
{
this
->
inputs_
=
input
;
this
->
need_update_
=
true
;
}
void
SetOutputMap
(
const
VariableNameMap
&
output
)
{
this
->
outputs_
=
output
;
this
->
need_update_
=
true
;
}
const
VariableNameMap
&
Inputs
()
const
{
return
inputs_
;
}
const
VariableNameMap
&
Outputs
()
const
{
return
outputs_
;
}
...
...
paddle/fluid/framework/operator.cc
浏览文件 @
7141debe
...
...
@@ -62,7 +62,7 @@ static DDim GetDims(const Scope& scope, const std::string& name,
if
(
var
->
IsType
<
LoDTensor
>
())
{
const
LoDTensor
&
tensor
=
var
->
Get
<
LoDTensor
>
();
if
(
!
tensor
.
IsInitialized
(
))
{
if
(
UNLIKELY
(
!
tensor
.
IsInitialized
()
))
{
return
DDim
({
-
1
});
}
return
tensor
.
dims
();
...
...
@@ -91,13 +91,13 @@ static std::string GetDtype(const Scope& scope, const std::string& name) {
if
(
var
->
IsType
<
LoDTensor
>
())
{
const
LoDTensor
&
tensor
=
var
->
Get
<
LoDTensor
>
();
if
(
!
tensor
.
IsInitialized
(
))
{
if
(
UNLIKELY
(
!
tensor
.
IsInitialized
()
))
{
return
""
;
}
return
DataTypeToString
(
ToDataType
(
tensor
.
type
()));
}
else
if
(
var
->
IsType
<
SelectedRows
>
())
{
auto
tensor
=
var
->
Get
<
SelectedRows
>
().
value
();
if
(
!
tensor
.
IsInitialized
(
))
{
if
(
UNLIKELY
(
!
tensor
.
IsInitialized
()
))
{
return
"uninited"
;
}
else
{
return
DataTypeToString
(
ToDataType
(
tensor
.
type
()));
...
...
@@ -130,7 +130,7 @@ static LoD GetLoD(const Scope& scope, const std::string& name) {
if
(
var
->
IsType
<
LoDTensor
>
())
{
const
LoDTensor
&
tensor
=
var
->
Get
<
LoDTensor
>
();
if
(
!
tensor
.
IsInitialized
(
))
{
if
(
UNLIKELY
(
!
tensor
.
IsInitialized
()
))
{
return
default_lod
;
}
return
tensor
.
lod
();
...
...
@@ -149,11 +149,13 @@ void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
platform
::
SetDeviceId
(
dev_id
);
#endif
}
VLOG
(
3
)
<<
"start pool"
;
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
platform
::
RecordEvent
record_event
(
Type
(),
pool
.
Get
(
place
));
VLOG
(
3
)
<<
"start RunImpl"
;
// The profile has a process-wide mutex, results in serious performance issue
// in concurrency scenerio. Here use an `if` to fix this issue.
// Please not remove the `if`, ask @Superjomn if there are any concern.
RunImpl
(
scope
,
place
);
VLOG
(
3
)
<<
place
<<
" "
<<
DebugStringEx
(
&
scope
);
}
...
...
@@ -206,7 +208,6 @@ const std::vector<std::string>& OperatorBase::Outputs(
}
std
::
string
OperatorBase
::
DebugStringEx
(
const
Scope
*
scope
)
const
{
VLOG
(
3
)
<<
this
->
Type
()
<<
" scope ptr "
<<
scope
;
std
::
stringstream
ss
;
ss
<<
"Op("
<<
type_
<<
"), inputs:{"
;
for
(
auto
it
=
inputs_
.
begin
();
it
!=
inputs_
.
end
();)
{
...
...
@@ -470,35 +471,35 @@ class RuntimeInferShapeContext : public InferShapeContext {
:
op_
(
op
),
scope_
(
scope
)
{}
bool
HasInput
(
const
std
::
string
&
name
)
const
override
{
if
(
!
op_
.
HasInputs
(
name
))
{
// has only one input
const
auto
&
ins
=
op_
.
Inputs
();
auto
it
=
ins
.
find
(
name
);
if
(
it
==
ins
.
end
())
{
return
false
;
}
auto
&
ins
=
Inputs
(
name
);
size_t
length
=
ins
.
size
();
if
(
length
==
0
)
{
const
auto
&
in
=
it
->
second
;
if
(
in
.
size
()
==
0
||
in
[
0
]
==
kEmptyVarName
)
{
return
false
;
}
PADDLE_ENFORCE_EQ
(
length
,
1UL
,
PADDLE_ENFORCE_EQ
(
in
.
size
()
,
1UL
,
"Input %s should not have more than one inputs"
,
name
);
auto
ipt
=
ins
[
0
];
auto
*
var
=
ipt
==
kEmptyVarName
?
nullptr
:
scope_
.
