collective.py 30.3 KB
Newer Older
1
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import math
from functools import reduce
18
import os
19 20 21 22 23 24 25 26 27 28

import collections
import logging

import numpy as np

from .. import core, unique_name
from ..framework import Program, default_main_program, default_startup_program
from .details import wait_server_ready

Y
yaoxuefeng 已提交
29
__all__ = ['GradAllReduce', 'LocalSGD', 'MultiThread']
30 31 32 33 34 35 36 37

OpRole = core.op_proto_and_checker_maker.OpRole


class Collective(object):
    '''
    '''

38 39
    def __init__(self, nrings):
        self.nrings = nrings
40 41
        self.endpoints = None
        self.current_endpoint = None
F
Fan Zhang 已提交
42
        self.other_endpoints = None
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
        self.nranks = None
        self.rank = None
        self.startup_program = None
        self.main_program = None
        op_maker = core.op_proto_and_checker_maker
        self.op_role_key = op_maker.kOpRoleAttrName()
        self.op_role_var_key = op_maker.kOpRoleVarAttrName()

    def transpile(self, startup_program, main_program, rank, endpoints,
                  current_endpoint, wait_port):
        # in case of '127.0.0.1:6700,127.0.0.1:6701,...'
        if isinstance(endpoints, str):
            endpoints = endpoints.split(',')

        self.startup_program = startup_program
        if startup_program is None:
            self.startup_program = default_startup_program()

        self.main_program = main_program
        if main_program is None:
            self.main_program = default_main_program()

        self.nranks = len(endpoints)
D
danleifeng 已提交
66
        if self.nranks == 1 and self.mode != "single_process_multi_thread" and self.mode != "box":
67 68 69 70 71 72 73 74 75 76 77 78 79
            raise ValueError('the number of endpoints must > 1')

        if rank < 0:
            raise ValueError('rank must >= 0')
        self.rank = rank

        if current_endpoint not in endpoints:
            raise ValueError('current endpoint %s is not in %s',
                             current_endpoint, str(endpoints))

        self.endpoints = endpoints
        self.current_endpoint = current_endpoint

F
Fan Zhang 已提交
80 81 82 83 84 85
        if current_endpoint:
            nranks = len(endpoints)
            other_endpoints = endpoints[:]
            other_endpoints.remove(current_endpoint)
            self.other_endpoints = other_endpoints

86 87 88 89 90 91 92 93 94 95 96 97
        self.wait_port = wait_port

        self.startup_program._origin_program = self.startup_program.clone()
        self._transpile_startup_program()

        self.main_program._origin_program = self.main_program.clone()
        self._transpile_main_program()

    def _transpile_main_program(self):
        raise NotImplementedError('call the inherited method of subclasses')

    def _transpile_startup_program(self):
98 99 100 101
        for ring_id in range(self.nrings):
            self._init_communicator(self.startup_program, self.current_endpoint,
                                    self.endpoints, self.rank, ring_id,
                                    self.wait_port)
102 103
        self._broadcast_params()

Y
yaoxuefeng 已提交
104 105 106 107 108 109 110 111
    def _init_communicator(self,
                           program,
                           current_endpoint,
                           endpoints,
                           rank,
                           ring_id,
                           wait_port,
                           has_multitrainer=False):
112 113 114
        nranks = len(endpoints)
        other_endpoints = endpoints[:]
        other_endpoints.remove(current_endpoint)
115 116
        block = program.global_block()

117 118 119 120
        if rank == 0 and wait_port:
            wait_server_ready(other_endpoints)

