imperative.cc 39.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/pybind/imperative.h"
16

17
#include <Python.h>
18 19 20 21
#include <pybind11/chrono.h>
#include <pybind11/complex.h>
#include <pybind11/functional.h>
#include <pybind11/stl.h>
22
#include <memory>
23
#include <set>
J
Jiabin Yang 已提交
24
#include <string>
25 26
#include <unordered_map>
#include <utility>
J
Jiabin Yang 已提交
27
#include <vector>
28
#include "paddle/fluid/imperative/all_reduce.h"
J
Jiabin Yang 已提交
29
#include "paddle/fluid/imperative/backward_strategy.h"
30
#include "paddle/fluid/imperative/basic_engine.h"
31
#include "paddle/fluid/imperative/data_loader.h"
32
#include "paddle/fluid/imperative/layer.h"
J
Jiabin Yang 已提交
33
#include "paddle/fluid/imperative/nccl_context.h"
34
#include "paddle/fluid/imperative/partial_grad_engine.h"
35
#include "paddle/fluid/imperative/profiler.h"
36
#include "paddle/fluid/imperative/tracer.h"
M
minqiyang 已提交
37
#include "paddle/fluid/imperative/type_defs.h"
38
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
39
#include "paddle/fluid/pybind/op_function.h"
40
#include "paddle/fluid/pybind/pybind_boost_headers.h"
L
Leo Chen 已提交
41
#include "paddle/fluid/pybind/tensor_py.h"
42

43 44 45
namespace paddle {
namespace pybind {

46 47
namespace py = ::pybind11;

48 49 50 51
class Layer : public imperative::Layer {
 public:
  using imperative::Layer::Layer;  // Inherit constructors

52 53 54 55
  std::vector<std::shared_ptr<imperative::VarBase>> Forward(
      const std::vector<std::shared_ptr<imperative::VarBase>> &inputs)
      override {
    PYBIND11_OVERLOAD(std::vector<std::shared_ptr<imperative::VarBase>>, Layer,
J
Jiabin Yang 已提交
56
                      Forward, inputs);  // NOLINT
57 58 59
  }
};

L
Leo Chen 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
static const platform::Place PyObjectToPlace(const py::object &place_obj) {
  if (py::isinstance<platform::CPUPlace>(place_obj)) {
    return place_obj.cast<platform::CPUPlace>();
  } else if (py::isinstance<platform::CUDAPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPlace>();
  } else if (py::isinstance<platform::CUDAPinnedPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPinnedPlace>();
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Place should be one of CPUPlace/CUDAPlace/CUDAPinnedPlace"));
  }
}

static void InitTensorForVarBase(imperative::VarBase *self,
                                 const py::array &array,
                                 const platform::Place place,
                                 bool persistable = false,
                                 bool zero_copy = false,
                                 std::string name = "") {
  if (name == "") {
    name = imperative::GetCurrentTracer()->GenerateUniqueName("generated_var");
  }
  new (self) imperative::VarBase(name);
83
  auto *tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
L
Leo Chen 已提交
84 85
  if (platform::is_cpu_place(place)) {
    SetTensorFromPyArray<platform::CPUPlace>(
86
        tensor, array, BOOST_GET_CONST(platform::CPUPlace, place), zero_copy);
L
Leo Chen 已提交
87 88
  } else if (platform::is_gpu_place(place)) {
    SetTensorFromPyArray<platform::CUDAPlace>(
89
        tensor, array, BOOST_GET_CONST(platform::CUDAPlace, place), zero_copy);
L
Leo Chen 已提交
90 91
  } else if (platform::is_cuda_pinned_place(place)) {
    SetTensorFromPyArray<platform::CUDAPinnedPlace>(
92 93
        tensor, array, BOOST_GET_CONST(platform::CUDAPinnedPlace, place),
        zero_copy);
94
  } else {
L
Leo Chen 已提交
95 96
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Place should be one of CPUPlace/CUDAPlace/CUDAPinnedPlace"));
J
Jiabin Yang 已提交
97
  }
L
Leo Chen 已提交
98
  self->SetPersistable(persistable);
99 100 101 102 103 104
  self->SetType(framework::proto::VarType::LOD_TENSOR);
  self->SetDataType(tensor->type());
}

static void InitVarBaseFromNumpyWithKwargs(imperative::VarBase *self,
                                           const py::kwargs &kwargs) {
105
  VLOG(4) << "Init VarBase";
106 107
  PADDLE_ENFORCE_EQ(
      kwargs.contains("value"), true,
108 109
      platform::errors::NotFound(
          "The kwargs used to create Varbase misses argument: value"));
L
Leo Chen 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122

  auto persistable = kwargs.contains("persistable")
                         ? kwargs["persistable"].cast<bool>()
                         : false;
  auto array = kwargs.contains("value") ? kwargs["value"].cast<py::array>()
                                        : py::array();
  auto zero_copy =
      kwargs.contains("zero_copy") ? kwargs["zero_copy"].cast<bool>() : false;
  auto name = kwargs.contains("name") ? kwargs["name"].cast<std::string>() : "";
  auto default_place = imperative::GetCurrentTracer()->ExpectedPlace();
  auto place = kwargs.contains("place") ? PyObjectToPlace(kwargs["place"])
                                        : default_place;
  InitTensorForVarBase(self, array, place, persistable, zero_copy, name);
123
}
124