FindVar
(
ipt
);
return
var
!=
nullptr
;
return
scope_
.
FindVar
(
in
[
0
])
!=
nullptr
;
}
bool
HasOutput
(
const
std
::
string
&
name
)
const
override
{
if
(
!
op_
.
HasOutputs
(
name
))
{
// has only one output
const
auto
&
outs
=
op_
.
Outputs
();
auto
it
=
outs
.
find
(
name
);
if
(
it
==
outs
.
end
())
{
return
false
;
}
auto
&
outs
=
Outputs
(
name
);
size_t
length
=
outs
.
size
();
if
(
length
==
0
)
{
const
auto
&
out
=
it
->
second
;
if
(
out
.
size
()
==
0
||
out
[
0
]
==
kEmptyVarName
)
{
return
false
;
}
PADDLE_ENFORCE_EQ
(
length
,
1UL
,
"Output %s should not have more than one inputs"
,
name
);
auto
ipt
=
outs
[
0
];
auto
*
var
=
ipt
==
kEmptyVarName
?
nullptr
:
scope_
.
FindVar
(
ipt
);
return
var
!=
nullptr
;
PADDLE_ENFORCE_EQ
(
out
.
size
(),
1UL
,
"Output %s should not have more than one outputs"
,
name
);
return
scope_
.
FindVar
(
out
[
0
])
!=
nullptr
;
}
bool
HasInputs
(
const
std
::
string
&
name
)
const
override
{
...
...
@@ -545,13 +546,45 @@ class RuntimeInferShapeContext : public InferShapeContext {
return
op_
.
Outputs
(
name
);
}
void
Share
LoD
(
const
std
::
string
&
in
,
const
std
::
string
&
out
,
size_t
i
=
0
,
size_t
j
=
0
)
const
override
{
void
Share
Dim
(
const
std
::
string
&
in
,
const
std
::
string
&
out
,
size_t
i
=
0
,
size_t
j
=
0
)
override
{
PADDLE_ENFORCE_LT
(
i
,
Inputs
(
in
).
size
());
PADDLE_ENFORCE_LT
(
j
,
Outputs
(
out
).
size
());
Variable
*
in_var
=
scope_
.
FindVar
(
Inputs
(
in
)[
i
]);
Variable
*
out_var
=
scope_
.
FindVar
(
Outputs
(
out
)[
j
]);
const
std
::
string
&
input_n
=
Inputs
(
in
)[
i
];
const
std
::
string
&
output_n
=
Outputs
(
out
)[
j
];
Variable
*
in_var
=
scope_
.
FindVar
(
input_n
);
Variable
*
out_var
=
scope_
.
FindVar
(
output_n
);
PADDLE_ENFORCE
(
in_var
->
Type
()
==
out_var
->
Type
(),
"The type of %s and %s is not the same."
,
output_n
,
GetDim
(
input_n
));
if
(
in_var
->
IsType
<
framework
::
SelectedRows
>
())
{
auto
&
in_sele_rows
=
in_var
->
Get
<
framework
::
SelectedRows
>
();
auto
out_sele_rows
=
out_var
->
GetMutable
<
framework
::
SelectedRows
>
();
out_sele_rows
->
mutable_value
()
->
Resize
(
in_sele_rows
.
value
().
dims
());
out_sele_rows
->
set_rows
(
in_sele_rows
.
rows
());
out_sele_rows
->
set_height
(
in_sele_rows
.
height
());
}
else
if
(
in_var
->
IsType
<
framework
::
LoDTensor
>
())
{
auto
&
in_lod_tensor
=
in_var
->
Get
<
framework
::
LoDTensor
>
();
auto
*
out_lod_tensor
=
out_var
->
GetMutable
<
framework
::
LoDTensor
>
();
out_lod_tensor
->
Resize
(
in_lod_tensor
.
dims
());
}
else
{
PADDLE_THROW
(
"Currently, the input type of ShareDim only can be LoDTensor "
"or SelectedRows."
);
}
}
void
ShareLoD
(
const
std
::
string
&
in
,
const
std
::
string
&
out
,
size_t
i
=
0
,
size_t
j
=
0
)
const
override
{
const
std
::
vector
<
std
::
string
>&
inputs
=
Inputs
(
in
);
const
std
::
vector
<
std
::
string
>&
outputs
=
Outputs
(
out
);
PADDLE_ENFORCE_LT
(
i
,
inputs
.
size
());
PADDLE_ENFORCE_LT
(
j
,
outputs
.
size
());
Variable
*
in_var
=
scope_
.
FindVar
(
inputs
.
at
(
i
));
if
(
!
in_var
->
IsType
<
LoDTensor
>
())
return
;
Variable
*
out_var
=
scope_
.