        block = program.global_block()
121
        if core.is_compiled_with_npu():
122 123 124
            hccl_id_var = block.create_var(name=unique_name.generate('hccl_id'),
                                           persistable=True,
                                           type=core.VarDesc.VarType.RAW)
125
            endpoint_to_index_map = {e: idx for idx, e in enumerate(endpoints)}
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
            block.append_op(type='c_gen_hccl_id',
                            inputs={},
                            outputs={'Out': hccl_id_var},
                            attrs={
                                'rank': rank,
                                'endpoint': current_endpoint,
                                'other_endpoints': other_endpoints,
                                self.op_role_key: OpRole.Forward
                            })
            block.append_op(type='c_comm_init_hccl',
                            inputs={'X': hccl_id_var},
                            outputs={},
                            attrs={
                                'rank': rank,
                                'ring_id': ring_id,
                                'device_id':
                                int(os.getenv("FLAGS_selected_npus")),
                                'rank_ids': nranks,
                                self.op_role_key: OpRole.Forward
                            })
146
        else:
147 148 149 150 151 152 153 154 155 156 157 158
            nccl_id_var = block.create_var(name=unique_name.generate('nccl_id'),
                                           persistable=True,
                                           type=core.VarDesc.VarType.RAW)
            block.append_op(type='c_gen_nccl_id',
                            inputs={},
                            outputs={'Out': nccl_id_var},
                            attrs={
                                'rank': rank,
                                'endpoint': current_endpoint,
                                'other_endpoints': other_endpoints,
                                self.op_role_key: OpRole.Forward
                            })
Y
yaoxuefeng 已提交
159
            if not has_multitrainer:
160 161 162 163 164 165 166 167 168
                block.append_op(type='c_comm_init',
                                inputs={'X': nccl_id_var},
                                outputs={},
                                attrs={
                                    'nranks': nranks,
                                    'rank': rank,
                                    'ring_id': ring_id,
                                    self.op_role_key: OpRole.Forward
                                })
Y
yaoxuefeng 已提交
169
            else:
170 171 172 173 174 175 176 177 178
                block.append_op(type='c_comm_init_multitrainer',
                                inputs={'X': nccl_id_var},
                                outputs={},
                                attrs={
                                    'ntrainers': nranks,
                                    'trainer_id': rank,
                                    'ring_id': ring_id,
                                    self.op_role_key: OpRole.Forward
                                })
179 180 181

    def _broadcast_params(self):
        block = self.startup_program.global_block()
182 183
        ring_id = -1
        for param in block.iter_parameters():
184 185 186
            if param.is_distributed:
                continue

187
            ring_id = (ring_id + 1) % self.nrings
188 189 190 191 192 193 194 195
            block.append_op(type='c_broadcast',
                            inputs={'X': param},
                            outputs={'Out': param},
                            attrs={
                                'ring_id': ring_id,
                                'root': 0,
                                self.op_role_key: OpRole.Forward
                            })
196 197

        for ring_id in range(self.nrings):
198 199 200 201 202 203 204
            block.append_op(type='c_sync_comm_stream',
                            inputs={'X': param},
                            outputs={'Out': param},
                            attrs={
                                'ring_id': ring_id,
                                self.op_role_key: OpRole.Forward
                            })
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

    def _is_loss_grad_op(self, op):
        if self.op_role_key not in op.attr_names:
            return False
        op_role = int(op.all_attrs()[self.op_role_key])
        return op_role & int(OpRole.Backward) and op_role & int(OpRole.Loss)

    def _is_backward_op(self, op):
        return self.op_role_key in op.attr_names and \
                int(op.all_attrs()[self.op_role_key]) & int(OpRole.Backward)

    def _is_update_op(self, op):
        return 'Param' in op.input_names and 'Grad' in op.input_names and \
                "LearningRate" in op.input_names

    def _is_optimizer_op(self, op):
        return self.op_role_key in op.attr_names and \
                int(op.all_attrs()[self.op_role_key]) & int(OpRole.Optimize)


class GradAllReduce(Collective):
    '''
    '''

229 230
    def __init__(self, nrings=2):
        Collective.__init__(self, nrings)
H
hutuxian 已提交
231
        self.mode = "grad_allreduce"
232 233 234 235 236 237 238 239 240 241 242 243 244 245

    def _transpile_main_program(self):
        self._insert_scale_loss_grad_ops()
        self._insert_allreduce_ops()

    def _insert_scale_loss_grad_ops(self):
        '''
        In order to keep the learning rate consistent in different numbers of
        training workers, we scale the loss grad by the number of workers
        '''
        block = self.main_program.global_block()
        for idx, op in reversed(list(enumerate(block.ops))):
            if self._is_loss_grad_op(op):
                loss_grad_var = block.vars[op.output_arg_names[0]]
246 247 248 249 250 251 252 253
                block._insert_op(idx + 1,
                                 type='scale',
                                 inputs={'X': loss_grad_var},
                                 outputs={'Out': loss_grad_var},
                                 attrs={
                                     'scale': 1.0 / self.nranks,
                                     self.op_role_key: OpRole.Backward
                                 })
254 255 256

    def _insert_allreduce_ops(self):
        block = self.main_program.global_block()
257 258
        ring_id = -1
        grad = None
259 260 261 262 263 264 265 266 267
        for idx, op in reversed(list(enumerate(block.ops))):
            if self._is_backward_op(op) and \
                    self.op_role_var_key in op.attr_names:
                op_role_var = op.all_attrs()[self.op_role_var_key]

