collective.py 28.8 KB
Newer Older
1
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import math
from functools import reduce
18
import os
19 20 21 22 23 24 25 26 27 28

import collections
import logging

import numpy as np

from .. import core, unique_name
from ..framework import Program, default_main_program, default_startup_program
from .details import wait_server_ready

Y
yaoxuefeng 已提交
29
__all__ = ['GradAllReduce', 'LocalSGD', 'MultiThread']
30 31 32 33 34

OpRole = core.op_proto_and_checker_maker.OpRole


class Collective(object):
35
    ''' '''
36

37 38
    def __init__(self, nrings):
        self.nrings = nrings
39 40
        self.endpoints = None
        self.current_endpoint = None
F
Fan Zhang 已提交
41
        self.other_endpoints = None
42 43 44 45 46 47 48 49
        self.nranks = None
        self.rank = None
        self.startup_program = None
        self.main_program = None
        op_maker = core.op_proto_and_checker_maker
        self.op_role_key = op_maker.kOpRoleAttrName()
        self.op_role_var_key = op_maker.kOpRoleVarAttrName()

50 51 52 53 54 55 56 57 58
    def transpile(
        self,
        startup_program,
        main_program,
        rank,
        endpoints,
        current_endpoint,
        wait_port,
    ):
59 60 61 62 63 64 65 66 67 68 69 70 71
        # in case of '127.0.0.1:6700,127.0.0.1:6701,...'
        if isinstance(endpoints, str):
            endpoints = endpoints.split(',')

        self.startup_program = startup_program
        if startup_program is None:
            self.startup_program = default_startup_program()

        self.main_program = main_program
        if main_program is None:
            self.main_program = default_main_program()

        self.nranks = len(endpoints)
72 73 74 75 76
        if (
            self.nranks == 1
            and self.mode != "single_process_multi_thread"
            and self.mode != "box"
        ):
77 78 79 80 81 82 83
            raise ValueError('the number of endpoints must > 1')

        if rank < 0:
            raise ValueError('rank must >= 0')
        self.rank = rank

        if current_endpoint not in endpoints:
84 85 86 87 88
            raise ValueError(
                'current endpoint %s is not in %s',
                current_endpoint,
                str(endpoints),
            )
89 90 91 92

        self.endpoints = endpoints
        self.current_endpoint = current_endpoint

F
Fan Zhang 已提交
93 94 95 96 97 98
        if current_endpoint:
            nranks = len(endpoints)
            other_endpoints = endpoints[:]
            other_endpoints.remove(current_endpoint)
            self.other_endpoints = other_endpoints

99 100 101 102 103 104 105 106 107 108 109 110
        self.wait_port = wait_port

        self.startup_program._origin_program = self.startup_program.clone()
        self._transpile_startup_program()

        self.main_program._origin_program = self.main_program.clone()
        self._transpile_main_program()

    def _transpile_main_program(self):
        raise NotImplementedError('call the inherited method of subclasses')

    def _transpile_startup_program(self):
111
        for ring_id in range(self.nrings):
112 113 114 115 116 117 118 119
            self._init_communicator(
                self.startup_program,
                self.current_endpoint,
                self.endpoints,
                self.rank,
                ring_id,
                self.wait_port,
            )
120 121
        self._broadcast_params()

122 123 124 125 126 127 128 129 130 131
    def _init_communicator(
        self,
        program,
        current_endpoint,
        endpoints,
        rank,
        ring_id,
        wait_port,
        has_multitrainer=False,
    ):
132 133 134
        nranks = len(endpoints)
        other_endpoints = endpoints[:]
        other_endpoints.remove(current_endpoint)
135 136
        block = program.global_block()

