collective.py 27.9 KB
Newer Older
1
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import sys
import math
from functools import reduce
20
import os
21 22 23 24 25 26 27 28 29 30 31

import collections
import six
import logging

import numpy as np

from .. import core, unique_name
from ..framework import Program, default_main_program, default_startup_program
from .details import wait_server_ready

Y
yaoxuefeng 已提交
32
__all__ = ['GradAllReduce', 'LocalSGD', 'MultiThread']
33 34 35 36 37 38 39 40

OpRole = core.op_proto_and_checker_maker.OpRole


class Collective(object):
    '''
    '''

41 42
    def __init__(self, nrings):
        self.nrings = nrings
43 44
        self.endpoints = None
        self.current_endpoint = None
F
Fan Zhang 已提交
45
        self.other_endpoints = None
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
        self.nranks = None
        self.rank = None
        self.startup_program = None
        self.main_program = None
        op_maker = core.op_proto_and_checker_maker
        self.op_role_key = op_maker.kOpRoleAttrName()
        self.op_role_var_key = op_maker.kOpRoleVarAttrName()

    def transpile(self, startup_program, main_program, rank, endpoints,
                  current_endpoint, wait_port):
        # in case of '127.0.0.1:6700,127.0.0.1:6701,...'
        if isinstance(endpoints, str):
            endpoints = endpoints.split(',')

        self.startup_program = startup_program
        if startup_program is None:
            self.startup_program = default_startup_program()

        self.main_program = main_program
        if main_program is None:
            self.main_program = default_main_program()

        self.nranks = len(endpoints)
D
danleifeng 已提交
69
        if self.nranks == 1 and self.mode != "single_process_multi_thread" and self.mode != "box":
70 71 72 73 74 75 76 77 78 79 80 81 82
            raise ValueError('the number of endpoints must > 1')

        if rank < 0:
            raise ValueError('rank must >= 0')
        self.rank = rank

        if current_endpoint not in endpoints:
            raise ValueError('current endpoint %s is not in %s',
                             current_endpoint, str(endpoints))

        self.endpoints = endpoints
        self.current_endpoint = current_endpoint

F
Fan Zhang 已提交
83 84 85 86 87 88
        if current_endpoint:
            nranks = len(endpoints)
            other_endpoints = endpoints[:]
            other_endpoints.remove(current_endpoint)
            self.other_endpoints = other_endpoints

89 90 91 92 93 94 95 96 97 98 99 100
        self.wait_port = wait_port

        self.startup_program._origin_program = self.startup_program.clone()
        self._transpile_startup_program()

        self.main_program._origin_program = self.main_program.clone()
        self._transpile_main_program()

    def _transpile_main_program(self):
        raise NotImplementedError('call the inherited method of subclasses')

    def _transpile_startup_program(self):
101 102 103 104
        for ring_id in range(self.nrings):
            self._init_communicator(self.startup_program, self.current_endpoint,
                                    self.endpoints, self.rank, ring_id,
                                    self.wait_port)
105 106
        self._broadcast_params()

Y
yaoxuefeng 已提交
107 108 109 110 111 112 113 114
    def _init_communicator(self,
                           program,
                           current_endpoint,
                           endpoints,
                           rank,
                           ring_id,
                           wait_port,
                           has_multitrainer=False):
115 116 117
        nranks = len(endpoints)
        other_endpoints = endpoints[:]
        other_endpoints.remove(current_endpoint)
118 119
        block = program.global_block()

120 121 122 123
        if rank == 0 and wait_port:
            wait_server_ready(other_endpoints)