                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0

268
                offset = idx
269
                for i in range(0, len(op_role_var), 2):
270 271
                    param = block.vars[op_role_var[i]]
                    grad = block.vars[op_role_var[i + 1]]
272 273 274
                    if param.is_distributed:
                        continue

275 276 277 278 279 280 281 282 283 284 285 286 287
                    if offset == idx:
                        offset += 1
                        block._insert_op(
                            offset,
                            type='c_sync_calc_stream',
                            inputs={'X': grad},
                            outputs={'Out': grad},
                            attrs={self.op_role_key: OpRole.Backward})
                        offset += 1

                    # As we search ops reversedly, we should insert c_allreduce_sum
                    # op in the same way to keep the ring_id alternate
                    ring_id = (ring_id + 1) % self.nrings
288 289 290 291 292 293 294 295
                    block._insert_op(offset,
                                     type='c_allreduce_sum',
                                     inputs={'X': grad},
                                     outputs={'Out': grad},
                                     attrs={
                                         'ring_id': ring_id,
                                         self.op_role_key: OpRole.Backward
                                     })
296 297 298

        if grad is None:
            return
299 300 301

        for idx, op in enumerate(block.ops):
            if self._is_optimizer_op(op):
302
                for ring_id in range(self.nrings):
303 304 305 306 307 308 309 310
                    block._insert_op(idx + ring_id,
                                     type='c_sync_comm_stream',
                                     inputs={'X': grad},
                                     outputs={'Out': grad},
                                     attrs={
                                         'ring_id': ring_id,
                                         self.op_role_key: OpRole.Backward
                                     })
311 312 313 314 315 316 317
                break


class LocalSGD(Collective):
    '''
    '''

318 319
    def __init__(self, nrings=2):
        Collective.__init__(self, nrings)
320
        self.snapshot_key = '@SNAPSHOT'
H
hutuxian 已提交
321
        self.mode = "local_sgd"
322 323 324 325 326

    def _transpile_startup_program(self):
        Collective._transpile_startup_program(self)

        block = self.startup_program.global_block()
327
        non_dist_params = []
328
        for param in block.iter_parameters():
329 330
            if not param.is_distributed:
                non_dist_params.append(param)
331

332
        for param in non_dist_params:
333 334 335 336 337 338 339 340
            snapshot = block.create_var(name=self.snapshot_name(param.name),
                                        shape=param.shape,
                                        persistable=True,
                                        stop_gradient=True)
            block.append_op(type='assign',
                            inputs={'X': [param]},
                            outputs={'Out': [snapshot]},
                            attrs={self.op_role_key: OpRole.Forward})
341 342 343 344 345 346 347

    def snapshot_name(self, param_name):
        return param_name + self.snapshot_key

    def _transpile_main_program(self):
        block = self.main_program.global_block()
        ordered_param_snapshot = []
348
        ring_id = -1
349 350 351
        for idx, op in reversed(list(enumerate(block.ops))):
            if self._is_update_op(op):
                param = block.vars[op.input('Param')[0]]
352 353 354
                if param.is_distributed:
                    continue

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
                snapshot = block.create_var(name=self.snapshot_name(param.name),
                                            shape=param.shape,
                                            persistable=True,
                                            stop_gradient=True,
                                            dtype=param.dtype)

                block._insert_op(idx + 1,
                                 type='elementwise_sub',
                                 inputs={
                                     'X': [snapshot],
                                     'Y': [param]
                                 },
                                 outputs={'Out': [param]},
                                 attrs={self.op_role_key: OpRole.Optimize})
                block._insert_op(idx + 2,
                                 type='c_sync_calc_stream',
                                 inputs={'X': param},
                                 outputs={'Out': param},
                                 attrs={self.op_role_key: OpRole.Optimize})
374
                ring_id = (ring_id + 1) % self.nrings
375 376 377 378 379 380 381 382
                block._insert_op(idx + 3,
                                 type='c_allreduce_sum',
                                 inputs={'X': [param]},
                                 outputs={'Out': [param]},
                                 attrs={
                                     'ring_id': ring_id,
                                     self.op_role_key: OpRole.Optimize
                                 })
383 384 385

                ordered_param_snapshot.append((param, snapshot))