125 126 127
template <typename P>
static void InitVarBaseFromNumpyWithArg(imperative::VarBase *self,
                                        const py::array &array, const P &place,
L
Leo Chen 已提交
128 129 130
                                        bool persistable = false,
                                        bool zero_copy = false,
                                        std::string name = "") {
131
  VLOG(4) << "Init VarBase";
L
Leo Chen 已提交
132 133 134 135 136
  // 0: self, 1: value, 2: place, 3: persistable, 4: zero_copy, 5: name
  if (name == "") {
    name = imperative::GetCurrentTracer()->GenerateUniqueName("generated_var");
  }
  new (self) imperative::VarBase(name);
137 138 139 140 141 142 143 144
  self->SetPersistable(persistable);
  auto *tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
  SetTensorFromPyArray<P>(tensor, array, place, zero_copy);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
  self->SetDataType(tensor->type());
}

static void InitVarBaseFromNumpyWithArgDefault(imperative::VarBase *self,
L
Leo Chen 已提交
145
                                               const py::array &array) {
146
  VLOG(4) << "Init VarBase";
L
Leo Chen 已提交
147 148
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
  InitTensorForVarBase(self, array, place);
149
}
150

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
static void InitVarBaseFromTensorWithArgDefault(
    imperative::VarBase *self, const framework::LoDTensor &tensor) {
  VLOG(4) << "Init VarBase";
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
  new (self) imperative::VarBase(
      imperative::GetCurrentTracer()->GenerateUniqueName("generated_var"));
  self->SetPersistable(false);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
  self->SetDataType(tensor.type());
  auto *new_tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
  // Same place,share data directly
  if (place == tensor.place()) {
    new_tensor->ShareDataWith(tensor);
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
    framework::TensorCopy(tensor, place, new_tensor);
    VLOG(4) << "Different place, do TensorCopy";
  }
}

171 172 173 174 175
static std::string GetTypeName(const imperative::VarBase &var) {
  if (var.Type() == framework::proto::VarType::RAW) {
    return "RAW";
  } else if (!var.Var().IsInitialized()) {
    return "nullptr";
176
  } else {
177
    return framework::ToTypeName(var.Var().Type());
178 179
  }
}
L
Leo Chen 已提交
180

181
using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;
182 183 184 185 186 187

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
188 189
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s", typeid(T).name()));
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
  }
}

// NOTE(zjl): py::handle is a very light wrapper of PyObject *.
// Unlike py::object, py::handle does not change reference count of PyObject *.
static std::vector<std::shared_ptr<imperative::VarBase>>
GetVarBaseListFromPyHandle(const py::handle &handle) {
  PyObject *py_obj = handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    return {};
  }

  std::vector<std::shared_ptr<imperative::VarBase>> result;

205
  if (PyList_Check(py_obj)) {  // List of VarBase
206 207 208
    size_t len = PyList_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
209 210 211
      PyObject *py_ivar = PyList_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
212 213 214
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
215
  } else if (PyTuple_Check(py_obj)) {  // Tuple of VarBase
216 217 218
    size_t len = PyTuple_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
219 220 221
      PyObject *py_ivar = PyTuple_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
222 223 224
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
225 226 227
  } else {  // VarBase
    result.emplace_back(
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
228 229 230 231 232
  }

  return result;
}

J
Jiabin Yang 已提交
233 234 235
static imperative::NameVarBaseMap ConvertToNameVarBaseMap(
    const PyNameVarBaseMap &map) {
  imperative::NameVarBaseMap result;
236 237 238 239 240 241
  for (auto &pair : map) {
    auto var_vec = GetVarBaseListFromPyHandle(pair.second);
    if (!var_vec.empty()) {
      result.emplace(pair.first, std::move(var_vec));
    }
  }
J
Jiabin Yang 已提交
242

243 244 245
  PADDLE_ENFORCE_EQ(
      PyErr_Occurred(), nullptr,
      platform::errors::InvalidArgument(py::str(py::handle(PyErr_Occurred()))));
246 247 248
  return result;
}

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
static bool PyCheckInteger(PyObject *obj) {
#if PY_VERSION_HEX < 0x03000000
  return (PyLong_Check(obj) || PyInt_Check(obj)) && !PyBool_Check(obj);
#else
  return PyLong_Check(obj) && !PyBool_Check(obj);
#endif
}

