executor.cc 17.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/executor.h"
Y
Yang Yang 已提交
16

17
#include "paddle/fluid/framework/channel.h"
Y
Yi Wang 已提交
18 19 20 21 22
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
G
gongweibao 已提交
23
#include "paddle/fluid/operators/detail/macros.h"
Y
Yi Wang 已提交
24
#include "paddle/fluid/platform/place.h"
X
Xin Pan 已提交
25
#include "paddle/fluid/platform/profiler.h"
Y
Yang Yu 已提交
26

D
dzhwinter 已提交
27
DECLARE_bool(benchmark);
28
DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run");
Q
qijun 已提交
29 30 31

namespace paddle {
namespace framework {
X
Xin Pan 已提交
32 33 34 35 36
namespace {
// block id starts from 0. This id is used to represent the codeblock
// wrapping the first block 0.
int kProgramId = -1;
}  // namespace
Q
qijun 已提交
37

Q
Qiao Longfei 已提交
38 39
ExecutorPrepareContext::ExecutorPrepareContext(
    const framework::ProgramDesc& prog, size_t block_id)
S
sneaxiy 已提交
40 41 42 43 44
    : prog_(prog), block_id_(block_id) {
  if (GetEagerDeletionThreshold() >= 0) {
    ref_cnts_ = GetNonPersistableReferenceCount<int>(prog_, block_id_);
  }
}
Y
Yu Yang 已提交
45

Q
Qiao Longfei 已提交
46 47 48
ExecutorPrepareContext::~ExecutorPrepareContext() {
  VLOG(5) << "destroy ExecutorPrepareContext";
}
Y
Yu Yang 已提交
49

D
dzhwinter 已提交
50
Executor::Executor(const platform::Place& place) : place_(place) {}
Q
qijun 已提交
51

Y
Yancey1989 已提交
52
void Executor::Close() {
W
Wu Yi 已提交
53
#ifdef PADDLE_WITH_DISTRIBUTE
Y
Yancey1989 已提交
54 55
  ::paddle::operators::distributed::RPCClient::GetInstance<
      ::paddle::operators::distributed::GRPCClient>()
Y
Yancey1989 已提交
56
      ->SendComplete();
W
Wu Yi 已提交
57
#endif
Y
Yancey1989 已提交
58
}
W
Wu Yi 已提交
59

Y
Stash  
Yu Yang 已提交
60
void InitializeVariable(Variable* var, proto::VarType::Type var_type) {
61
  if (var_type == proto::VarType::LOD_TENSOR) {
Q
QI JUN 已提交
62
    var->GetMutable<LoDTensor>();
63
  } else if (var_type == proto::VarType::SELECTED_ROWS) {
Q
QI JUN 已提交
64
    var->GetMutable<SelectedRows>();
65
  } else if (var_type == proto::VarType::FEED_MINIBATCH) {
Q
QI JUN 已提交
66
    var->GetMutable<FeedFetchList>();
67
  } else if (var_type == proto::VarType::FETCH_LIST) {
Q
QI JUN 已提交
68
    var->GetMutable<FeedFetchList>();
69
  } else if (var_type == proto::VarType::STEP_SCOPES) {
Y
Yu Yang 已提交
70
    var->GetMutable<std::vector<framework::Scope>>();
71
  } else if (var_type == proto::VarType::LOD_RANK_TABLE) {
Y
Yu Yang 已提交
72
    var->GetMutable<LoDRankTable>();
73
  } else if (var_type == proto::VarType::LOD_TENSOR_ARRAY) {
Y
Yu Yang 已提交
74
    var->GetMutable<LoDTensorArray>();
75
  } else if (var_type == proto::VarType::PLACE_LIST) {
Y
Yang Yu 已提交
76
    var->GetMutable<platform::PlaceList>();
77
  } else if (var_type == proto::VarType::READER) {
F
fengjiayi 已提交
78
    var->GetMutable<ReaderHolder>();
79 80
  } else if (var_type == proto::VarType::CHANNEL) {
    var->GetMutable<ChannelHolder>();
T
typhoonzero 已提交
81 82
  } else if (var_type == proto::VarType::RAW) {
    // GetMutable will be called in operator
Q
QI JUN 已提交
83 84
  } else {
    PADDLE_THROW(
Y
Yu Yang 已提交
85
        "Variable type %d is not in "
F
fengjiayi 已提交
86
        "[LOD_TENSOR, SELECTED_ROWS, FEED_MINIBATCH, FETCH_LIST, "
T
typhoonzero 已提交
87
        "LOD_RANK_TABLE, PLACE_LIST, READER, CHANNEL, RAW]",
Y
Yu Yang 已提交
88
        var_type);
Q
QI JUN 已提交
89 90 91
  }
}