        block = program.global_block()
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
        if core.is_compiled_with_npu():
            hccl_id_var = block.create_var(
                name=unique_name.generate('hccl_id'),
                persistable=True,
                type=core.VarDesc.VarType.RAW)
            endpoint_to_index_map = {e: idx for idx, e in enumerate(endpoints)}
            block.append_op(
                type='c_gen_hccl_id',
                inputs={},
                outputs={'Out': hccl_id_var},
                attrs={
                    'rank': rank,
                    'endpoint': current_endpoint,
                    'other_endpoints': other_endpoints,
                    self.op_role_key: OpRole.Forward
                })
            block.append_op(
                type='c_comm_init_hccl',
                inputs={'X': hccl_id_var},
                outputs={},
                attrs={
                    'rank': rank,
                    'ring_id': ring_id,
                    'device_id': int(os.getenv("FLAGS_selected_npus")),
                    'rank_ids': nranks,
                    self.op_role_key: OpRole.Forward
                })
        else:
            nccl_id_var = block.create_var(
                name=unique_name.generate('nccl_id'),
                persistable=True,
                type=core.VarDesc.VarType.RAW)
            block.append_op(
                type='c_gen_nccl_id',
                inputs={},
                outputs={'Out': nccl_id_var},
                attrs={
                    'rank': rank,
                    'endpoint': current_endpoint,
                    'other_endpoints': other_endpoints,
                    self.op_role_key: OpRole.Forward
                })
Y
yaoxuefeng 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
            if not has_multitrainer:
                block.append_op(
                    type='c_comm_init',
                    inputs={'X': nccl_id_var},
                    outputs={},
                    attrs={
                        'nranks': nranks,
                        'rank': rank,
                        'ring_id': ring_id,
                        self.op_role_key: OpRole.Forward
                    })
            else:
                block.append_op(
                    type='c_comm_init_multitrainer',
                    inputs={'X': nccl_id_var},
                    outputs={},
                    attrs={
                        'ntrainers': nranks,
                        'trainer_id': rank,
                        'ring_id': ring_id,
                        self.op_role_key: OpRole.Forward
                    })
188 189 190

    def _broadcast_params(self):
        block = self.startup_program.global_block()
191 192
        ring_id = -1
        for param in block.iter_parameters():
193 194 195
            if param.is_distributed:
                continue

196
            ring_id = (ring_id + 1) % self.nrings
197 198
            block.append_op(
                type='c_broadcast',
199 200
                inputs={'X': param},
                outputs={'Out': param},
201
                attrs={
202
                    'ring_id': ring_id,
203
                    'root': 0,
204
                    self.op_role_key: OpRole.Forward
205
                })
206 207 208 209 210 211 212 213

        for ring_id in range(self.nrings):
            block.append_op(
                type='c_sync_comm_stream',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={'ring_id': ring_id,
                       self.op_role_key: OpRole.Forward})
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237

    def _is_loss_grad_op(self, op):
        if self.op_role_key not in op.attr_names:
            return False
        op_role = int(op.all_attrs()[self.op_role_key])
        return op_role & int(OpRole.Backward) and op_role & int(OpRole.Loss)

    def _is_backward_op(self, op):
        return self.op_role_key in op.attr_names and \
                int(op.all_attrs()[self.op_role_key]) & int(OpRole.Backward)

    def _is_update_op(self, op):
        return 'Param' in op.input_names and 'Grad' in op.input_names and \
                "LearningRate" in op.input_names

    def _is_optimizer_op(self, op):
        return self.op_role_key in op.attr_names and \
                int(op.all_attrs()[self.op_role_key]) & int(OpRole.Optimize)


class GradAllReduce(Collective):
    '''
    '''

238 239
    def __init__(self, nrings=2):
        Collective.__init__(self, nrings)
H
hutuxian 已提交
240
        self.mode = "grad_allreduce"
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261

    def _transpile_main_program(self):
        self._insert_scale_loss_grad_ops()
        self._insert_allreduce_ops()

    def _insert_scale_loss_grad_ops(self):
        '''
        In order to keep the learning rate consistent in different numbers of
        training workers, we scale the loss grad by the number of workers
        '''
        block = self.main_program.global_block()
        for idx, op in reversed(list(enumerate(block.ops))):
            if self._is_loss_grad_op(op):
                loss_grad_var = block.vars[op.output_arg_names[0]]
                block._insert_op(
                    idx + 1,
                    type='scale',
                    inputs={'X': loss_grad_var},
                    outputs={'Out': loss_grad_var},
                    attrs={
                        'scale': 1.0 / self.nranks,
262
                        self.op_role_key: OpRole.Backward
263 264 265 266
                    })

    def _insert_allreduce_ops(self):
        block = self.main_program.global_block()
267 268
        ring_id = -1
        grad = None
269 270 271 272 273 274 275 276 277
        for idx, op in reversed(list(enumerate(block.ops))):
            if self._is_backward_op(op) and \
                    self.op_role_var_key in op.attr_names:
                op_role_var = op.all_attrs()[self.op_role_var_key]