// NOTE(zhiqiu): Revised version of PySlice_GetIndices. From:
// https://github.com/python/cpython/blob/8d21aa21f2cbc6d50aab3f420bb23be1d081dac4/Objects/sliceobject.c#L103
// Original PySlice_GetIndices return wrong result when
// slice_item contains long int, such as arr[:180L].
// NOT sure why this happens !!!
// Besides, PySlice_GetIndices cannot raise error when float in slice item.
// So, I make a revised version of PySlice_GetIndices, named to
// _PySlice_GetIndices. Try to use _PySlice_Unpack which is more robust than
// PySlice_GetIndices in the future.
static int _PySlice_GetIndices(PySliceObject *r, Py_ssize_t length,
                               Py_ssize_t *start, Py_ssize_t *stop,
                               Py_ssize_t *step) {
  /* XXX support long ints */
  if (r->step == Py_None) {
    *step = 1;
  } else {
    if (PyCheckInteger(r->step)) {
      *step = PyLong_AsLong(r->step);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Currently, VarBase.__getitem__() only allows None or integers in "
          "slice item, but received %s.",
          std::string(Py_TYPE(r->step)->tp_name)));
    }
  }
  if (r->start == Py_None) {
    *start = *step < 0 ? length - 1 : 0;
  } else {
    if (PyCheckInteger(r->start)) {
      *start = PyLong_AsLong(r->start);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Currently, VarBase.__getitem__() only allows None or integers in "
          "slice item, but received %s.",
          std::string(Py_TYPE(r->start)->tp_name)));
    }
    if (*start < 0) *start += length;
  }
  if (r->stop == Py_None) {
    *stop = *step < 0 ? -1 : length;
  } else {
    if (PyCheckInteger(r->stop)) {
      *stop = PyLong_AsLong(r->stop);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Currently, VarBase.__getitem__() only allows None or integers in "
          "slice item, but received %s.",
          std::string(Py_TYPE(r->stop)->tp_name)));
    }
    if (*stop < 0) *stop += length;
  }
  if (*stop > length) return -1;
  if (*start >= length) return -1;
  if (*step == 0) return -1;
  return 0;
}

S
songyouwei 已提交
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
static void ParseIndexingSlice(framework::LoDTensor *tensor, PyObject *_index,
                               std::vector<int> *slice_axes,
                               std::vector<int> *slice_starts,
                               std::vector<int> *slice_ends,
                               std::vector<int> *slice_strides,
                               std::vector<int> *decrease_axis,
                               std::vector<int> *infer_flags) {
  // We allow indexing by Integers, Slices, and tuples of those
  // types.
  // Ellipsis and None are not supported yet.
  // wrap to tuple
  PyObject *index = !PyTuple_Check(_index) ? PyTuple_Pack(1, _index) : _index;
  PADDLE_ENFORCE_EQ(
      tensor->IsInitialized(), true,
      platform::errors::InvalidArgument("tensor has not been initialized"));
  const auto &shape = tensor->dims();
  const int rank = shape.size();
  const int size = PyTuple_GET_SIZE(index);
  PADDLE_ENFORCE_EQ(
      size <= rank, true,
      platform::errors::InvalidArgument(
          "too many indices (%d) for tensor of dimension %d", size, rank));
  for (int dim = 0; dim < size; ++dim) {
    PyObject *slice_item = PyTuple_GetItem(index, dim);
338 339 340 341 342 343 344
    PADDLE_ENFORCE_EQ(PyCheckInteger(slice_item) || PySlice_Check(slice_item),
                      true,
                      platform::errors::InvalidArgument(
                          "Currently, VarBase.__getitem__() only allows "
                          "indexing by Integers, Slices, and tuples of "
                          "these types, but received %s in %dth slice item",
                          std::string(Py_TYPE(slice_item)->tp_name), dim + 1));
S
songyouwei 已提交
345 346
    infer_flags->push_back(1);
    int dim_len = shape[dim];
347 348
    if (PyCheckInteger(slice_item)) {
      // integer, PyLong_AsLong supports both int and long
S
songyouwei 已提交
349
      int start = static_cast<int>(PyLong_AsLong(slice_item));
H
hong 已提交
350
      auto s_t = start;
S
songyouwei 已提交
351
      start = start < 0 ? start + dim_len : start;
H
hong 已提交
352 353 354 355 356 357 358 359 360 361
      if (start >= dim_len) {
        std::string str_error_message =
            "The starting index " + std::to_string(s_t) +
            " of slice is out of bounds in tensor " + std::to_string(dim) +
            "-th axis, it shound be in the range of [" +
            std::to_string(-dim_len) + ", " + std::to_string(dim_len) + ")";
        // py::index_error is corresponding to IndexError in Python
        // Used to indicate out of bounds access in __getitem__, __setitem__
        throw py::index_error(str_error_message);
      }
S
songyouwei 已提交
362 363 364 365 366 367
      slice_axes->push_back(dim);
      slice_starts->push_back(start);
      slice_ends->push_back(start + 1);
      slice_strides->push_back(1);
      decrease_axis->push_back(dim);
    } else {
368
      // slice item
S
songyouwei 已提交
369
      Py_ssize_t start, end, step;
370 371 372
      PySliceObject *p = reinterpret_cast<PySliceObject *>(slice_item);
      _PySlice_GetIndices(p, dim_len, &start, &end, &step);