L
Liu Yiqun 已提交
92 93 94
void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope,
                               int block_id) {
  auto& global_block = pdesc.Block(block_id);
95 96 97 98 99 100 101 102 103 104 105 106 107 108

  const Scope* ancestor_scope = scope;
  while (ancestor_scope->parent()) {
    ancestor_scope = ancestor_scope->parent();
  }

  if (ancestor_scope != scope) {
    for (auto& var : global_block.AllVars()) {
      if (var->Name() == framework::kEmptyVarName) {
        continue;
      }

      if (var->Persistable()) {
        auto* ptr = const_cast<Scope*>(ancestor_scope)->Var(var->Name());
109
        InitializeVariable(ptr, var->GetType());
110 111 112 113
        VLOG(3) << "Create Variable " << var->Name()
                << " global, which pointer is " << ptr;
      } else {
        auto* ptr = scope->Var(var->Name());
114
        InitializeVariable(ptr, var->GetType());
115 116 117 118 119 120 121
        VLOG(3) << "Create Variable " << var->Name()
                << " locally, which pointer is " << ptr;
      }
    }
  } else {
    for (auto& var : global_block.AllVars()) {
      auto* ptr = scope->Var(var->Name());
122
      InitializeVariable(ptr, var->GetType());
123 124 125 126 127 128
      VLOG(3) << "Create variable " << var->Name() << ", which pointer is "
              << ptr;
    }
  }
}

Y
Yu Yang 已提交
129
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
T
typhoonzero 已提交
130
                   bool create_local_scope, bool create_vars) {
X
Xin Pan 已提交
131
  platform::RecordBlock b(block_id);
132
  if (FLAGS_use_mkldnn) EnableMKLDNN(pdesc);
Q
Qiao Longfei 已提交
133 134
  auto ctx = Prepare(pdesc, block_id);
  RunPreparedContext(ctx.get(), scope, create_local_scope, create_vars);
Q
qijun 已提交
135 136
}

137 138 139 140 141 142 143
// Check whether the block already has feed operators and feed_holder.
// Return false if the block does not have any feed operators.
// If some feed operators have been prepended to the block, check that
// the info contained in these feed operators matches the feed_targets
// and feed_holder_name. Raise exception when any mismatch is found.
// Return true if the block has feed operators and holder of matching info.
static bool has_feed_operators(
144
    const BlockDesc& block,
L
Liu Yiqun 已提交
145
    const std::map<std::string, const LoDTensor*>& feed_targets,
146 147
    const std::string& feed_holder_name) {
  size_t feed_count = 0;
148
  for (auto* op : block.AllOps()) {
149 150
    if (op->Type() == kFeedOpType) {
      feed_count++;
L
Liu Yiqun 已提交
151
      // The input variable's name of feed_op should be feed_holder_name.
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
      PADDLE_ENFORCE_EQ(op->Input("X")[0], feed_holder_name,
                        "Input to feed op should be '%s'", feed_holder_name);
      std::string feed_target_name = op->Output("Out")[0];
      PADDLE_ENFORCE(
          feed_targets.find(feed_target_name) != feed_targets.end(),
          "Feed operator output name '%s' cannot be found in 'feed_targets'",
          feed_target_name);
    }
  }

  if (feed_count > 0) {
    PADDLE_ENFORCE_EQ(
        feed_count, feed_targets.size(),
        "The number of feed operators should match 'feed_targets'");