FindVar
(
outputs
.
at
(
j
));
PADDLE_ENFORCE
(
out_var
->
IsType
<
LoDTensor
>
(),
"The %d-th output of Output(%s) must be LoDTensor."
,
j
,
out
);
auto
in_tensor
=
in_var
->
Get
<
LoDTensor
>
();
...
...
@@ -579,20 +612,6 @@ class RuntimeInferShapeContext : public InferShapeContext {
out_tensor
->
set_layout
(
in_tensor
.
layout
());
}
void
ShareLayout
(
const
std
::
string
&
in
,
const
std
::
string
&
out
,
size_t
i
=
0
,
size_t
j
=
0
)
const
{
PADDLE_ENFORCE_LT
(
i
,
Inputs
(
in
).
size
());
PADDLE_ENFORCE_LT
(
j
,
Outputs
(
out
).
size
());
Variable
*
in_var
=
scope_
.
FindVar
(
Inputs
(
in
)[
i
]);
Variable
*
out_var
=
scope_
.
FindVar
(
Outputs
(
out
)[
j
]);
if
(
!
in_var
->
IsType
<
LoDTensor
>
())
return
;
PADDLE_ENFORCE
(
out_var
->
IsType
<
LoDTensor
>
(),
"The %d-th output of Output(%s) must be LoDTensor."
,
j
,
out
);
auto
in_tensor
=
in_var
->
Get
<
LoDTensor
>
();
auto
*
out_tensor
=
out_var
->
GetMutable
<
LoDTensor
>
();
out_tensor
->
set_layout
(
in_tensor
.
layout
());
}
bool
IsRuntime
()
const
override
{
return
true
;
}
protected:
...
...
@@ -663,16 +682,12 @@ static void CheckTensorNANOrInf(const std::string& name,
void
OperatorWithKernel
::
RunImpl
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
{
RuntimeInferShapeContext
infer_shape_ctx
(
*
this
,
scope
);
VLOG
(
3
)
<<
"start Infershape"
;
this
->
InferShape
(
&
infer_shape_ctx
);
VLOG
(
3
)
<<
"Infershape Pass"
;
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
*
dev_ctx
=
pool
.
Get
(
place
);
// check if op[type] has kernel registered.
VLOG
(
3
)
<<
"Start Kernels"
;
auto
&
all_op_kernels
=
AllOpKernels
();
VLOG
(
3
)
<<
"Kernel map finish"
;
auto
kernels_iter
=
all_op_kernels
.
find
(
type_
);
if
(
kernels_iter
==
all_op_kernels
.
end
())
{
PADDLE_THROW
(
...
...
@@ -690,7 +705,7 @@ void OperatorWithKernel::RunImpl(const Scope& scope,
auto
expected_kernel_key
=
this
->
GetExpectedKernelType
(
ExecutionContext
(
*
this
,
scope
,
*
dev_ctx
));
VLOG
(
3
)
<<
"expected_kernel_key:
"
<<
expected_kernel_key
;
VLOG
(
3
)
<<
"expected_kernel_key:"
<<
expected_kernel_key
;
auto
kernel_iter
=
kernels
.
find
(
expected_kernel_key
);
#ifdef PADDLE_WITH_MKLDNN
...
...
paddle/fluid/framework/shape_inference.h
浏览文件 @
7141debe
...
...
@@ -56,6 +56,9 @@ class InferShapeContext {
virtual
const
std
::
vector
<
std
::
string
>
&
Outputs
(
const
std
::
string
&
name
)
const
=
0
;
virtual
void
ShareDim
(
const
std
::
string
&
in
,
const
std
::
string
&
out
,
size_t
i
=
0
,
size_t
j
=
0
)
=
0
;
virtual
void
ShareLoD
(
const
std
::
string
&
in
,
const
std
::
string
&
out
,
size_t
i
=
0
,
size_t
j
=
0
)
const
=
0
;
...
...
paddle/fluid/inference/api/api_impl.cc
浏览文件 @
7141debe
...
...
@@ -112,11 +112,11 @@ bool NativePaddlePredictor::Init(
auto
&
block
=
inference_program_
->
Block
(
0
);
for
(
auto
*
op_desc
:
block
.
AllOps
())
{
if
(
op_desc
->
HasAttr
(
"use_cudnn"
))
{
op_desc
->
SetAttr
(
"use_cudnn"
,
false
);
}
//
if (op_desc->HasAttr("use_cudnn")) {
//
op_desc->SetAttr("use_cudnn", false);
//
}
if
(
op_desc
->
HasAttr
(
"workspace_size_MB"
))
{
op_desc
->
SetAttr
(
"workspace_size_MB"
,
0
);
op_desc
->
SetAttr
(
"workspace_size_MB"
,
1024
);
}
}
...
...
paddle/fluid/inference/api/demo_ci/real_data_icnet_tester.cc
浏览文件 @
7141debe
...