S
songyouwei 已提交
373
      // :: or : or 0:dim_len:1
374 375 376
      if (start == 0 && end == dim_len && step == 1) {
        continue;
      }
S
songyouwei 已提交
377 378 379 380 381 382 383 384 385
      slice_axes->push_back(dim);
      slice_starts->push_back(start);
      slice_ends->push_back(end);
      slice_strides->push_back(step);
    }
  }
  if (!PyTuple_Check(_index)) Py_DecRef(index);
}

386
// Bind Methods
J
Jiabin Yang 已提交
387
void BindImperative(py::module *m_ptr) {
388 389
  auto &m = *m_ptr;

390 391
  BindOpFunctions(&m);

392 393
#ifndef _WIN32
  // Dygraph DataLoader signal handler
394 395 396 397 398 399 400 401 402 403 404 405 406
  m.def("_set_process_pids", [](int64_t key, py::object &obj) {
    PADDLE_ENFORCE_EQ(
        py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj), true,
        platform::errors::InvalidArgument(
            "The subprocess ids set in DataLoader is illegal."
            "Expected data type is tuple or list, but received %s",
            obj.get_type()));
    py::list pids = py::cast<py::list>(obj);
    std::set<pid_t> pids_set = {};
    for (size_t i = 0; i < pids.size(); i++) {
      pids_set.insert(pids[i].cast<pid_t>());
    }
    imperative::SetLoadProcessPIDs(key, pids_set);
407
  });
408 409
  m.def("_erase_process_pids",
        [](int64_t key) { imperative::EraseLoadProcessPIDs(key); });
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
  m.def("_set_process_signal_handler",
        []() { imperative::SetLoadProcessSignalHandler(); });
  m.def("_throw_error_if_process_failed",
        []() { imperative::ThrowErrorIfLoadProcessFailed(); });

  // Dygraph DataLoader reader process & thread related functions
  m.def(
      "_convert_to_tensor_list",
      [](py::object &obj) -> py::list {
        // 0. input data check
        PADDLE_ENFORCE(
            py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj),
            platform::errors::InvalidArgument(
                "The batch data read into DataLoader is illegal."
                "Expected data type is tuple or list, but received %s",
                obj.get_type()));
        py::list batch = py::cast<py::list>(obj);
        py::list tensors;
        for (size_t i = 0; i < batch.size(); ++i) {
          // 1. cast to python array
          auto array = batch[i].cast<py::array>();
          PADDLE_ENFORCE_NE(
              string::Sprintf("%s", array.dtype()).compare("object"), 0,
              platform::errors::InvalidArgument(
                  "Faild to convert input data to a regular ndarray.\n  * "
                  "Usually this means the input data contains nested "
                  "lists with different lengths.\n  * Check the reader "
                  "function passed to 'set_(sample/sample_list/batch)"
                  "_generator' to locate the data causes this issue."));
          // 2. construcct LoDTensor
          framework::LoDTensor t;
          SetTensorFromPyArray<platform::CPUPlace>(&t, array,
                                                   platform::CPUPlace(), true);
          // 3. allocate shared memory
          void *data_ptr = t.data<void>();
          size_t data_size = t.numel() * framework::SizeOfType(t.type());
          auto shared_writer_holder =
              memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
          // 4. maintain mmap fd set & backup ipc_name
          const std::string &ipc_name = shared_writer_holder->ipc_name();
          memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
          // 5. copy data & reset holder
          memory::Copy(platform::CPUPlace(), shared_writer_holder->ptr(),
                       platform::CPUPlace(), data_ptr, data_size);
          t.ResetHolder(shared_writer_holder);
          // 6. append to result list
          tensors.append(t);
        }
        return tensors;
      },
      py::return_value_policy::take_ownership);

  m.def("_remove_tensor_list_mmap_fds", [](py::list &tensor_list) {
    for (size_t i = 0; i < tensor_list.size(); ++i) {
      auto t = tensor_list[i].cast<framework::LoDTensor>();
      auto *mmap_writer_allocation =
          dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
              t.Holder().get());
      PADDLE_ENFORCE_NOT_NULL(
          mmap_writer_allocation,
          platform::errors::NotFound("The shared memory of LoDTensor in "
                                     "DataLoader's child process has been "
                                     "released."));
      memory::allocation::MemoryMapFdSet::Instance().Remove(
          mmap_writer_allocation->ipc_name());
    }
  });

  m.def("_cleanup_mmap_fds",
        []() { memory::allocation::MemoryMapFdSet::Instance().Clear(); });
#endif

482
  py::class_<imperative::detail::BackwardStrategy> backward_strategy(
483 484
      m, "BackwardStrategy", R"DOC(