167
    if (!feed_holder_name.empty()) {
L
Liu Yiqun 已提交
168
      // When feed operator are present, so should be feed_holder.
169 170 171 172 173 174 175
      auto var = block.FindVar(feed_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              feed_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FEED_MINIBATCH,
                        "'%s' variable should be 'FEED_MINIBATCH' type",
                        feed_holder_name);
    }
176 177 178 179 180 181 182 183 184 185 186 187
  }

  return feed_count > 0;
}

// Check whether the block already has fetch operators and fetch_holder.
// Return false if the block does not have any fetch operators.
// If some fetch operators have been appended to the block, check that
// the info contained in these fetch operators matches the fetch_targets
// and fetch_holder_name. Raise exception when any mismatch is found.
// Return true if the block has fetch operators and holder of matching info.
static bool has_fetch_operators(
L
Liu Yiqun 已提交
188 189
    const BlockDesc& block,
    const std::map<std::string, LoDTensor*>& fetch_targets,
190 191
    const std::string& fetch_holder_name) {
  size_t fetch_count = 0;
192
  for (auto* op : block.AllOps()) {
193 194
    if (op->Type() == kFetchOpType) {
      fetch_count++;
L
Liu Yiqun 已提交
195
      // The output variable's name of fetch_op should be fetch_holder_name.
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
      PADDLE_ENFORCE_EQ(op->Output("Out")[0], fetch_holder_name,
                        "Output of fetch op should be '%s'", fetch_holder_name);
      std::string fetch_target_name = op->Input("X")[0];
      PADDLE_ENFORCE(
          fetch_targets.find(fetch_target_name) != fetch_targets.end(),
          "Fetch operator input name '%s' cannot be found in 'fetch_targets'",
          fetch_target_name);
    }
  }

  if (fetch_count > 0) {
    PADDLE_ENFORCE_EQ(
        fetch_count, fetch_targets.size(),
        "The number of fetch operators should match 'fetch_targets'");

211
    if (!fetch_holder_name.empty()) {
L
Liu Yiqun 已提交
212
      // When fetch operator are present, so should be fetch_holder.
213 214 215 216 217 218 219
      auto var = block.FindVar(fetch_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              fetch_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FETCH_LIST,
                        "'%s' variable should be 'FETCH_LIST' type",
                        fetch_holder_name);
    }
220 221 222 223 224 225
  }

  return fetch_count > 0;
}

void Executor::Run(const ProgramDesc& program, Scope* scope,
226 227
                   std::map<std::string, const LoDTensor*>* feed_targets,
                   std::map<std::string, LoDTensor*>* fetch_targets,
W
Wu Yi 已提交
228 229
                   bool create_local_scope, bool create_vars,
                   const std::string& feed_holder_name,
230
                   const std::string& fetch_holder_name) {
X
Xin Pan 已提交
231
  platform::RecordBlock b(kProgramId);
232
  if (FLAGS_use_mkldnn) EnableMKLDNN(program);
233
  bool has_feed_ops =
234
      has_feed_operators(program.Block(0), *feed_targets, feed_holder_name);
235
  bool has_fetch_ops =
236
      has_fetch_operators(program.Block(0), *fetch_targets, fetch_holder_name);
237 238

  ProgramDesc* copy_program = const_cast<ProgramDesc*>(&program);
S
sneaxiy 已提交
239
  std::unique_ptr<ProgramDesc> unique_ptr_of_copy_program;
240
  if (!has_feed_ops || !has_fetch_ops) {
S
sneaxiy 已提交
241 242
    unique_ptr_of_copy_program.reset(new ProgramDesc(program));
    copy_program = unique_ptr_of_copy_program.get();
243
  }
244 245
  auto* global_block = copy_program->MutableBlock(0);

246
  if (!has_feed_ops) {
247 248
    // create feed_holder variable
    auto* feed_holder = global_block->Var(feed_holder_name);
249
    feed_holder->SetType(proto::VarType::FEED_MINIBATCH);
250 251 252
    feed_holder->SetPersistable(true);

    int i = 0;
253
    for (auto& feed_target : (*feed_targets)) {
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
      std::string var_name = feed_target.first;
      VLOG(3) << "feed target's name: " << var_name;

      // prepend feed op
      auto* op = global_block->PrependOp();
      op->SetType(kFeedOpType);
      op->SetInput("X", {feed_holder_name});
      op->SetOutput("Out", {var_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

269
  if (!has_fetch_ops) {
270 271
    // create fetch_holder variable
    auto* fetch_holder = global_block->Var(fetch_holder_name);
272
    fetch_holder->SetType(proto::VarType::FETCH_LIST);
273 274 275
    fetch_holder->SetPersistable(true);

    int i = 0;
276
    for (auto& fetch_target : (*fetch_targets)) {
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
      std::string var_name = fetch_target.first;
      VLOG(3) << "fetch target's name: " << var_name;