137 138 139 140
        if rank == 0 and wait_port:
            wait_server_ready(other_endpoints)

        block = program.global_block()
141
        if core.is_compiled_with_npu():
142 143 144 145 146
            hccl_id_var = block.create_var(
                name=unique_name.generate('hccl_id'),
                persistable=True,
                type=core.VarDesc.VarType.RAW,
            )
147
            endpoint_to_index_map = {e: idx for idx, e in enumerate(endpoints)}
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
            block.append_op(
                type='c_gen_hccl_id',
                inputs={},
                outputs={'Out': hccl_id_var},
                attrs={
                    'rank': rank,
                    'endpoint': current_endpoint,
                    'other_endpoints': other_endpoints,
                    self.op_role_key: OpRole.Forward,
                },
            )
            block.append_op(
                type='c_comm_init_hccl',
                inputs={'X': hccl_id_var},
                outputs={},
                attrs={
                    'rank': rank,
                    'ring_id': ring_id,
                    'device_id': int(os.getenv("FLAGS_selected_npus")),
                    'rank_ids': nranks,
                    self.op_role_key: OpRole.Forward,
                },
            )
171
        else:
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
            nccl_id_var = block.create_var(
                name=unique_name.generate('nccl_id'),
                persistable=True,
                type=core.VarDesc.VarType.RAW,
            )
            block.append_op(
                type='c_gen_nccl_id',
                inputs={},
                outputs={'Out': nccl_id_var},
                attrs={
                    'rank': rank,
                    'endpoint': current_endpoint,
                    'other_endpoints': other_endpoints,
                    self.op_role_key: OpRole.Forward,
                },
            )
Y
yaoxuefeng 已提交
188
            if not has_multitrainer:
189 190 191 192 193 194 195 196 197 198 199
                block.append_op(
                    type='c_comm_init',
                    inputs={'X': nccl_id_var},
                    outputs={},
                    attrs={
                        'nranks': nranks,
                        'rank': rank,
                        'ring_id': ring_id,
                        self.op_role_key: OpRole.Forward,
                    },
                )
Y
yaoxuefeng 已提交
200
            else:
201 202 203 204 205 206 207 208 209 210 211
                block.append_op(
                    type='c_comm_init_multitrainer',
                    inputs={'X': nccl_id_var},
                    outputs={},
                    attrs={
                        'ntrainers': nranks,
                        'trainer_id': rank,
                        'ring_id': ring_id,
                        self.op_role_key: OpRole.Forward,
                    },
                )
212 213 214

    def _broadcast_params(self):
        block = self.startup_program.global_block()
215 216
        ring_id = -1
        for param in block.iter_parameters():
217 218 219
            if param.is_distributed:
                continue

220
            ring_id = (ring_id + 1) % self.nrings
221 222 223 224 225 226 227 228 229 230
            block.append_op(
                type='c_broadcast',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={
                    'ring_id': ring_id,
                    'root': 0,
                    self.op_role_key: OpRole.Forward,
                },
            )
231 232

        for ring_id in range(self.nrings):
233 234 235 236 237 238
            block.append_op(
                type='c_sync_comm_stream',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={'ring_id': ring_id, self.op_role_key: OpRole.Forward},
            )
239 240 241 242 243 244 245 246

    def _is_loss_grad_op(self, op):
        if self.op_role_key not in op.attr_names:
            return False
        op_role = int(op.all_attrs()[self.op_role_key])
        return op_role & int(OpRole.Backward) and op_role & int(OpRole.Loss)

    def _is_backward_op(self, op):
247 248 249
        return self.op_role_key in op.attr_names and int(
            op.all_attrs()[self.op_role_key]
        ) & int(OpRole.Backward)
250 251

    def _is_update_op(self, op):
252 253 254 255 256
        return (
            'Param' in op.input_names
            and 'Grad' in op.input_names
            and "LearningRate" in op.input_names
        )
257 258

    def _is_optimizer_op(self, op):
259 260 261
        return self.op_role_key in op.attr_names and int(
            op.all_attrs()[self.op_role_key]
        ) & int(OpRole.Optimize)
262 263 264