J
Jiabin Yang 已提交
485
    BackwardStrategy is a descriptor of how to run the backward process.
486

J
Jiabin Yang 已提交
487
    **Note**:
T
tianshuo78520a 已提交
488
        **This API is only available in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **Mode**
489

J
Jiabin Yang 已提交
490 491
    Attribute:
        **sort_sum_gradient**:
492

J
Jiabin Yang 已提交
493
        If framework will sum the gradient by the reverse order of trace. eg. x_var ( :ref:`api_guide_Variable` ) will be the input of multiple OP such as :ref:`api_fluid_layers_scale` , this attr will decide if framework will sum gradient of `x_var` by the reverse order.
L
lujun 已提交
494

J
Jiabin Yang 已提交
495
        By Default: False
L
lujun 已提交
496

J
Jiabin Yang 已提交
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
        Examples:
            .. code-block:: python

                import numpy as np
                import paddle.fluid as fluid

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    x_var = fluid.dygraph.to_variable(x)
                    sums_inputs = []
                    # x_var will be multi-scales' input here
                    for _ in range(10):
                        sums_inputs.append(fluid.layers.scale(x_var))
                    ret2 = fluid.layers.sums(sums_inputs)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
515
      )DOC");
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
  backward_strategy.def(py::init())
      .def_property("sort_sum_gradient",
                    [](const imperative::detail::BackwardStrategy &self) {
                      return self.sorted_sum_gradient_;
                    },
                    [](imperative::detail::BackwardStrategy &self,
                       bool sorted_sum_gradient) {
                      self.sorted_sum_gradient_ = sorted_sum_gradient;
                    });

  m.def("start_imperative_gperf_profiler",
        []() { imperative::StartProfile(); });

  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });

Z
Zeng Jinle 已提交
531 532 533
  m.def("_is_dygraph_debug_enabled",
        []() { return imperative::IsDebugEnabled(); });
  m.def("_dygraph_debug_level", []() { return imperative::GetDebugLevel(); });
534 535 536 537
  m.def("_switch_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
          imperative::SetCurrentTracer(tracer);
        });
Z
Zeng Jinle 已提交
538

539
  py::class_<imperative::VarBase, std::shared_ptr<imperative::VarBase>>(
J
Jiabin Yang 已提交
540 541
      m, "VarBase",
      R"DOC()DOC")
Z
Zeng Jinle 已提交
542
      .def_static("_alive_vars", &imperative::VarBase::AliveVarNames)
J
Jiabin Yang 已提交
543
      .def("__init__",
544 545 546
           [](imperative::VarBase &self, framework::proto::VarType::Type dtype,
              const std::vector<int> &dims, const py::handle &name,
              framework::proto::VarType::Type type, bool persistable) {
547
             VLOG(4) << "Init VarBase";
548 549 550 551 552 553 554 555
             std::string act_name = "";
             if (!name.ptr() || name.ptr() == Py_None) {
               act_name = imperative::GetCurrentTracer()->GenerateUniqueName(
                   "generated_var");
             } else {
               act_name = name.cast<std::string>();
             }
             new (&self) imperative::VarBase(act_name);
J
Jiabin Yang 已提交
556 557 558 559 560 561 562 563 564
             self.SetPersistable(persistable);
             self.SetType(type);
             self.SetDataType(dtype);
             if (type == framework::proto::VarType::LOD_TENSOR) {
               auto *tensor =
                   self.MutableVar()->GetMutable<framework::LoDTensor>();
               tensor->Resize(framework::make_ddim(dims));
             }
           })
565 566
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::CPUPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
L
Leo Chen 已提交
567
           py::arg("zero_copy") = false, py::arg("name") = "")
568 569
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::CUDAPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
L
Leo Chen 已提交
570
           py::arg("zero_copy") = false, py::arg("name") = "")
571 572
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::CUDAPinnedPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
L
Leo Chen 已提交
573 574
           py::arg("zero_copy") = false, py::arg("name") = "")
      .def("__init__", &InitVarBaseFromNumpyWithArgDefault, py::arg("value"))
575
      .def("__init__", &InitVarBaseFromTensorWithArgDefault, py::arg("tensor"))
576
      .def("__init__", &InitVarBaseFromNumpyWithKwargs)
577
      .def("__getitem__",
S
songyouwei 已提交
578
           [](std::shared_ptr<imperative::VarBase> &self, py::handle _index) {
579
             std::vector<int> slice_axes, slice_starts, slice_ends,
S
songyouwei 已提交
580 581 582 583 584 585
                 slice_strides, decrease_axis, infer_flags;
             auto tensor =
                 self->MutableVar()->GetMutable<framework::LoDTensor>();
             ParseIndexingSlice(tensor, _index.ptr(), &slice_axes,
                                &slice_starts, &slice_ends, &slice_strides,
                                &decrease_axis, &infer_flags);
586 587 588 589
             // release gil and do tracing
             py::gil_scoped_release release;
             const auto &tracer = imperative::GetCurrentTracer();
             if (slice_axes.empty()) {
S
songyouwei 已提交
590
               return self;
591
             } else {
S
songyouwei 已提交
592
               imperative::NameVarBaseMap ins = {{"Input", {self}}};
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
               framework::AttributeMap attrs = {
                   {"axes", slice_axes},
                   {"starts", slice_starts},
                   {"ends", slice_ends},
                   {"infer_flags", infer_flags},
                   {"decrease_axis", decrease_axis}};
               auto out = std::shared_ptr<imperative::VarBase>(
                   new imperative::VarBase(tracer->GenerateUniqueName()));
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               std::string op_type = "slice";
               for (auto stride : slice_strides) {
                 if (stride != 1) {
                   op_type = "strided_slice";
                   attrs.insert({"strides", slice_strides});
                   attrs.erase("decrease_axis");
                   break;
                 }
               }
               tracer->TraceOp(op_type, ins, outs, std::move(attrs));
               return out;
             }
           })
615 616 617 618 619 620 621
      .def("numpy",
           [](imperative::VarBase &self) -> py::array {
             const auto &tensor =
                 self.MutableVar()->Get<framework::LoDTensor>();
             PADDLE_ENFORCE_EQ(
                 tensor.IsInitialized(), true,
                 platform::errors::InvalidArgument(
622
                     "Tensor of %s is Empty, please check if it has no data.",
623 624 625 626 627
                     self.Name()));
             return TensorToPyArray(tensor, true);
           },
           R"DOC(
        **Notes**:
T
tianshuo78520a 已提交
628
            **This API is ONLY available in Dygraph mode**
629 630 631 632 633 634 635 636 637 638 639 640 641 642