      // append fetch op
      auto* op = global_block->AppendOp();
      op->SetType(kFetchOpType);
      op->SetInput("X", {var_name});
      op->SetOutput("Out", {fetch_holder_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

292
  auto ctx = Prepare(*copy_program, 0);
W
Wu Yi 已提交
293 294 295
  RunPreparedContext(ctx.get(), scope, feed_targets, fetch_targets,
                     create_local_scope, create_vars, feed_holder_name,
                     fetch_holder_name);
296 297
}

Q
Qiao Longfei 已提交
298 299
std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
    const ProgramDesc& program, int block_id) {
Q
Qiyang Min 已提交
300 301
  std::unique_ptr<ExecutorPrepareContext> ctx(
      new ExecutorPrepareContext(program, block_id));
Y
Yu Yang 已提交
302 303 304 305 306
  PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size());
  auto& block = program.Block(block_id);
  for (auto& op_desc : block.AllOps()) {
    ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
  }
Q
Qiyang Min 已提交
307
  return ctx;
Y
Yu Yang 已提交
308 309
}

T
refine  
typhoonzero 已提交
310
std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
T
typhoonzero 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324
    const ProgramDesc& program, const std::vector<int>& block_ids) {
  std::vector<std::shared_ptr<ExecutorPrepareContext>> result;
  for (auto& bid : block_ids) {
    auto* ctx = new ExecutorPrepareContext(program, bid);
    PADDLE_ENFORCE_LT(static_cast<size_t>(bid), program.Size());
    auto& block = program.Block(bid);
    for (auto& op_desc : block.AllOps()) {
      ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
    }
    result.push_back(std::shared_ptr<ExecutorPrepareContext>(ctx));
  }
  return result;
}

Y
Yu Yang 已提交
325
void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
Q
qiaolongfei 已提交
326 327
                                  bool create_local_scope, bool create_vars,
                                  bool keep_kids) {
Y
Yu Yang 已提交
328 329 330 331
  Scope* local_scope = scope;
  if (create_vars) {
    if (create_local_scope) {
      local_scope = &scope->NewScope();
332 333
    }
    CreateVariables(ctx->prog_, local_scope, ctx->block_id_);
L
Liu Yiqun 已提交
334
  }
Y
Yu Yang 已提交
335

S
sneaxiy 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
  int64_t max_memory_size = GetEagerDeletionThreshold();

  std::unique_ptr<GarbageCollector<Tensor>> gc;
  if (max_memory_size >= 0) {
#ifdef PADDLE_WITH_CUDA
    if (platform::is_gpu_place(place_)) {
      gc.reset(new DefaultStreamGarbageCollector<Tensor>(
          boost::get<platform::CUDAPlace>(place_), max_memory_size));
    } else {
#endif
      gc.reset(new CPUGarbageCollector<Tensor>(
          boost::get<platform::CPUPlace>(place_), max_memory_size));
#ifdef PADDLE_WITH_CUDA
    }
#endif
  }

Y
Yu Yang 已提交
353
  for (auto& op : ctx->ops_) {
354
    op->Run(*local_scope, place_);
S
sneaxiy 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396

    if (gc != nullptr) {
      std::vector<std::string> erase_vars;
      for (auto& input : op->Inputs()) {
        for (auto& input_name : input.second) {
          auto it = ctx->ref_cnts_.find(input_name);
          if (it == ctx->ref_cnts_.end()) continue;
          if (it->second == 1) {  // should delete it
            erase_vars.emplace_back(input_name);
            ctx->ref_cnts_.erase(input_name);
          } else {
            --(it->second);
          }
        }
      }

      for (auto& output : op->Outputs()) {
        for (auto& output_name : output.second) {
          auto it = ctx->ref_cnts_.find(output_name);
          if (it == ctx->ref_cnts_.end()) continue;
          if (it->second == 1) {
            erase_vars.emplace_back(output_name);
            ctx->ref_cnts_.erase(output_name);
          } else {
            --(it->second);
          }
        }
      }

      if (!erase_vars.empty()) {
        std::vector<framework::LoDTensor*> erase_tensors;
        for (auto& name : erase_vars) {
          auto* var = local_scope->FindVar(name);
          if (var == nullptr) continue;
          if (var->IsType<framework::LoDTensor>()) {
            auto* tensor = var->GetMutable<framework::LoDTensor>();
            erase_tensors.push_back(tensor);
          }
        }
        if (!erase_tensors.empty()) gc->Add(erase_tensors);
      }
    }
Y
Yang Yang 已提交
397

