collective.py 16.2 KB
Newer Older
1
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import sys
import math
from functools import reduce
20
import os
21 22 23 24 25 26 27 28 29 30 31

import collections
import six
import logging

import numpy as np

from .. import core, unique_name
from ..framework import Program, default_main_program, default_startup_program
from .details import wait_server_ready

Y
yaoxuefeng 已提交
32
__all__ = ['GradAllReduce', 'LocalSGD', 'MultiThread']
33 34 35 36 37 38 39 40

OpRole = core.op_proto_and_checker_maker.OpRole


class Collective(object):
    '''
    '''

41 42
    def __init__(self, nrings):
        self.nrings = nrings
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
        self.endpoints = None
        self.current_endpoint = None
        self.nranks = None
        self.rank = None
        self.startup_program = None
        self.main_program = None
        op_maker = core.op_proto_and_checker_maker
        self.op_role_key = op_maker.kOpRoleAttrName()
        self.op_role_var_key = op_maker.kOpRoleVarAttrName()

    def transpile(self, startup_program, main_program, rank, endpoints,
                  current_endpoint, wait_port):
        # in case of '127.0.0.1:6700,127.0.0.1:6701,...'
        if isinstance(endpoints, str):
            endpoints = endpoints.split(',')

        self.startup_program = startup_program
        if startup_program is None:
            self.startup_program = default_startup_program()

        self.main_program = main_program
        if main_program is None:
            self.main_program = default_main_program()

        self.nranks = len(endpoints)
H
hutuxian 已提交
68
        if self.nranks == 1 and self.mode != "single_process_multi_thread":
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
            raise ValueError('the number of endpoints must > 1')

        if rank < 0:
            raise ValueError('rank must >= 0')
        self.rank = rank

        if current_endpoint not in endpoints:
            raise ValueError('current endpoint %s is not in %s',
                             current_endpoint, str(endpoints))

        self.endpoints = endpoints
        self.current_endpoint = current_endpoint

        self.wait_port = wait_port

        self.startup_program._origin_program = self.startup_program.clone()
        self._transpile_startup_program()

        self.main_program._origin_program = self.main_program.clone()
        self._transpile_main_program()

    def _transpile_main_program(self):
        raise NotImplementedError('call the inherited method of subclasses')

    def _transpile_startup_program(self):
94 95 96 97
        for ring_id in range(self.nrings):
            self._init_communicator(self.startup_program, self.current_endpoint,
                                    self.endpoints, self.rank, ring_id,
                                    self.wait_port)
98 99
        self._broadcast_params()

Y
yaoxuefeng 已提交
100 101 102 103 104 105 106 107
    def _init_communicator(self,
                           program,
                           current_endpoint,
                           endpoints,
                           rank,
                           ring_id,
                           wait_port,
                           has_multitrainer=False):
108 109 110
        nranks = len(endpoints)
        other_endpoints = endpoints[:]
        other_endpoints.remove(current_endpoint)
111 112
        block = program.global_block()

113 114 115 116
        if rank == 0 and wait_port:
            wait_server_ready(other_endpoints)

        block = program.global_block()
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
        if core.is_compiled_with_npu():
            hccl_id_var = block.create_var(
                name=unique_name.generate('hccl_id'),
                persistable=True,
                type=core.VarDesc.VarType.RAW)
            endpoint_to_index_map = {e: idx for idx, e in enumerate(endpoints)}
            block.append_op(
                type='c_gen_hccl_id',
                inputs={},
                outputs={'Out': hccl_id_var},
                attrs={
                    'rank': rank,
                    'endpoint': current_endpoint,
                    'other_endpoints': other_endpoints,
                    self.op_role_key: OpRole.Forward
                })
            block.append_op(
                type='c_comm_init_hccl',
                inputs={'X': hccl_id_var},
                outputs={},
                attrs={
                    'rank': rank,
                    'ring_id': ring_id,
                    'device_id': int(os.getenv("FLAGS_selected_npus")),
                    'rank_ids': nranks,
                    self.op_role_key: OpRole.Forward
                })
        else:
            nccl_id_var = block.create_var(
                name=unique_name.generate('nccl_id'),
                persistable=True,
                type=core.VarDesc.VarType.RAW)
            block.append_op(
                type='c_gen_nccl_id',
                inputs={},
                outputs={'Out': nccl_id_var},
                attrs={
                    'rank': rank,
                    'endpoint': current_endpoint,
                    'other_endpoints': other_endpoints,
                    self.op_role_key: OpRole.Forward
                })
Y
yaoxuefeng 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
            if not has_multitrainer:
                block.append_op(
                    type='c_comm_init',
                    inputs={'X': nccl_id_var},
                    outputs={},
                    attrs={
                        'nranks': nranks,
                        'rank': rank,
                        'ring_id': ring_id,
                        self.op_role_key: OpRole.Forward
                    })
            else:
                block.append_op(
                    type='c_comm_init_multitrainer',
                    inputs={'X': nccl_id_var},
                    outputs={},
                    attrs={
                        'ntrainers': nranks,
                        'trainer_id': rank,
                        'ring_id': ring_id,
                        self.op_role_key: OpRole.Forward
                    })
181 182 183

    def _broadcast_params(self):
        block = self.startup_program.global_block()
184 185
        ring_id = -1
        for param in block.iter_parameters():
186 187 188
            if param.is_distributed:
                continue