        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
            ndarray: dtype is same as current Variable

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
643
                from paddle.fluid.dygraph import Linear
644 645 646 647
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
648
                    linear = Linear(32, 64)
649
                    data = to_variable(data)
650
                    x = linear(data)
651 652 653 654 655 656 657 658 659 660 661 662 663
                    print(x.numpy())

       )DOC")
      .def("detach",
           [](const imperative::VarBase &self) {
             const auto &tensor = self.Var().Get<framework::LoDTensor>();
             PADDLE_ENFORCE_EQ(tensor.IsInitialized(), true,
                               platform::errors::InvalidArgument(
                                   "%s has not been initialized", self.Name()));
             return self.NewVarBase(tensor.place(), false);
           },
           py::return_value_policy::copy, R"DOC(
        **Notes**:
T
tianshuo78520a 已提交
664
            **This API is ONLY available in Dygraph mode**
665 666 667 668 669 670 671 672 673 674 675 676

        Returns a new Variable, detached from the current graph.

        Returns:
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.


        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
677
                from paddle.fluid.dygraph import Linear
678 679 680 681
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
682
                    linear = Linear(32, 64)
683
                    data = to_variable(data)
684
                    x = linear(data)
685 686 687 688 689 690
                    y = x.detach()

       )DOC")
      .def("clear_gradient", &imperative::VarBase::ClearGradient, R"DOC(

        **Notes**:
T
tianshuo78520a 已提交
691
        **1. This API is ONLY available in Dygraph mode**
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720