386
        for ring_id in range(self.nrings):
387 388 389 390 391 392 393
            block.append_op(type='c_sync_comm_stream',
                            inputs={'X': param},
                            outputs={'Out': param},
                            attrs={
                                'ring_id': ring_id,
                                self.op_role_key: OpRole.Optimize
                            })
394 395 396 397

        for param_snapshot in reversed(ordered_param_snapshot):
            param = param_snapshot[0]
            snapshot = param_snapshot[1]
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
            block.append_op(type='scale',
                            inputs={'X': [param]},
                            outputs={'Out': [param]},
                            attrs={
                                'scale': 1.0 / self.nranks,
                                self.op_role_key: OpRole.Optimize
                            })
            block.append_op(type='elementwise_sub',
                            inputs={
                                'X': [snapshot],
                                'Y': [param]
                            },
                            outputs={'Out': [param]},
                            attrs={self.op_role_key: OpRole.Optimize})
            block.append_op(type='assign',
                            inputs={'X': [param]},
                            outputs={'Out': [snapshot]},
                            attrs={self.op_role_key: OpRole.Optimize})
H
hutuxian 已提交
416 417 418 419 420 421 422


class SingleProcessMultiThread(GradAllReduce):
    '''
    '''

    def __init__(self):
H
hutuxian 已提交
423
        GradAllReduce.__init__(self, 1)
H
hutuxian 已提交
424 425 426 427 428
        self.mode = "single_process_multi_thread"

    def _transpile_startup_program(self):
        block = self.startup_program.global_block()
        block.append_op(type='c_comm_init_all', attrs={'ring_id': 0})
429 430 431 432 433 434


class MultiThread(GradAllReduce):
    '''
    '''

D
danleifeng 已提交
435
    def __init__(self, nrings=1, trans_mode="all_reduce"):
436
        GradAllReduce.__init__(self, nrings)
D
danleifeng 已提交
437 438 439 440 441 442
        self.mode = "box"
        self.trans_mode = trans_mode
        self.fuse_grad_size_in_num = 128
        gpu_nums = os.getenv("FLAGS_selected_gpus",
                             "0,1,2,3,4,5,6,7,8").split(",")
        self.gpu_num = len(gpu_nums)
443 444 445 446 447 448 449 450

    def _transpile_startup_program(self):
        if len(self.endpoints) > 1:
            print("begin to _transpile_startup_program for multi-node")
            print("current_endpoint: ", self.current_endpoint)
            print("total endpoints: ", self.endpoints)
            print("rank: %d, ring_id: %d" % (self.rank, self.nrings))
            for ring_id in range(self.nrings):
451 452 453 454
                self._init_communicator(self.startup_program,
                                        self.current_endpoint, self.endpoints,
                                        self.rank, ring_id, self.wait_port,
                                        True)
455

456
        else:
F
Fan Zhang 已提交
457 458
            if "xpu" in self.trans_mode:
                print(
459 460
                    "begin to _transpile_startup_program for single-node in XPU"
                )
F
Fan Zhang 已提交
461 462
                block = self.startup_program.global_block()
                block.append_op(
463
                    type='c_comm_init_all',
F
Fan Zhang 已提交
464
                    attrs={
465 466
                        'devices':
                        list(
467 468
                            map(int,
                                os.getenv("FLAGS_selected_gpus").split(","))),
469 470
                        'ring_id':
                        0
F
Fan Zhang 已提交
471 472 473 474 475
                    })
            else:
                print("begin to _transpile_startup_program for single-node")
                block = self.startup_program.global_block()
                block.append_op(type='c_comm_init_all', attrs={'ring_id': 0})
D
danleifeng 已提交
476 477 478 479 480 481 482 483 484 485 486

    def _transpile_main_program(self):
        self._insert_scale_loss_grad_ops()
        if self.trans_mode == "all_gather":
            print("begin to transpile in all-gather mode")
            self.allgather_ranks = self.nranks * self.gpu_num
            self._insert_allgather_ops()
            self._update_adam_ops()
        elif self.trans_mode == "fuse_all_reduce":
            print("begin to transpile in fuse all-reduce mode")
            self._insert_fuse_allreduce_ops()
487 488 489 490 491
        elif self.trans_mode == "all_reduce_xpu" and len(
                os.getenv("FLAGS_selected_gpus").split(",")) == 1:
            print(
                "skip transpile in all-reduce-xpu mode when number of devices is only one"
            )
D
danleifeng 已提交
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
        else:
            print("begin to transpile in all-reduce mode")
            self._insert_allreduce_ops()