189
            ring_id = (ring_id + 1) % self.nrings
190 191
            block.append_op(
                type='c_broadcast',
192 193
                inputs={'X': param},
                outputs={'Out': param},
194
                attrs={
195
                    'ring_id': ring_id,
196
                    'root': 0,
197
                    self.op_role_key: OpRole.Forward
198
                })
199 200 201 202 203 204 205 206

        for ring_id in range(self.nrings):
            block.append_op(
                type='c_sync_comm_stream',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={'ring_id': ring_id,
                       self.op_role_key: OpRole.Forward})
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230

    def _is_loss_grad_op(self, op):
        if self.op_role_key not in op.attr_names:
            return False
        op_role = int(op.all_attrs()[self.op_role_key])
        return op_role & int(OpRole.Backward) and op_role & int(OpRole.Loss)

    def _is_backward_op(self, op):
        return self.op_role_key in op.attr_names and \
                int(op.all_attrs()[self.op_role_key]) & int(OpRole.Backward)

    def _is_update_op(self, op):
        return 'Param' in op.input_names and 'Grad' in op.input_names and \
                "LearningRate" in op.input_names

    def _is_optimizer_op(self, op):
        return self.op_role_key in op.attr_names and \
                int(op.all_attrs()[self.op_role_key]) & int(OpRole.Optimize)


class GradAllReduce(Collective):
    '''
    '''

231 232
    def __init__(self, nrings=2):
        Collective.__init__(self, nrings)
H
hutuxian 已提交
233
        self.mode = "grad_allreduce"
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254

    def _transpile_main_program(self):
        self._insert_scale_loss_grad_ops()
        self._insert_allreduce_ops()

    def _insert_scale_loss_grad_ops(self):
        '''
        In order to keep the learning rate consistent in different numbers of
        training workers, we scale the loss grad by the number of workers
        '''
        block = self.main_program.global_block()
        for idx, op in reversed(list(enumerate(block.ops))):
            if self._is_loss_grad_op(op):
                loss_grad_var = block.vars[op.output_arg_names[0]]
                block._insert_op(
                    idx + 1,
                    type='scale',
                    inputs={'X': loss_grad_var},
                    outputs={'Out': loss_grad_var},
                    attrs={
                        'scale': 1.0 / self.nranks,
255
                        self.op_role_key: OpRole.Backward
256 257 258 259
                    })

    def _insert_allreduce_ops(self):
        block = self.main_program.global_block()
260 261
        ring_id = -1
        grad = None
262 263 264 265 266 267 268 269 270
        for idx, op in reversed(list(enumerate(block.ops))):
            if self._is_backward_op(op) and \
                    self.op_role_var_key in op.attr_names:
                op_role_var = op.all_attrs()[self.op_role_var_key]

                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0

271
                offset = idx
272
                for i in range(0, len(op_role_var), 2):
273 274
                    param = block.vars[op_role_var[i]]
                    grad = block.vars[op_role_var[i + 1]]
275 276 277
                    if param.is_distributed:
                        continue

278 279 280 281 282 283 284 285 286 287 288 289 290
                    if offset == idx:
                        offset += 1
                        block._insert_op(
                            offset,
                            type='c_sync_calc_stream',
                            inputs={'X': grad},
                            outputs={'Out': grad},
                            attrs={self.op_role_key: OpRole.Backward})
                        offset += 1

                    # As we search ops reversedly, we should insert c_allreduce_sum
                    # op in the same way to keep the ring_id alternate
                    ring_id = (ring_id + 1) % self.nrings
291
                    block._insert_op(
292 293 294 295
                        offset,
                        type='c_allreduce_sum',
                        inputs={'X': grad},
                        outputs={'Out': grad},
296
                        attrs={
297 298
                            'ring_id': ring_id,
                            self.op_role_key: OpRole.Backward
299
                        })
300 301 302

        if grad is None:
            return
303 304 305

        for idx, op in enumerate(block.ops):
            if self._is_optimizer_op(op):
306 307 308 309 310 311 312 313 314 315
                for ring_id in range(self.nrings):
                    block._insert_op(
                        idx + ring_id,
                        type='c_sync_comm_stream',
                        inputs={'X': grad},
                        outputs={'Out': grad},
                        attrs={
                            'ring_id': ring_id,
                            self.op_role_key: OpRole.Backward
                        })
316 317 318 319 320 321 322
                break


class LocalSGD(Collective):
    '''
    '''