        **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**

        Clear  (set to ``0`` ) the Gradient of Current Variable

        Returns:  None

        Examples:
             .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                         tmp = fluid.dygraph.base.to_variable(x)
                         tmp.stop_gradient=False
                         inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))
      )DOC")
L
Leo Chen 已提交
721 722 723 724
      .def("_run_backward",
           [](imperative::VarBase &self,
              const imperative::detail::BackwardStrategy &bckst,
              const imperative::Tracer &tracer) {
725 726
             // TODO(jiabin): when we impl more backward execution we can
             // select them
727
             auto *engine = tracer.GetEngine();
L
Leo Chen 已提交
728
             engine->Init(&self, bckst);
729
             VLOG(3) << "Start backward";
L
Leo Chen 已提交
730 731 732 733 734 735 736 737 738 739
             engine->Execute();
             VLOG(3) << "Finish backward";
           },
           py::call_guard<py::gil_scoped_release>())
      .def("_grad_name", &imperative::VarBase::GradVarName)
      .def("_grad_value",
           [](imperative::VarBase &self) {
             return self.MutableGradVar()->Get<framework::LoDTensor>();
           },
           py::return_value_policy::reference)
740 741 742 743
      .def("_set_grad_type",
           [](imperative::VarBase &self, framework::proto::VarType::Type type) {
             self.MutableGradVarBase()->SetType(type);
           })
744
      .def("_grad_ivar",
J
Jiabin Yang 已提交
745 746
           [](const imperative::VarBase &self) {
             auto &grad_var = self.GradVarBase();
747 748 749 750 751 752 753 754 755 756 757
             if (grad_var && grad_var->Var().IsInitialized()) {
               auto *tensor =
                   grad_var->MutableVar()->IsType<framework::LoDTensor>()
                       ? grad_var->MutableVar()
                             ->GetMutable<framework::LoDTensor>()
                       : grad_var->MutableVar()
                             ->GetMutable<framework::SelectedRows>()
                             ->mutable_value();
               if (tensor->IsInitialized()) {
                 return grad_var;
               }
J
Jiabin Yang 已提交
758
             }
759
             return std::shared_ptr<imperative::VarBase>(nullptr);
J
Jiabin Yang 已提交
760 761
           },
           py::return_value_policy::copy)
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
      .def("_is_sparse",
           [](imperative::VarBase &self) {
             return self.Var().IsType<framework::SelectedRows>();
           })
      .def("_allreduce",
           [](imperative::VarBase &self,
              const imperative::ParallelStrategy &strategy) {
             if (strategy.nranks_ > 1) {
#ifdef PADDLE_WITH_NCCL
#if NCCL_VERSION_CODE >= 2212
               imperative::AllReduce(self.Var(), self.MutableVar(), strategy);
#else
               if (!self.Var().IsType<framework::SelectedRows>()) {
                 imperative::AllReduce(self.Var(), self.MutableVar(), strategy);
               } else {
                 PADDLE_THROW(platform::errors::Unimplemented(
                     "Imperative SelectedRows allreduce is not supported when "
                     "paddle is compiled with NCCL verison lower than v2.2.12. "
                     "You can set is_sparse=False for the Layer containing "
                     "this argument, such as Embedding(is_sparse=False)."));
               }
#endif  // NCCL_VERSION_CODE
#else
               PADDLE_THROW(platform::errors::Unimplemented(
                   "Imperative allreduce is not supported when paddle is "
                   "not compiled with NCCL."));
#endif  // PADDLE_WITH_NCCL
             }
           },
           py::call_guard<py::gil_scoped_release>())
792 793
      .def("_copy_to",
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
J
Jiabin Yang 已提交
794 795
              bool blocking) { return self.NewVarBase(place, blocking); },
           py::return_value_policy::copy)
796 797
      .def("_copy_to",
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
J
Jiabin Yang 已提交
798 799 800
              bool blocking) { return self.NewVarBase(place, blocking); },
           py::return_value_policy::copy)
      .def("value", [](imperative::VarBase &self) { return self.MutableVar(); },
801 802 803
           py::return_value_policy::reference)
      .def_property("name", &imperative::VarBase::Name,
                    &imperative::VarBase::SetName)
L
Leo Chen 已提交
804 805 806 807 808
      .def_property("stop_gradient",
                    &imperative::VarBase::OverridedStopGradient,
                    &imperative::VarBase::SetOverridedStopGradient)
      .def_property("persistable", &imperative::VarBase::Persistable,
                    &imperative::VarBase::SetPersistable)
J
Jiabin Yang 已提交
809 810 811 812
      .def_property_readonly(
          "shape",
          [](imperative::VarBase &self) {
            if (self.Var().IsType<framework::LoDTensor>()) {
813
              return framework::vectorize<int>(
J
Jiabin Yang 已提交
814
                  self.Var().Get<framework::LoDTensor>().dims());
815 816 817
            } else if (self.Var().IsType<framework::SelectedRows>()) {
              return framework::vectorize<int>(
                  self.Var().Get<framework::SelectedRows>().value().dims());
J
Jiabin Yang 已提交
818 819 820 821 822 823 824
            } else {
              VLOG(2) << "It is meaningless to get shape of variable type "
                      << GetTypeName(self);
              return std::vector<int>();
            }
          })
      .def_property_readonly("type", &imperative::VarBase::Type)
L
Leo Chen 已提交
825
      .def_property_readonly("dtype", &imperative::VarBase::DataType);
826 827 828

  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
  layer.def(py::init<>())
829 830 831 832 833
      .def("forward",
           [](imperative::Layer &self,
              const std::vector<std::shared_ptr<imperative::VarBase>> &inputs) {
             return self.Forward(inputs);
           });
834

835 836 837 838 839
  py::class_<imperative::jit::ProgramDescTracer>(m, "ProgramDescTracer", "")
      .def("create_program_desc",
           &imperative::jit::ProgramDescTracer::CreateProgramDesc)
      .def("reset", &imperative::jit::ProgramDescTracer::Reset);