    def _insert_allgather_ops(self):
        """
        insert allgather op to the main_program
        """
        block = self.main_program.global_block()
        ring_id = -1
        grad = None
        for idx, op in reversed(list(enumerate(block.ops))):
            if self._is_backward_op(op) and \
                    self.op_role_var_key in op.attr_names:
                op_role_var = op.all_attrs()[self.op_role_var_key]
                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0

                offset = idx
                for i in range(0, len(op_role_var), 2):
                    param = block.vars[op_role_var[i]]
                    new_grad_var = block.create_var(
                        name=op_role_var[i] + "_allgather",
                        shape=[self.allgather_ranks] + list(param.shape),
                        persistable=False,
                        dtype=core.VarDesc.VarType.FP32,
                        stop_gradient=True)
                    grad = block.vars[op_role_var[i + 1]]
                    if param.is_distributed:  # no need to care: used in PLSC
                        continue

                    if offset == idx:
                        offset += 1
                        block._insert_op(
                            offset,
                            type='c_sync_calc_stream',
                            inputs={'X': grad},
                            outputs={'Out': grad},
                            attrs={self.op_role_key: OpRole.Backward})
                        offset += 1

                    # As we search ops reversedly, we should insert c_allgather
                    # op in the same way to keep the ring_id alternate
                    ring_id = (ring_id + 1) % self.nrings
537 538 539 540 541 542 543 544 545
                    block._insert_op(offset,
                                     type='c_allgather',
                                     inputs={'X': grad},
                                     outputs={'Out': new_grad_var},
                                     attrs={
                                         'nranks': self.allgather_ranks,
                                         'ring_id': ring_id,
                                         self.op_role_key: OpRole.Backward
                                     })
D
danleifeng 已提交
546 547 548 549 550 551 552

        if grad is None:
            return

        for idx, op in enumerate(block.ops):
            if self._is_optimizer_op(op):
                for ring_id in range(self.nrings):
553 554 555 556 557 558 559 560
                    block._insert_op(idx + ring_id,
                                     type='c_sync_comm_stream',
                                     inputs={'X': grad},
                                     outputs={'Out': grad},
                                     attrs={
                                         'ring_id': ring_id,
                                         self.op_role_key: OpRole.Backward
                                     })
D
danleifeng 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
                break

    def _update_adam_ops(self):
        """
        remove the original adam op, and add new adam ops
        """
        block = self.main_program.global_block()

        for idx, op in reversed(list(enumerate(block.ops))):
            if self._is_optimizer_op(op):
                offset = idx
                if op.type != 'adam' and op.type != 'lamb':  # filter out scale op
                    continue
                param_name = op.input("Param")[0]
                inputs = {
                    "Param": block.vars[op.input("Param")[0]],
                    "LearningRate": block.vars[op.input("LearningRate")[0]],
                    "Moment1": block.vars[op.input("Moment1")[0]],
                    "Moment2": block.vars[op.input("Moment2")[0]],
                    "Beta1Pow": block.vars[op.input("Beta1Pow")[0]],
                    "Beta2Pow": block.vars[op.input("Beta2Pow")[0]]
                }
                outputs = {
                    "ParamOut": block.vars[op.output("ParamOut")[0]],
                    "Moment1Out": block.vars[op.output("Moment1Out")[0]],
                    "Moment2Out": block.vars[op.output("Moment2Out")[0]],
                    "Beta1PowOut": block.vars[op.output("Beta1PowOut")[0]],
                    "Beta2PowOut": block.vars[op.output("Beta2PowOut")[0]]
                }
                attrs = {
591 592 593 594 595 596 597 598
                    "epsilon":
                    op.attr('epsilon'),
                    "beta1":
                    op.attr('beta1'),
                    "beta2":
                    op.attr('beta2'),
                    "lazy_mode":
                    op.attr('lazy_mode'),
D
danleifeng 已提交
599 600 601 602 603 604 605 606 607 608 609
                    "min_row_size_to_use_multithread":
                    op.attr('min_row_size_to_use_multithread')
                }
                split_vars = [
                    block.create_var(
                        name=param_name + "_" + str(i),
                        shape=block.vars[op.input("Param")[0]].shape,
                        persistable=False,
                        dtype=core.VarDesc.VarType.FP32,
                        stop_gradient=True) for i in range(self.allgather_ranks)
                ]
610 611 612 613 614 615 616 617 618 619 620 621
                block._insert_op(offset,
                                 type="split",
                                 inputs={
                                     'X':
                                     block.vars[op.input("Param")[0] +
                                                "_allgather"]
                                 },
                                 outputs={'Out': split_vars},
                                 attrs={
                                     'num': self.allgather_ranks,
                                     'axis': 0
                                 })
D
danleifeng 已提交
622 623 624 625
                offset += 1