                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0

278
                offset = idx
279
                for i in range(0, len(op_role_var), 2):
280 281
                    param = block.vars[op_role_var[i]]
                    grad = block.vars[op_role_var[i + 1]]
282 283 284
                    if param.is_distributed:
                        continue

285 286 287 288 289 290 291 292 293 294 295 296 297
                    if offset == idx:
                        offset += 1
                        block._insert_op(
                            offset,
                            type='c_sync_calc_stream',
                            inputs={'X': grad},
                            outputs={'Out': grad},
                            attrs={self.op_role_key: OpRole.Backward})
                        offset += 1

                    # As we search ops reversedly, we should insert c_allreduce_sum
                    # op in the same way to keep the ring_id alternate
                    ring_id = (ring_id + 1) % self.nrings
298
                    block._insert_op(
299 300 301 302
                        offset,
                        type='c_allreduce_sum',
                        inputs={'X': grad},
                        outputs={'Out': grad},
303
                        attrs={
304 305
                            'ring_id': ring_id,
                            self.op_role_key: OpRole.Backward
306
                        })
307 308 309

        if grad is None:
            return
310 311 312

        for idx, op in enumerate(block.ops):
            if self._is_optimizer_op(op):
313 314 315 316 317 318 319 320 321 322
                for ring_id in range(self.nrings):
                    block._insert_op(
                        idx + ring_id,
                        type='c_sync_comm_stream',
                        inputs={'X': grad},
                        outputs={'Out': grad},
                        attrs={
                            'ring_id': ring_id,
                            self.op_role_key: OpRole.Backward
                        })
323 324 325 326 327 328 329
                break


class LocalSGD(Collective):
    '''
    '''

330 331
    def __init__(self, nrings=2):
        Collective.__init__(self, nrings)
332
        self.snapshot_key = '@SNAPSHOT'
H
hutuxian 已提交
333
        self.mode = "local_sgd"
334 335 336 337 338

    def _transpile_startup_program(self):
        Collective._transpile_startup_program(self)

        block = self.startup_program.global_block()
339
        non_dist_params = []
340
        for param in block.iter_parameters():
341 342
            if not param.is_distributed:
                non_dist_params.append(param)
343

344
        for param in non_dist_params:
345 346 347 348 349 350 351 352 353
            snapshot = block.create_var(
                name=self.snapshot_name(param.name),
                shape=param.shape,
                persistable=True,
                stop_gradient=True)
            block.append_op(
                type='assign',
                inputs={'X': [param]},
                outputs={'Out': [snapshot]},
354
                attrs={self.op_role_key: OpRole.Forward})
355 356 357 358 359 360 361

    def snapshot_name(self, param_name):
        return param_name + self.snapshot_key

    def _transpile_main_program(self):
        block = self.main_program.global_block()
        ordered_param_snapshot = []
362
        ring_id = -1
363 364 365
        for idx, op in reversed(list(enumerate(block.ops))):
            if self._is_update_op(op):
                param = block.vars[op.input('Param')[0]]
366 367 368
                if param.is_distributed:
                    continue

369 370 371 372
                snapshot = block.create_var(
                    name=self.snapshot_name(param.name),
                    shape=param.shape,
                    persistable=True,
373 374
                    stop_gradient=True,
                    dtype=param.dtype)
375 376 377 378 379 380 381

                block._insert_op(
                    idx + 1,
                    type='elementwise_sub',
                    inputs={'X': [snapshot],
                            'Y': [param]},
                    outputs={'Out': [param]},
382
                    attrs={self.op_role_key: OpRole.Optimize})
383 384 385 386 387
                block._insert_op(
                    idx + 2,
                    type='c_sync_calc_stream',
                    inputs={'X': param},
                    outputs={'Out': param},
388 389
                    attrs={self.op_role_key: OpRole.Optimize})
                ring_id = (ring_id + 1) % self.nrings
390 391
                block._insert_op(
                    idx + 3,
392
                    type='c_allreduce_sum',
393 394 395
                    inputs={'X': [param]},
                    outputs={'Out': [param]},
                    attrs={
396 397
                        'ring_id': ring_id,
                        self.op_role_key: OpRole.Optimize
398 399 400 401
                    })

                ordered_param_snapshot.append((param, snapshot))