...
@@ -27,8 +27,8 @@ NativeConfig GetConfig() {
NativeConfig
config
;
// config.model_dir = FLAGS_dirname;
config
.
prog_file
=
"hs_lb_without_bn/__model__"
;
config
.
param_file
=
"hs_lb_without_bn/__params__"
;
config
.
prog_file
=
"hs_lb_without_bn
_cudnn
/__model__"
;
config
.
param_file
=
"hs_lb_without_bn
_cudnn
/__params__"
;
// config.prog_file = "hs_lb_without_bn_cuda/__model__";
// config.param_file = "hs_lb_without_bn_cuda/__params__";
config
.
fraction_of_gpu_memory
=
0.0
;
...
...
@@ -106,7 +106,7 @@ void test_naive(int batch_size) {
std
::
cout
<<
"batch: "
<<
batch_size
<<
" predict cost: "
<<
time_diff
(
time1
,
time2
)
/
steps
<<
"ms"
<<
std
::
endl
;
std
::
cout
<<
outputs
.
size
()
<<
std
::
endl
;
std
::
cout
<<
outputs
.
size
()
<<
std
::
endl
;
int64_t
*
data_o
=
static_cast
<
int64_t
*>
(
outputs
[
0
].
data
.
data
());
int64_t
sum_out
=
0
;
for
(
size_t
j
=
0
;
j
<
outputs
[
0
].
data
.
length
()
/
sizeof
(
int64_t
);
++
j
)
{
...
...
paddle/fluid/inference/api/demo_ci/thread_icnet_test.cc
浏览文件 @
7141debe
...
...
@@ -21,12 +21,12 @@
#include <fstream>
#include <iostream>
#include <thread> // NOLINT
#include <utility>
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#define ASSERT_TRUE(x) x
#define ASSERT_EQ(x, y) assert(x == y)
// DEFINE_string(dirname, "./LB_icnet_model",
// "Directory of the inference model.");
namespace
paddle
{
...
...
@@ -34,7 +34,7 @@ NativeConfig GetConfig() {
NativeConfig
config
;
config
.
prog_file
=
"./hs_lb_without_bn_cuda/__model__"
;
config
.
param_file
=
"./hs_lb_without_bn_cuda/__params__"
;
config
.
fraction_of_gpu_memory
=
0.
5
;
config
.
fraction_of_gpu_memory
=
0.
0
;
config
.
use_gpu
=
true
;
config
.
device
=
0
;
return
config
;
...
...
@@ -54,7 +54,7 @@ void test_naive(int batch_size, std::string model_path) {
int
height
=
449
;
int
width
=
581
;
std
::
vector
<
float
>
data
;
for
(
int
i
=
0
;
i
<
3
*
height
*
width
;
++
i
)
{
for
(
int
i
=
0
;
i
<
3
*
height
*
width
;
++
i
)
{
data
.
push_back
(
0.0
);
}
...
...
@@ -86,47 +86,61 @@ void test_naive(int batch_size, std::string model_path) {
// in_img.close();
// std::cout << "sum: " << sum_n << std::endl;
PaddleTensor
tensor
;
tensor
.
shape
=
std
::
vector
<
int
>
({
batch_size
,
3
,
height
,
width
});
tensor
.
data
.
Resize
(
sizeof
(
float
)
*
batch_size
*
3
*
height
*
width
);
std
::
copy
(
data
.
begin
(),
data
.
end
(),
static_cast
<
float
*>
(
tensor
.
data
.
data
()));
tensor
.
dtype
=
PaddleDType
::
FLOAT32
;
std
::
vector
<
PaddleTensor
>
paddle_tensor_feeds
(
1
,
tensor
);
constexpr
int
num_jobs
=
2
;
// each job run 1 batch
std
::
vector
<
std
::
thread
>
threads
;
PaddleTensor
tensor
;
tensor
.
shape
=
std
::
vector
<
int
>
({
batch_size
,
3
,
height
,
width
});
tensor
.
data
.
Resize
(
sizeof
(
float
)
*
batch_size
*
3
*
height
*
width
);
std
::
copy
(
data
.
begin
(),
data
.
end
(),
static_cast
<
float
*>
(
tensor
.
data
.
data
()));
tensor
.
dtype
=
PaddleDType
::
FLOAT32
;
std
::
vector
<
PaddleTensor
>
paddle_tensor_feeds
(
1
,
tensor
);
constexpr
int
num_jobs
=
5
;
// each job run 1 batch
std
::
vector
<
std
::
thread
>
threads
;
// using PtrPred = std::vector<std::unique_ptr<PaddlePredictor>>;
std
::
vector
<
std
::
unique_ptr
<
PaddlePredictor
>>
predictors
;
for
(
int
tid
=
0
;
tid
<
num_jobs
;
++
tid
)
{
auto
&
pred
=
CreatePaddlePredictor
<
NativeConfig
>
(
config
);
predictors
.