class GradAllReduce(Collective):
265
    ''' '''
266

267 268
    def __init__(self, nrings=2):
        Collective.__init__(self, nrings)
H
hutuxian 已提交
269
        self.mode = "grad_allreduce"
270 271 272 273 274 275 276 277 278 279 280 281 282 283

    def _transpile_main_program(self):
        self._insert_scale_loss_grad_ops()
        self._insert_allreduce_ops()

    def _insert_scale_loss_grad_ops(self):
        '''
        In order to keep the learning rate consistent in different numbers of
        training workers, we scale the loss grad by the number of workers
        '''
        block = self.main_program.global_block()
        for idx, op in reversed(list(enumerate(block.ops))):
            if self._is_loss_grad_op(op):
                loss_grad_var = block.vars[op.output_arg_names[0]]
284 285 286 287 288 289 290 291 292 293
                block._insert_op(
                    idx + 1,
                    type='scale',
                    inputs={'X': loss_grad_var},
                    outputs={'Out': loss_grad_var},
                    attrs={
                        'scale': 1.0 / self.nranks,
                        self.op_role_key: OpRole.Backward,
                    },
                )
294 295 296

    def _insert_allreduce_ops(self):
        block = self.main_program.global_block()
297 298
        ring_id = -1
        grad = None
299
        for idx, op in reversed(list(enumerate(block.ops))):
300 301 302 303
            if (
                self._is_backward_op(op)
                and self.op_role_var_key in op.attr_names
            ):
304 305 306 307 308 309
                op_role_var = op.all_attrs()[self.op_role_var_key]

                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0

310
                offset = idx
311
                for i in range(0, len(op_role_var), 2):
312 313
                    param = block.vars[op_role_var[i]]
                    grad = block.vars[op_role_var[i + 1]]
314 315 316
                    if param.is_distributed:
                        continue

317 318 319 320 321 322 323
                    if offset == idx:
                        offset += 1
                        block._insert_op(
                            offset,
                            type='c_sync_calc_stream',
                            inputs={'X': grad},
                            outputs={'Out': grad},
324 325
                            attrs={self.op_role_key: OpRole.Backward},
                        )
326 327 328 329 330
                        offset += 1

                    # As we search ops reversedly, we should insert c_allreduce_sum
                    # op in the same way to keep the ring_id alternate
                    ring_id = (ring_id + 1) % self.nrings
331 332 333 334 335 336 337 338 339 340
                    block._insert_op(
                        offset,
                        type='c_allreduce_sum',
                        inputs={'X': grad},
                        outputs={'Out': grad},
                        attrs={
                            'ring_id': ring_id,
                            self.op_role_key: OpRole.Backward,
                        },
                    )
341 342 343

        if grad is None:
            return
344 345 346

        for idx, op in enumerate(block.ops):
            if self._is_optimizer_op(op):
347
                for ring_id in range(self.nrings):
348 349 350 351 352 353 354 355 356 357
                    block._insert_op(
                        idx + ring_id,
                        type='c_sync_comm_stream',
                        inputs={'X': grad},
                        outputs={'Out': grad},
                        attrs={
                            'ring_id': ring_id,
                            self.op_role_key: OpRole.Backward,
                        },
                    )
358 359 360 361
                break


class LocalSGD(Collective):
362
    ''' '''
363

364 365
    def __init__(self, nrings=2):
        Collective.__init__(self, nrings)
366
        self.snapshot_key = '@SNAPSHOT'
H
hutuxian 已提交
367
        self.mode = "local_sgd"
368 369 370 371 372

    def _transpile_startup_program(self):
        Collective._transpile_startup_program(self)

        block = self.startup_program.global_block()
373
        non_dist_params = []
374
        for param in block.iter_parameters():
375 376
            if not param.is_distributed:
                non_dist_params.append(param)
377