402 403 404 405 406 407 408
        for ring_id in range(self.nrings):
            block.append_op(
                type='c_sync_comm_stream',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={'ring_id': ring_id,
                       self.op_role_key: OpRole.Optimize})
409 410 411 412 413 414 415 416 417 418

        for param_snapshot in reversed(ordered_param_snapshot):
            param = param_snapshot[0]
            snapshot = param_snapshot[1]
            block.append_op(
                type='scale',
                inputs={'X': [param]},
                outputs={'Out': [param]},
                attrs={
                    'scale': 1.0 / self.nranks,
419
                    self.op_role_key: OpRole.Optimize
420 421 422 423 424 425
                })
            block.append_op(
                type='elementwise_sub',
                inputs={'X': [snapshot],
                        'Y': [param]},
                outputs={'Out': [param]},
426
                attrs={self.op_role_key: OpRole.Optimize})
427 428 429 430
            block.append_op(
                type='assign',
                inputs={'X': [param]},
                outputs={'Out': [snapshot]},
431
                attrs={self.op_role_key: OpRole.Optimize})
H
hutuxian 已提交
432 433 434 435 436 437 438


class SingleProcessMultiThread(GradAllReduce):
    '''
    '''

    def __init__(self):
H
hutuxian 已提交
439
        GradAllReduce.__init__(self, 1)
H
hutuxian 已提交
440 441 442 443 444
        self.mode = "single_process_multi_thread"

    def _transpile_startup_program(self):
        block = self.startup_program.global_block()
        block.append_op(type='c_comm_init_all', attrs={'ring_id': 0})
445 446 447 448 449 450


class MultiThread(GradAllReduce):
    '''
    '''

D
danleifeng 已提交
451
    def __init__(self, nrings=1, trans_mode="all_reduce"):
452
        GradAllReduce.__init__(self, nrings)
D
danleifeng 已提交
453 454 455 456 457 458
        self.mode = "box"
        self.trans_mode = trans_mode
        self.fuse_grad_size_in_num = 128
        gpu_nums = os.getenv("FLAGS_selected_gpus",
                             "0,1,2,3,4,5,6,7,8").split(",")
        self.gpu_num = len(gpu_nums)
459 460 461 462 463 464 465 466

    def _transpile_startup_program(self):
        if len(self.endpoints) > 1:
            print("begin to _transpile_startup_program for multi-node")
            print("current_endpoint: ", self.current_endpoint)
            print("total endpoints: ", self.endpoints)
            print("rank: %d, ring_id: %d" % (self.rank, self.nrings))
            for ring_id in range(self.nrings):
Y
yaoxuefeng 已提交
467 468 469
                self._init_communicator(
                    self.startup_program, self.current_endpoint, self.endpoints,
                    self.rank, ring_id, self.wait_port, True)
470

471
        else:
F
Fan Zhang 已提交
472 473 474 475 476
            if "xpu" in self.trans_mode:
                print(
                    "begin to _transpile_startup_program for single-node in XPU")
                block = self.startup_program.global_block()
                block.append_op(
477
                    type='c_comm_init_all',
F
Fan Zhang 已提交
478
                    attrs={
479 480 481 482
                        'devices': list(
                            map(int,
                                os.getenv("FLAGS_selected_gpus").split(","))),
                        'ring_id': 0
F
Fan Zhang 已提交
483 484 485 486 487
                    })
            else:
                print("begin to _transpile_startup_program for single-node")
                block = self.startup_program.global_block()
                block.append_op(type='c_comm_init_all', attrs={'ring_id': 0})
D
danleifeng 已提交
488 489 490 491 492 493 494 495 496 497 498