emplace_back
(
std
::
move
(
pred
));
}
for
(
int
tid
=
0
;
tid
<
num_jobs
;
++
tid
)
{
threads
.
emplace_back
([
&
,
tid
]()
{
using
namespace
std
::
chrono_literals
;
// std::this_thread::sleep_for(std::chrono::seconds(20));
std
::
cout
<<
"before start predict"
;
int
epoches
=
100000
;
for
(
int
tid
=
0
;
tid
<
num_jobs
;
++
tid
)
{
threads
.
emplace_back
([
&
,
tid
]()
{
// auto predictor = CreatePaddlePredictor<NativeConfig>(config);
auto
&
predictor
=
predictors
[
tid
];
// auto& predictor = predictors[tid];
// auto predictor = preds[tid];
// std::this_thread::sleep_for(std::chrono::seconds(20));
PaddleTensor
tensor_out
;
std
::
vector
<
PaddleTensor
>
outputs
(
1
,
tensor_out
);
auto
predictor
=
CreatePaddlePredictor
<
NativeConfig
>
(
config
);
for
(
size_t
i
=
0
;
i
<
1000
;
i
++
)
{
ASSERT_TRUE
(
predictor
->
Run
(
paddle_tensor_feeds
,
&
outputs
));
VLOG
(
0
)
<<
"tid : "
<<
tid
<<
" run: "
<<
i
<<
"finished"
;
//std::cout <<"tid : " << tid << " run: " << i << "finished" << std::endl;
ASSERT_EQ
(
outputs
.
size
(),
1UL
);
// int64_t* data_o = static_cast<int64_t*>(outputs[0].data.data());
// int64_t sum_out = 0;
// for (size_t j = 0; j < outputs[0].data.length() / sizeof(int64_t);
// ++j) {
// sum_out += data_o[j];
// }
// std::cout << "tid : " << tid << "pass : " << i << " " << sum_out
// << std::endl;
}
});
}
for
(
int
i
=
0
;
i
<
num_jobs
;
++
i
)
{
threads
[
i
].
join
();
}
for
(
size_t
i
=
0
;
i
<
epoches
;
i
++
)
{
ASSERT_TRUE
(
predictor
->
Run
(
paddle_tensor_feeds
,
&
outputs
));
VLOG
(
0
)
<<
"tid : "
<<
tid
<<
" run: "
<<
i
<<
"finished"
;
// std::cout <<"tid : " << tid << " run: " << i << "finished" <<
// std::endl;
ASSERT_EQ
(
outputs
.
size
(),
1UL
);
// int64_t* data_o = static_cast<int64_t*>(outputs[0].data.data());
// int64_t sum_out = 0;
// for (size_t j = 0; j < outputs[0].data.length() / sizeof(int64_t);
// ++j) {
// sum_out += data_o[j];
// }
// std::cout << "tid : " << tid << "pass : " << i << " " << sum_out
// << std::endl;
}
});
}
for
(
int
i
=
0
;
i
<
num_jobs
;
++
i
)
{
threads
[
i
].
join
();
}
}
// }
}
// namespace paddle
}
// namespace paddle
int
main
(
int
argc
,
char
**
argv
)
{
paddle
::
test_naive
(
1
<<
0
,
""
);
return
0
;
int
main
(
int
argc
,
char
**
argv
)
{
paddle
::
test_naive
(
1
<<
0
,
""
);
return
0
;
}
paddle/fluid/memory/detail/buddy_allocator.cc
浏览文件 @
7141debe
...
...
@@ -11,7 +11,8 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define GLOG_NO_ABBREVIATED_SEVERITIES
#define GOOGLE_GLOG_DLL_DECL
#include "paddle/fluid/memory/detail/buddy_allocator.h"
#include "glog/logging.h"
...
...
paddle/fluid/memory/detail/meta_cache.cc
浏览文件 @
7141debe
...
...
@@ -12,6 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define GLOG_NO_ABBREVIATED_SEVERITIES
#define GOOGLE_GLOG_DLL_DECL
#include "glog/logging.h"
#include "paddle/fluid/memory/detail/memory_block.h"
#include "paddle/fluid/platform/assert.h"
...
...
paddle/fluid/operators/top_k_op.cc
浏览文件 @
7141debe
...
...
@@ -50,7 +50,7 @@ class TopkOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(Tensor) The input of Topk op"
);
AddOutput
(
"Out"
,
"(Tensor) The output tensor of Topk op"
);
AddOutput
(
"Out"
,
"(Tensor) The output tensor of Topk op"
)
.
Reuse
(
"X"
)
;
AddOutput
(
"Indices"
,
"(Tensor) The indices of Topk elements of input"
);
AddComment
(
R"DOC(
Top K operator
...