378
        for param in non_dist_params:
379 380 381 382 383 384 385 386 387 388 389 390
            snapshot = block.create_var(
                name=self.snapshot_name(param.name),
                shape=param.shape,
                persistable=True,
                stop_gradient=True,
            )
            block.append_op(
                type='assign',
                inputs={'X': [param]},
                outputs={'Out': [snapshot]},
                attrs={self.op_role_key: OpRole.Forward},
            )
391 392 393 394 395 396 397

    def snapshot_name(self, param_name):
        return param_name + self.snapshot_key

    def _transpile_main_program(self):
        block = self.main_program.global_block()
        ordered_param_snapshot = []
398
        ring_id = -1
399 400 401
        for idx, op in reversed(list(enumerate(block.ops))):
            if self._is_update_op(op):
                param = block.vars[op.input('Param')[0]]
402 403 404
                if param.is_distributed:
                    continue

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
                snapshot = block.create_var(
                    name=self.snapshot_name(param.name),
                    shape=param.shape,
                    persistable=True,
                    stop_gradient=True,
                    dtype=param.dtype,
                )

                block._insert_op(
                    idx + 1,
                    type='elementwise_sub',
                    inputs={'X': [snapshot], 'Y': [param]},
                    outputs={'Out': [param]},
                    attrs={self.op_role_key: OpRole.Optimize},
                )
                block._insert_op(
                    idx + 2,
                    type='c_sync_calc_stream',
                    inputs={'X': param},
                    outputs={'Out': param},
                    attrs={self.op_role_key: OpRole.Optimize},
                )
427
                ring_id = (ring_id + 1) % self.nrings
428 429 430 431 432 433 434 435 436 437
                block._insert_op(
                    idx + 3,
                    type='c_allreduce_sum',
                    inputs={'X': [param]},
                    outputs={'Out': [param]},
                    attrs={
                        'ring_id': ring_id,
                        self.op_role_key: OpRole.Optimize,
                    },
                )
438 439 440

                ordered_param_snapshot.append((param, snapshot))

441
        for ring_id in range(self.nrings):
442 443 444 445 446 447
            block.append_op(
                type='c_sync_comm_stream',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={'ring_id': ring_id, self.op_role_key: OpRole.Optimize},
            )
448 449 450 451

        for param_snapshot in reversed(ordered_param_snapshot):
            param = param_snapshot[0]
            snapshot = param_snapshot[1]
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
            block.append_op(
                type='scale',
                inputs={'X': [param]},
                outputs={'Out': [param]},
                attrs={
                    'scale': 1.0 / self.nranks,
                    self.op_role_key: OpRole.Optimize,
                },
            )
            block.append_op(
                type='elementwise_sub',
                inputs={'X': [snapshot], 'Y': [param]},
                outputs={'Out': [param]},
                attrs={self.op_role_key: OpRole.Optimize},
            )
            block.append_op(
                type='assign',
                inputs={'X': [param]},
                outputs={'Out': [snapshot]},
                attrs={self.op_role_key: OpRole.Optimize},
            )
H
hutuxian 已提交
473 474 475


class SingleProcessMultiThread(GradAllReduce):
476
    ''' '''
H
hutuxian 已提交
477 478

    def __init__(self):
H
hutuxian 已提交
479
        GradAllReduce.__init__(self, 1)
H
hutuxian 已提交
480 481 482 483 484
        self.mode = "single_process_multi_thread"

    def _transpile_startup_program(self):
        block = self.startup_program.global_block()
        block.append_op(type='c_comm_init_all', attrs={'ring_id': 0})
485 486 487


class MultiThread(GradAllReduce):
488
    ''' '''
489

D
danleifeng 已提交
490
    def __init__(self, nrings=1, trans_mode="all_reduce"):
491
        GradAllReduce.__init__(self, nrings)
D
danleifeng 已提交
492 493 494
        self.mode = "box"
        self.trans_mode = trans_mode
        self.fuse_grad_size_in_num = 128
495 496 497
        gpu_nums = os.getenv("FLAGS_selected_gpus", "0,1,2,3,4,5,6,7,8").split(
            ","
        )
D
danleifeng 已提交
498
        self.gpu_num = len(gpu_nums)
499 500 501 502 503 504 505 506