                for i in range(self.allgather_ranks):
                    inputs["Grad"] = split_vars[i]
626 627 628 629 630
                    block._insert_op(offset,
                                     type=op.type,
                                     inputs=inputs,
                                     outputs=outputs,
                                     attrs=attrs)
D
danleifeng 已提交
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
                    offset += 1
                # remove the original adam op
                block._remove_op(offset)

    def _insert_fuse_allreduce_ops(self):
        """
        insert coalesce_tensor and all reduce ops
        """
        block = self.main_program.global_block()
        ring_id = 0 % self.nrings
        grad = None
        param_grads = []
        # find all grad params
        for op in reversed(block.ops):
            if self._is_backward_op(op) and \
                    self.op_role_var_key in op.attr_names:
                op_role_var = op.all_attrs()[self.op_role_var_key]
                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0, "vars need to be one param var followed by one grad var, " \
                                                  "but got odd number of vars"
                for i in range(0, len(op_role_var), 2):
                    param_name = op_role_var[i]
                    param = block.var(param_name)
                    grad_name = op_role_var[i + 1]
                    grad = block.var(grad_name)
                    if param.is_distributed:
                        continue
                    param_grads.append(grad)
        if grad is None:
            return

        segments = []
        last_dtype = None
        # split the grad based on dtype and fused size
        for var in param_grads:
            if len(segments) == 0 \
                    or len(segments[-1]) == self.fuse_grad_size_in_num \
                    or var.dtype != last_dtype:
                segments.append([var])
                last_dtype = var.dtype
            else:
                segments[-1].append(var)

        fused_vars = []
        for idx, op in enumerate(block.ops):
            if self._is_optimizer_op(op):
                for segment in segments:
                    # insert coalesce tensor
680 681 682 683 684
                    tmp_var = block.create_var(name=unique_name.generate(
                        'FusedOutput_{}'.format(segment[0].name)),
                                               dtype=segment[0].dtype,
                                               persistable=False,
                                               stop_gradient=True)
D
danleifeng 已提交
685
                    fused_vars.append(tmp_var)
686 687 688 689 690 691 692 693 694 695 696 697 698
                    block._insert_op(idx,
                                     type="coalesce_tensor",
                                     inputs={"Input": segment},
                                     outputs={
                                         "Output": segment,
                                         "FusedOutput": tmp_var
                                     },
                                     attrs={
                                         "copy_data": True,
                                         "use_align": True,
                                         "dtype": segment[0].dtype,
                                         self.op_role_key: OpRole.Backward
                                     })
D
danleifeng 已提交
699 700 701 702 703 704
                break

        # insert the allreduce_sum op
        for idx, op in enumerate(block.ops):
            if self._is_optimizer_op(op):
                for fused_var in fused_vars:
705 706 707 708 709 710 711 712 713 714 715 716 717 718
                    block._insert_op(idx,
                                     type='c_allreduce_sum',
                                     inputs={'X': fused_var},
                                     outputs={'Out': fused_var},
                                     attrs={
                                         'ring_id': ring_id,
                                         'use_calc_stream': False,
                                         self.op_role_key: OpRole.Backward
                                     })
                    block._insert_op(idx,
                                     type='c_sync_calc_stream',
                                     inputs={'X': fused_var},
                                     outputs={'Out': fused_var},
                                     attrs={self.op_role_key: OpRole.Backward})
D
danleifeng 已提交
719 720 721 722 723 724 725 726 727
                break

        if len(fused_vars) == 0:
            block._sync_with_cpp()
            return

        # insert the sync comm op
        for idx, op in enumerate(block.ops):
            if self._is_optimizer_op(op):
728 729 730 731 732 733 734 735
                block._insert_op(idx,
                                 type='c_sync_comm_stream',
                                 inputs={'X': fused_vars[0]},
                                 outputs={'Out': fused_vars[0]},
                                 attrs={
                                     'ring_id': ring_id,
                                     self.op_role_key: OpRole.Backward
                                 })
D
danleifeng 已提交
736 737
                break
        block._sync_with_cpp()