...
paddle/fluid/operators/top_k_op.cu
浏览文件 @
7141debe
...
...
@@ -256,65 +256,36 @@ __device__ __forceinline__ void BlockReduce(Pair<T>* sh_topk, int* maxid,
* 3. go to the second setp, until one thread's topk value is null;
* 4. go to the first setp, until get the topk value.
*/
template
<
typename
T
,
int
MaxLength
,
int
BlockSize
>
__global__
void
KeMatrixTopK
(
T
*
output
,
int
output_stride
,
int64_t
*
indices
,
const
T
*
src
,
int
lds
,
int
dim
,
int
k
,
int
grid_dim
,
int
num
)
{
const
T
*
src
,
int
lds
,
int
dim
,
int
k
)
{
__shared__
Pair
<
T
>
sh_topk
[
BlockSize
];
__shared__
int
maxid
[
BlockSize
/
2
];
const
int
tid
=
threadIdx
.
x
;
const
int
warp
=
threadIdx
.
x
/
32
;
output
+=
blockIdx
.
x
*
output_stride
;
indices
+=
blockIdx
.
x
*
k
;
const
int
bid
=
blockIdx
.
x
;
for
(
int
i
=
bid
;
i
<
num
;
i
+=
grid_dim
)
{
int
top_num
=
k
;
__shared__
int
maxid
[
BlockSize
/
2
];
T
*
out
=
output
+
i
*
output_stride
;
int64_t
*
inds
=
indices
+
i
*
k
;
Pair
<
T
>
topk
[
MaxLength
];
int
beam
=
MaxLength
;
Pair
<
T
>
max
;
bool
is_empty
=
false
;
bool
firststep
=
true
;
for
(
int
j
=
0
;
j
<
MaxLength
;
j
++
)
{
topk
[
j
].
set
(
-
INFINITY
,
-
1
);
}
while
(
top_num
)
{
ThreadGetTopK
<
T
,
MaxLength
,
BlockSize
>
(
topk
,
&
beam
,
k
,
src
+
i
*
lds
,
&
firststep
,
&
is_empty
,
&
max
,
dim
,
tid
);
Pair
<
T
>
topk
[
MaxLength
];
int
beam
=
MaxLength
;
Pair
<
T
>
max
;
bool
is_empty
=
false
;
bool
firststep
=
true
;
sh_topk
[
tid
]
=
topk
[
0
];
BlockReduce
<
T
,
MaxLength
,
BlockSize
>
(
sh_topk
,
maxid
,
topk
,
&
out
,
&
inds
,
&
beam
,
&
top_num
,
tid
,
warp
);
}
for
(
int
k
=
0
;
k
<
MaxLength
;
k
++
)
{
topk
[
k
].
set
(
-
INFINITY
,
-
1
);
}
}
inline
static
int
GetDesiredBlockDim
(
int
dim
)
{
if
(
dim
>
128
)
{
return
256
;
}
else
if
(
dim
>
64
)
{
return
128
;
}
else
if
(
dim
>
32
)
{
return
64
;
}
else
{
return
32
;
while
(
k
)
{
ThreadGetTopK
<
T
,
MaxLength
,
BlockSize
>
(
topk
,
&
beam
,
k
,
src
+
blockIdx
.
x
*
lds
,
&
firststep
,
&
is_empty
,
&
max
,
dim
,
tid
);
sh_topk
[
tid
]
=
topk
[
0
];
BlockReduce
<
T
,
MaxLength
,
BlockSize
>
(
sh_topk
,
maxid
,
topk
,
&
output
,
&
indices
,
&
beam
,
&
k
,
tid
,
warp
);
}
}
#define FIXED_BLOCK_DIM_BASE(dim, ...) \
case (dim): { \
constexpr auto kBlockDim = (dim); \
__VA_ARGS__; \
} break
#define FIXED_BLOCK_DIM(...) \
FIXED_BLOCK_DIM_BASE(256, ##__VA_ARGS__); \
FIXED_BLOCK_DIM_BASE(128, ##__VA_ARGS__); \
FIXED_BLOCK_DIM_BASE(64, ##__VA_ARGS__); \
FIXED_BLOCK_DIM_BASE(32, ##__VA_ARGS__)
template
<
typename
T
>
class
TopkOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
...
...
@@ -327,38 +298,30 @@ class TopkOpCUDAKernel : public framework::OpKernel<T> {
size_t
k
=
static_cast
<
int
>
(
ctx
.
Attr
<
int
>
(
"k"
));
const
T
*
input_data
=
input
->
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// FIXME(typhoonzero): data is always converted to type T?
int64_t
*
indices_data
=
indices
->
mutable_data
<
int64_t
>
(
ctx
.