840 841 842
  py::class_<imperative::Tracer, std::shared_ptr<imperative::Tracer>>(
      m, "Tracer",
      R"DOC()DOC")
843
      .def("__init__",
J
Jiabin Yang 已提交
844
           [](imperative::Tracer &self) { new (&self) imperative::Tracer(); })
845 846 847
      .def_property("_enable_program_desc_tracing",
                    &imperative::Tracer::IsProgramDescTracingEnabled,
                    &imperative::Tracer::SetEnableProgramDescTracing)
848 849
      .def_property("_train_mode", &imperative::Tracer::HasGrad,
                    &imperative::Tracer::SetHasGrad)
850 851 852 853 854 855 856 857
      .def_property(
          "_expected_place",
          [](const imperative::Tracer &self) -> py::object {
            return py::cast(self.ExpectedPlace());
          },
          [](imperative::Tracer &self, const py::object &obj) {
            if (py::isinstance<platform::CUDAPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPlace *>();
L
Leo Chen 已提交
858
              self.SetExpectedPlace(*p);
859 860
            } else if (py::isinstance<platform::CPUPlace>(obj)) {
              auto p = obj.cast<platform::CPUPlace *>();
L
Leo Chen 已提交
861
              self.SetExpectedPlace(*p);
862 863
            } else if (py::isinstance<platform::CUDAPinnedPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPinnedPlace *>();
L
Leo Chen 已提交
864
              self.SetExpectedPlace(*p);
865
            } else {
L
Leo Chen 已提交
866
              PADDLE_THROW(platform::errors::InvalidArgument(
867
                  "Incompatible Place Type: supports CUDAPlace, CPUPlace, "
L
Leo Chen 已提交
868 869
                  "and CUDAPinnedPlace, "
                  "but got Unknown Type!"));
870 871
            }
          })
872 873 874
      .def("_get_program_desc_tracer",
           &imperative::Tracer::GetProgramDescTracer,
           py::return_value_policy::reference)
875
      .def("_generate_unique_name", &imperative::Tracer::GenerateUniqueName,
876
           py::arg("key") = "eager_tmp")
M
minqiyang 已提交
877
      .def("trace",
J
Jiabin Yang 已提交
878 879 880 881 882 883
           [](imperative::Tracer &self, const std::string &type,
              const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs, const platform::CUDAPlace &place,
              bool trace_backward) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
884 885
             {
               py::gil_scoped_release release;
J
Jiabin Yang 已提交
886 887
               self.TraceOp(type, std::move(ins_map), std::move(outs_map),
                            std::move(attrs), place, trace_backward);
888
             }
M
minqiyang 已提交
889
           })
J
Jiabin Yang 已提交
890 891 892 893 894 895 896 897 898 899 900 901 902
      .def("trace",
           [](imperative::Tracer &self, const std::string &type,
              const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs, const platform::CPUPlace &place,
              bool trace_backward) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
               self.TraceOp(type, std::move(ins_map), std::move(outs_map),
                            std::move(attrs), place, trace_backward);
             }
           });
903 904

  // define parallel context
905 906 907
  py::class_<imperative::ParallelStrategy> parallel_strategy(
      m, "ParallelStrategy", "");
  parallel_strategy.def(py::init())
908 909
      .def_property(
          "nranks",
910 911
          [](const imperative::ParallelStrategy &self) { return self.nranks_; },
          [](imperative::ParallelStrategy &self, int nranks) {
912 913 914
            self.nranks_ = nranks;
          })
      .def_property("local_rank",
915
                    [](const imperative::ParallelStrategy &self) {
916 917
                      return self.local_rank_;
                    },
918
                    [](imperative::ParallelStrategy &self, int local_rank) {
919 920 921 922
                      self.local_rank_ = local_rank;
                    })
      .def_property(
          "trainer_endpoints",
923
          [](const imperative::ParallelStrategy &self) {
924 925
            return self.trainer_endpoints_;
          },
926
          [](imperative::ParallelStrategy &self, std::vector<std::string> eps) {
927 928 929
            self.trainer_endpoints_ = eps;
          })
      .def_property("current_endpoint",
930
                    [](const imperative::ParallelStrategy &self) {
931 932
                      return self.current_endpoint_;
                    },
933 934
                    [](imperative::ParallelStrategy &self,
                       const std::string &ep) { self.current_endpoint_ = ep; });
935 936 937 938 939 940 941 942 943 944

  m.def(
      "dygraph_partial_grad",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &input_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>>
             &output_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>> &output_grads,
         const std::vector<std::shared_ptr<imperative::VarBase>> &no_grad_vars,
         const platform::Place &place,
         const imperative::detail::BackwardStrategy &strategy,
Z
Zeng Jinle 已提交
945 946 947 948 949
         bool create_graph, bool retain_graph, bool allow_unused,
         bool only_inputs) {
        imperative::PartialGradEngine engine(
            input_targets, output_targets, output_grads, no_grad_vars, place,
            strategy, create_graph, retain_graph, allow_unused, only_inputs);
950 951 952 953 954
        engine.Execute();
        return engine.GetResult();
      },
      py::call_guard<py::gil_scoped_release>());

955
#if defined(PADDLE_WITH_NCCL)
956 957
  py::class_<imperative::NCCLParallelContext> nccl_ctx(m,
                                                       "NCCLParallelContext");
958 959

  nccl_ctx
960 961 962
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CUDAPlace &>())
      .def("init", [](imperative::NCCLParallelContext &self) { self.Init(); });
963
#endif
964 965 966 967
}

}  // namespace pybind
}  // namespace paddle