Y
Yu Yang 已提交
398 399 400 401 402
    if (FLAGS_benchmark) {
      VLOG(2) << "Memory used after operator " + op->Type() + " running: "
              << memory::memory_usage(place_);
    }
  }
S
sneaxiy 已提交
403

S
sneaxiy 已提交
404
  if (gc != nullptr) {
S
sneaxiy 已提交
405
    gc->Wait();
S
sneaxiy 已提交
406
  } else {
S
sneaxiy 已提交
407
    platform::DeviceContextPool::Instance().Get(place_)->Wait();
S
sneaxiy 已提交
408
  }
S
sneaxiy 已提交
409

Q
qiaolongfei 已提交
410
  if (local_scope != scope) {
Y
Yu Yang 已提交
411
    scope->DeleteScope(local_scope);
412
  } else {
Q
qiaolongfei 已提交
413 414 415 416 417
    if (!keep_kids) {
      // By default, we should delete all kid scopes after run executor because
      // some operators may create local scope when running, such as while_op.
      // But when while_op also create a local executor to run it's sub block,
      // the sub scopes it created should not be dropped immediately, because
Q
qiaolongfei 已提交
418 419
      // while_grad_op will use some variables created during while_op run, so
      // we need to keep the kids and wait for the outer executor to drop them.
Q
qiaolongfei 已提交
420 421
      scope->DropKids();
    }
Y
Yu Yang 已提交
422
  }
Q
qiaolongfei 已提交
423

Y
Yu Yang 已提交
424 425 426 427 428 429 430 431
  if (FLAGS_benchmark) {
    VLOG(2) << "-------------------------------------------------------";
    VLOG(2) << "Memory used after deleting local scope: "
            << memory::memory_usage(place_);
    VLOG(2) << "-------------------------------------------------------";
  }
}

432 433
void Executor::RunPreparedContext(
    ExecutorPrepareContext* ctx, Scope* scope,
434
    std::map<std::string, const LoDTensor*>* feed_targets,
W
Wu Yi 已提交
435 436 437
    std::map<std::string, LoDTensor*>* fetch_targets, bool create_local_scope,
    bool create_vars, const std::string& feed_holder_name,
    const std::string& fetch_holder_name) {
438 439
  auto& global_block = ctx->prog_.Block(ctx->block_id_);

440
  PADDLE_ENFORCE(
441
      has_feed_operators(global_block, *feed_targets, feed_holder_name),
442 443
      "Program in ExecutorPrepareContext should has feed_ops.");
  PADDLE_ENFORCE(
444
      has_fetch_operators(global_block, *fetch_targets, fetch_holder_name),
445 446
      "Program in the prepared context should has fetch_ops.");

447 448 449 450 451
  // map the data of feed_targets to feed_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFeedOpType) {
      std::string feed_target_name = op->Output("Out")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
452 453
      SetFeedVariable(scope, *(*feed_targets)[feed_target_name],
                      feed_holder_name, idx);
454 455 456
    }
  }

W
Wu Yi 已提交
457
  RunPreparedContext(ctx, scope, create_local_scope, create_vars);
458 459 460 461 462 463

  // obtain the data of fetch_targets from fetch_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFetchOpType) {
      std::string fetch_target_name = op->Input("X")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
464
      *(*fetch_targets)[fetch_target_name] =
465 466 467 468 469
          GetFetchVariable(*scope, fetch_holder_name, idx);
    }
  }
}

470 471 472 473 474 475 476 477 478 479 480
void Executor::EnableMKLDNN(const ProgramDesc& program) {
#ifdef PADDLE_WITH_MKLDNN
  VLOG(3) << "use_mkldnn=True";
  for (size_t bid = 0; bid < program.Size(); ++bid) {
    auto* block = const_cast<ProgramDesc&>(program).MutableBlock(bid);
    for (auto* op : block->AllOps()) {
      if (op->HasAttr("use_mkldnn")) {
        op->SetAttr("use_mkldnn", true);
      }
    }
  }
481 482 483
#else
  LOG(WARNING)
      << "'MKLDNN' is not supported, Please re-compile with WITH_MKLDNN option";
484 485 486
#endif
}

Q
qijun 已提交
487 488
}  // namespace framework
}  // namespace paddle