GetPlace
());
framework
::
DDim
inputdims
=
input
->
dims
();
const
size_t
input_height
=
framework
::
product
(
framework
::
slice_ddim
(
inputdims
,
0
,
inputdims
.
size
()
-
1
));
const
size_t
input_width
=
inputdims
[
inputdims
.
size
()
-
1
];
size_t
input_height
=
input
->
dims
()[
0
];
size_t
input_width
=
input
->
dims
()[
1
];
if
(
k
>
input_width
)
k
=
input_width
;
// NOTE: pass lds and dim same to input width.
// NOTE: old matrix implementation of stride is different to eigen.
// TODO(typhoonzero): refine this kernel.
const
int
kMaxHeight
=
2048
;
int
gridx
=
input_height
<
kMaxHeight
?
input_height
:
kMaxHeight
;
auto
&
dev_ctx
=
ctx
.
cuda_device_context
();
switch
(
GetDesiredBlockDim
(
input_width
))
{
FIXED_BLOCK_DIM
(
KeMatrixTopK
<
T
,
5
,
kBlockDim
><<<
gridx
,
kBlockDim
,
0
,
dev_ctx
.
stream
()
>>>
(
output_data
,
k
,
indices_data
,
input_data
,
input_width
,
input_width
,
static_cast
<
int
>
(
k
),
gridx
,
input_height
));
default:
PADDLE_THROW
(
"Error"
);
}
dim3
threads
(
256
,
1
);
dim3
grid
(
input_height
,
1
);
KeMatrixTopK
<
T
,
5
,
256
><<<
grid
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
ctx
.
device_context
())
.
stream
()
>>>
(
output_data
,
output
->
dims
()[
1
],
indices_data
,
input_data
,
input_width
,
input_width
,
static_cast
<
int
>
(
k
));
}
};
#undef FIXED_BLOCK_DIM_BASE
#undef FIXED_BLOCK_DIM
}
// namespace operators
}
// namespace paddle
...
...
paddle/fluid/operators/top_k_op.h
浏览文件 @
7141debe
...
...
@@ -34,6 +34,7 @@ class TopkKernel : public framework::OpKernel<T> {
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
// Get the top k elements of each row of input tensor
// FIXME: only deal with matrix(2d tensor).
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
*
indices
=
ctx
.
Output
<
Tensor
>
(
"Indices"
);
...
...
@@ -43,6 +44,8 @@ class TopkKernel : public framework::OpKernel<T> {
T
*
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int64_t
*
indices_data
=
indices
->
mutable_data
<
int64_t
>
(
ctx
.
GetPlace
());
auto
eg_input
=
EigenMatrix
<
T
>::
From
(
*
input
);
// reshape input to a flattern matrix(like flat_inner_dims)
framework
::
DDim
inputdims
=
input
->
dims
();
const
size_t
row
=
framework
::
product
(
...
...
@@ -50,7 +53,7 @@ class TopkKernel : public framework::OpKernel<T> {
const
size_t
col
=
inputdims
[
inputdims
.
size
()
-
1
];
Eigen
::
DSizes
<
int
,
2
>
flat2dims
(
row
,
col
);
// NOTE: eigen shape doesn't affect paddle tensor.
auto
eg_input
=
EigenMatrix
<
T
>::
Reshape
(
*
input
,
inputdims
.
size
()
-
1
);
eg_input
.
reshape
(
flat2dims
);
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
...
...
paddle/fluid/platform/CMakeLists.txt
浏览文件 @
7141debe
...
...
@@ -27,6 +27,12 @@ ENDIF()
cc_library
(
cpu_info SRCS cpu_info.cc DEPS
${
CPU_INFO_DEPS
}
)
cc_test
(
cpu_info_test SRCS cpu_info_test.cc DEPS cpu_info
)
set
(
CUDA_LIB
"C:
\\
Program
\
Files
\\
NVIDIA GPU Computing Toolkit
\\
CUDA
\\
v8.0
\\
lib
\\
x64"
)
set
(
MYDEPS
${
MYDEPS
}
libcmt shlwapi
)
set
(
MYDEPS
${
MYDEPS
}
${
CUDA_LIB
}
/cudart
${
CMAKE_STATIC_LIBRARY_SUFFIX
}
)
set
(
MYDEPS
${
MYDEPS
}
${
CUDA_LIB
}
/cublas
${
CMAKE_STATIC_LIBRARY_SUFFIX
}
)
set
(
MYDEPS
${
MYDEPS
}
${
CUDA_LIB
}
/cudnn
${
CMAKE_STATIC_LIBRARY_SUFFIX
}
)
nv_library
(
gpu_info SRCS gpu_info.cc DEPS gflags glog enforce
)
cc_library
(
place SRCS place.cc DEPS enforce boost
)
...
...