    def _transpile_main_program(self):
        self._insert_scale_loss_grad_ops()
        if self.trans_mode == "all_gather":
            print("begin to transpile in all-gather mode")
            self.allgather_ranks = self.nranks * self.gpu_num
            self._insert_allgather_ops()
            self._update_adam_ops()
        elif self.trans_mode == "fuse_all_reduce":
            print("begin to transpile in fuse all-reduce mode")
            self._insert_fuse_allreduce_ops()
499 500 501 502 503
        elif self.trans_mode == "all_reduce_xpu" and len(
                os.getenv("FLAGS_selected_gpus").split(",")) == 1:
            print(
                "skip transpile in all-reduce-xpu mode when number of devices is only one"
            )
D
danleifeng 已提交
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
        else:
            print("begin to transpile in all-reduce mode")
            self._insert_allreduce_ops()

    def _insert_allgather_ops(self):
        """
        insert allgather op to the main_program
        """
        block = self.main_program.global_block()
        ring_id = -1
        grad = None
        for idx, op in reversed(list(enumerate(block.ops))):
            if self._is_backward_op(op) and \
                    self.op_role_var_key in op.attr_names:
                op_role_var = op.all_attrs()[self.op_role_var_key]
                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0

                offset = idx
                for i in range(0, len(op_role_var), 2):
                    param = block.vars[op_role_var[i]]
                    new_grad_var = block.create_var(
                        name=op_role_var[i] + "_allgather",
                        shape=[self.allgather_ranks] + list(param.shape),
                        persistable=False,
                        dtype=core.VarDesc.VarType.FP32,
                        stop_gradient=True)
                    grad = block.vars[op_role_var[i + 1]]
                    if param.is_distributed:  # no need to care: used in PLSC
                        continue

                    if offset == idx:
                        offset += 1
                        block._insert_op(
                            offset,
                            type='c_sync_calc_stream',
                            inputs={'X': grad},
                            outputs={'Out': grad},
                            attrs={self.op_role_key: OpRole.Backward})
                        offset += 1

                    # As we search ops reversedly, we should insert c_allgather
                    # op in the same way to keep the ring_id alternate
                    ring_id = (ring_id + 1) % self.nrings
                    block._insert_op(
                        offset,
                        type='c_allgather',
                        inputs={'X': grad},
                        outputs={'Out': new_grad_var},
                        attrs={
                            'nranks': self.allgather_ranks,
                            'ring_id': ring_id,
                            self.op_role_key: OpRole.Backward
                        })

        if grad is None:
            return

        for idx, op in enumerate(block.ops):
            if self._is_optimizer_op(op):
                for ring_id in range(self.nrings):
                    block._insert_op(
                        idx + ring_id,
                        type='c_sync_comm_stream',
                        inputs={'X': grad},
                        outputs={'Out': grad},
                        attrs={
                            'ring_id': ring_id,
                            self.op_role_key: OpRole.Backward
                        })
                break

    def _update_adam_ops(self):
        """
        remove the original adam op, and add new adam ops
        """
        block = self.main_program.global_block()

        for idx, op in reversed(list(enumerate(block.ops))):
            if self._is_optimizer_op(op):
                offset = idx
                if op.type != 'adam' and op.type != 'lamb':  # filter out scale op
                    continue
                param_name = op.input("Param")[0]
                inputs = {
                    "Param": block.vars[op.input("Param")[0]],
                    "LearningRate": block.vars[op.input("LearningRate")[0]],
                    "Moment1": block.vars[op.input("Moment1")[0]],
                    "Moment2": block.vars[op.input("Moment2")[0]],
                    "Beta1Pow": block.vars[op.input("Beta1Pow")[0]],
                    "Beta2Pow": block.vars[op.input("Beta2Pow")[0]]
                }
                outputs = {
                    "ParamOut": block.vars[op.output("ParamOut")[0]],
                    "Moment1Out": block.vars[op.output("Moment1Out")[0]],
                    "Moment2Out": block.vars[op.output("Moment2Out")[0]],
                    "Beta1PowOut": block.vars[op.output("Beta1PowOut")[0]],
                    "Beta2PowOut": block.vars[op.output("Beta2PowOut")[0]]
                }
                attrs = {
                    "epsilon": op.attr('epsilon'),
                    "beta1": op.attr('beta1'),
                    "beta2": op.attr('beta2'),
                    "lazy_mode": op.attr('lazy_mode'),
                    "min_row_size_to_use_multithread":
                    op.attr('min_row_size_to_use_multithread')
                }
                split_vars = [
                    block.create_var(
                        name=param_name + "_" + str(i),
                        shape=block.vars[op.input("Param")[0]].shape,
                        persistable=False,
                        dtype=core.VarDesc.VarType.FP32,
                        stop_gradient=True) for i in range(self.allgather_ranks)
                ]
                block._insert_op(
                    offset,
                    type="split",
                    inputs={
                        'X': block.vars[op.input("Param")[0] + "_allgather"]
                    },
                    outputs={'Out': split_vars},
                    attrs={'num': self.allgather_ranks,
                           'axis': 0})
                offset += 1