323 324
    def __init__(self, nrings=2):
        Collective.__init__(self, nrings)
325
        self.snapshot_key = '@SNAPSHOT'
H
hutuxian 已提交
326
        self.mode = "local_sgd"
327 328 329 330 331

    def _transpile_startup_program(self):
        Collective._transpile_startup_program(self)

        block = self.startup_program.global_block()
332
        non_dist_params = []
333
        for param in block.iter_parameters():
334 335
            if not param.is_distributed:
                non_dist_params.append(param)
336

337
        for param in non_dist_params:
338 339 340 341 342 343 344 345 346
            snapshot = block.create_var(
                name=self.snapshot_name(param.name),
                shape=param.shape,
                persistable=True,
                stop_gradient=True)
            block.append_op(
                type='assign',
                inputs={'X': [param]},
                outputs={'Out': [snapshot]},
347
                attrs={self.op_role_key: OpRole.Forward})
348 349 350 351 352 353 354

    def snapshot_name(self, param_name):
        return param_name + self.snapshot_key

    def _transpile_main_program(self):
        block = self.main_program.global_block()
        ordered_param_snapshot = []
355
        ring_id = -1
356 357 358
        for idx, op in reversed(list(enumerate(block.ops))):
            if self._is_update_op(op):
                param = block.vars[op.input('Param')[0]]
359 360 361
                if param.is_distributed:
                    continue

362 363 364 365
                snapshot = block.create_var(
                    name=self.snapshot_name(param.name),
                    shape=param.shape,
                    persistable=True,
366 367
                    stop_gradient=True,
                    dtype=param.dtype)
368 369 370 371 372 373 374

                block._insert_op(
                    idx + 1,
                    type='elementwise_sub',
                    inputs={'X': [snapshot],
                            'Y': [param]},
                    outputs={'Out': [param]},
375
                    attrs={self.op_role_key: OpRole.Optimize})
376 377 378 379 380
                block._insert_op(
                    idx + 2,
                    type='c_sync_calc_stream',
                    inputs={'X': param},
                    outputs={'Out': param},
381 382
                    attrs={self.op_role_key: OpRole.Optimize})
                ring_id = (ring_id + 1) % self.nrings
383 384
                block._insert_op(
                    idx + 3,
385
                    type='c_allreduce_sum',
386 387 388
                    inputs={'X': [param]},
                    outputs={'Out': [param]},
                    attrs={
389 390
                        'ring_id': ring_id,
                        self.op_role_key: OpRole.Optimize
391 392 393 394
                    })

                ordered_param_snapshot.append((param, snapshot))

395 396 397 398 399 400 401
        for ring_id in range(self.nrings):
            block.append_op(
                type='c_sync_comm_stream',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={'ring_id': ring_id,
                       self.op_role_key: OpRole.Optimize})
402 403 404 405 406 407 408 409 410 411

        for param_snapshot in reversed(ordered_param_snapshot):
            param = param_snapshot[0]
            snapshot = param_snapshot[1]
            block.append_op(
                type='scale',
                inputs={'X': [param]},
                outputs={'Out': [param]},
                attrs={
                    'scale': 1.0 / self.nranks,
412
                    self.op_role_key: OpRole.Optimize
413 414 415 416 417 418
                })
            block.append_op(
                type='elementwise_sub',
                inputs={'X': [snapshot],
                        'Y': [param]},
                outputs={'Out': [param]},
419
                attrs={self.op_role_key: OpRole.Optimize})
420 421 422 423
            block.append_op(
                type='assign',
                inputs={'X': [param]},
                outputs={'Out': [snapshot]},
424
                attrs={self.op_role_key: OpRole.Optimize})
H
hutuxian 已提交
425 426 427 428 429 430 431


class SingleProcessMultiThread(GradAllReduce):
    '''
    '''

    def __init__(self):
H
hutuxian 已提交
432
        GradAllReduce.__init__(self, 1)
H
hutuxian 已提交
433 434 435 436 437
        self.mode = "single_process_multi_thread"

    def _transpile_startup_program(self):
        block = self.startup_program.global_block()
        block.append_op(type='c_comm_init_all', attrs={'ring_id': 0})
438 439 440 441 442 443 444 445


class MultiThread(GradAllReduce):
    '''
    '''

    def __init__(self, nrings=1):
        GradAllReduce.__init__(self, nrings)
Y
yaoxuefeng 已提交
446
        self.mode = "single_process_multi_thread"
447 448 449 450 451 452 453 454

    def _transpile_startup_program(self):
        if len(self.endpoints) > 1:
            print("begin to _transpile_startup_program for multi-node")
            print("current_endpoint: ", self.current_endpoint)
            print("total endpoints: ", self.endpoints)
            print("rank: %d, ring_id: %d" % (self.rank, self.nrings))
            for ring_id in range(self.nrings):
Y
yaoxuefeng 已提交
455 456 457
                self._init_communicator(
                    self.startup_program, self.current_endpoint, self.endpoints,
                    self.rank, ring_id, self.wait_port, True)
458

459 460 461 462
        else:
            print("begin to _transpile_startup_program for single-node")
            block = self.startup_program.global_block()
            block.append_op(type='c_comm_init_all', attrs={'ring_id': 0})