@@ -58,6 +64,7 @@ nv_test(device_context_test SRCS device_context_test.cu DEPS device_context gpu_
cc_test
(
init_test SRCS init_test.cc DEPS device_context
)
nv_test
(
cudnn_helper_test SRCS cudnn_helper_test.cc DEPS dynload_cuda
)
target_link_libraries
(
cudnn_helper_test
${
MYDEPS
}
)
nv_test
(
transform_test SRCS transform_test.cu DEPS memory place device_context
)
...
...
paddle/fluid/platform/cudnn_helper.h
浏览文件 @
7141debe
...
...
@@ -68,7 +68,14 @@ inline const char* cudnnGetErrorString(cudnnStatus_t status) {
} \
} while (false)
#else
#define CUDNN_ENFORCE(condition)
// windows
#define CUDNN_ENFORCE(condition) \
do { \
cudnnStatus_t status = condition; \
if (status != CUDNN_STATUS_SUCCESS) { \
std::cerr << ::paddle::platform::cudnnGetErrorString(status); \
} \
} while (false)
#endif
enum
class
DataLayout
{
// Not use
...
...
paddle/fluid/platform/enforce.h
浏览文件 @
7141debe
...
...
@@ -127,7 +127,7 @@ struct EOFException : public std::exception {
#define UNLIKELY(condition) __builtin_expect(static_cast<bool>(condition), 0)
#else
// there is no equivalent intrinsics in msvc.
#define UNLIKELY(condition) (
condition
== 0)
#define UNLIKELY(condition) (
(condition)
== 0)
#endif
template
<
typename
...
Args
>
...
...
@@ -309,7 +309,6 @@ inline void throw_on_error(T e) {
#define PADDLE_ENFORCE_LE(__VAL0, __VAL1, ...) \
__PADDLE_BINARY_COMPARE(__VAL0, __VAL1, <=, >, __VA_ARGS__)
#define PADDLE_ENFORCE_NOT_NULL(__VAL, ...) \
do { \
if (UNLIKELY(nullptr == (__VAL))) { \
...
...
@@ -330,26 +329,26 @@ inline void throw_on_error(T e) {
} \
} while (0)
#else
#define PADDLE_ENFORCE_EQ(__VAL0, __VAL1, ...) ((__VAL0)
==
(__VAL1))
#define PADDLE_ENFORCE_NE(__VAL0, __VAL1, ...) ((__VAL0)
!=
(__VAL1))
#define PADDLE_ENFORCE_GT(__VAL0, __VAL1, ...) ((__VAL0)
>
(__VAL1))
#define PADDLE_ENFORCE_GE(__VAL0, __VAL1, ...) ((__VAL0)
>=
(__VAL1))
#define PADDLE_ENFORCE_LT(__VAL0, __VAL1, ...) ((__VAL0)
<
(__VAL1))
#define PADDLE_ENFORCE_LE(__VAL0, __VAL1, ...) ((__VAL0)
<=
(__VAL1))
#define __PADDLE_BINARY_COMPARE(__VAL0, __VAL1, __CMP, __INV_CMP, ...)
\
do { \
if (!((__VAL0)__CMP(__VAL1))) { \
PADDLE_THROW("Windows disable the enforce. Enforce failed."); \
} \
} while
(0)
#define PADDLE_ENFORCE_NOT_NULL(__VAL1, ...) \
do {
\
if (nullptr == (__VAL1)) { \
#define PADDLE_ENFORCE_EQ(__VAL0, __VAL1, ...) ((__VAL0)
==
(__VAL1))
#define PADDLE_ENFORCE_NE(__VAL0, __VAL1, ...) ((__VAL0)
!=
(__VAL1))
#define PADDLE_ENFORCE_GT(__VAL0, __VAL1, ...) ((__VAL0)
>
(__VAL1))
#define PADDLE_ENFORCE_GE(__VAL0, __VAL1, ...) ((__VAL0)
>=
(__VAL1))
#define PADDLE_ENFORCE_LT(__VAL0, __VAL1, ...) ((__VAL0)
<
(__VAL1))
#define PADDLE_ENFORCE_LE(__VAL0, __VAL1, ...) ((__VAL0)
<=
(__VAL1))
#define __PADDLE_BINARY_COMPARE(__VAL0, __VAL1, __CMP, __INV_CMP, ...) \
do {
\
if (!((__VAL0)__CMP(__VAL1))) {
\
PADDLE_THROW("Windows disable the enforce. Enforce failed.");
\
}
\
} while
(0)
#define PADDLE_ENFORCE_NOT_NULL(__VAL1, ...)
\
do {
\
if (nullptr == (__VAL1)) {
\
PADDLE_THROW("Windows disable the enforce. Enforce failed"); \
} \
} while
(0)
#endif // !_WIN32
}
\
} while
(0)
#endif
// !_WIN32
}
// namespace platform
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录