                for i in range(self.allgather_ranks):
                    inputs["Grad"] = split_vars[i]
                    block._insert_op(
                        offset,
                        type=op.type,
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs)
                    offset += 1
                # remove the original adam op
                block._remove_op(offset)

    def _insert_fuse_allreduce_ops(self):
        """
        insert coalesce_tensor and all reduce ops
        """
        block = self.main_program.global_block()
        ring_id = 0 % self.nrings
        grad = None
        param_grads = []
        # find all grad params
        for op in reversed(block.ops):
            if self._is_backward_op(op) and \
                    self.op_role_var_key in op.attr_names:
                op_role_var = op.all_attrs()[self.op_role_var_key]
                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0, "vars need to be one param var followed by one grad var, " \
                                                  "but got odd number of vars"
                for i in range(0, len(op_role_var), 2):
                    param_name = op_role_var[i]
                    param = block.var(param_name)
                    grad_name = op_role_var[i + 1]
                    grad = block.var(grad_name)
                    if param.is_distributed:
                        continue
                    param_grads.append(grad)
        if grad is None:
            return

        segments = []
        last_dtype = None
        # split the grad based on dtype and fused size
        for var in param_grads:
            if len(segments) == 0 \
                    or len(segments[-1]) == self.fuse_grad_size_in_num \
                    or var.dtype != last_dtype:
                segments.append([var])
                last_dtype = var.dtype
            else:
                segments[-1].append(var)

        fused_vars = []
        for idx, op in enumerate(block.ops):
            if self._is_optimizer_op(op):
                for segment in segments:
                    # insert coalesce tensor
                    tmp_var = block.create_var(
                        name=unique_name.generate('FusedOutput_{}'.format(
                            segment[0].name)),
                        dtype=segment[0].dtype,
                        persistable=False,
                        stop_gradient=True)
                    fused_vars.append(tmp_var)
                    block._insert_op(
                        idx,
                        type="coalesce_tensor",
                        inputs={"Input": segment},
                        outputs={"Output": segment,
                                 "FusedOutput": tmp_var},
                        attrs={
                            "copy_data": True,
                            "use_align": True,
                            "dtype": segment[0].dtype,
                            self.op_role_key: OpRole.Backward
                        })
                break

        # insert the allreduce_sum op
        for idx, op in enumerate(block.ops):
            if self._is_optimizer_op(op):
                for fused_var in fused_vars:
                    block._insert_op(
                        idx,
                        type='c_allreduce_sum',
                        inputs={'X': fused_var},
                        outputs={'Out': fused_var},
                        attrs={
                            'ring_id': ring_id,
                            'use_calc_stream': False,
                            self.op_role_key: OpRole.Backward
                        })
                    block._insert_op(
                        idx,
                        type='c_sync_calc_stream',
                        inputs={'X': fused_var},
                        outputs={'Out': fused_var},
                        attrs={self.op_role_key: OpRole.Backward})
                break

        if len(fused_vars) == 0:
            block._sync_with_cpp()
            return

        # insert the sync comm op
        for idx, op in enumerate(block.ops):
            if self._is_optimizer_op(op):
                block._insert_op(
                    idx,
                    type='c_sync_comm_stream',
                    inputs={'X': fused_vars[0]},
                    outputs={'Out': fused_vars[0]},
                    attrs={
                        'ring_id': ring_id,
                        self.op_role_key: OpRole.Backward
                    })
                break
        block._sync_with_cpp()