    def _transpile_startup_program(self):
        if len(self.endpoints) > 1:
            print("begin to _transpile_startup_program for multi-node")
            print("current_endpoint: ", self.current_endpoint)
            print("total endpoints: ", self.endpoints)
            print("rank: %d, ring_id: %d" % (self.rank, self.nrings))
            for ring_id in range(self.nrings):
507 508 509 510 511 512 513 514 515
                self._init_communicator(
                    self.startup_program,
                    self.current_endpoint,
                    self.endpoints,
                    self.rank,
                    ring_id,
                    self.wait_port,
                    True,
                )
516

517
        else:
F
Fan Zhang 已提交
518 519
            if "xpu" in self.trans_mode:
                print(
520 521
                    "begin to _transpile_startup_program for single-node in XPU"
                )
F
Fan Zhang 已提交
522 523
                block = self.startup_program.global_block()
                block.append_op(
524
                    type='c_comm_init_all',
F
Fan Zhang 已提交
525
                    attrs={
526 527 528 529 530 531 532 533
                        'devices': list(
                            map(
                                int, os.getenv("FLAGS_selected_gpus").split(",")
                            )
                        ),
                        'ring_id': 0,
                    },
                )
F
Fan Zhang 已提交
534 535 536 537
            else:
                print("begin to _transpile_startup_program for single-node")
                block = self.startup_program.global_block()
                block.append_op(type='c_comm_init_all', attrs={'ring_id': 0})
D
danleifeng 已提交
538 539 540 541 542 543 544 545 546 547 548

    def _transpile_main_program(self):
        self._insert_scale_loss_grad_ops()
        if self.trans_mode == "all_gather":
            print("begin to transpile in all-gather mode")
            self.allgather_ranks = self.nranks * self.gpu_num
            self._insert_allgather_ops()
            self._update_adam_ops()
        elif self.trans_mode == "fuse_all_reduce":
            print("begin to transpile in fuse all-reduce mode")
            self._insert_fuse_allreduce_ops()
549 550 551 552
        elif (
            self.trans_mode == "all_reduce_xpu"
            and len(os.getenv("FLAGS_selected_gpus").split(",")) == 1
        ):
553 554 555
            print(
                "skip transpile in all-reduce-xpu mode when number of devices is only one"
            )
D
danleifeng 已提交
556 557 558 559 560 561 562 563 564 565 566 567
        else:
            print("begin to transpile in all-reduce mode")
            self._insert_allreduce_ops()

    def _insert_allgather_ops(self):
        """
        insert allgather op to the main_program
        """
        block = self.main_program.global_block()
        ring_id = -1
        grad = None
        for idx, op in reversed(list(enumerate(block.ops))):
568 569 570 571
            if (
                self._is_backward_op(op)
                and self.op_role_var_key in op.attr_names
            ):
D
danleifeng 已提交
572 573 574 575 576 577 578 579 580 581 582 583 584
                op_role_var = op.all_attrs()[self.op_role_var_key]
                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0

                offset = idx
                for i in range(0, len(op_role_var), 2):
                    param = block.vars[op_role_var[i]]
                    new_grad_var = block.create_var(
                        name=op_role_var[i] + "_allgather",
                        shape=[self.allgather_ranks] + list(param.shape),
                        persistable=False,
                        dtype=core.VarDesc.VarType.FP32,
585 586
                        stop_gradient=True,
                    )
D
danleifeng 已提交
587 588 589 590 591 592 593 594 595 596 597
                    grad = block.vars[op_role_var[i + 1]]
                    if param.is_distributed:  # no need to care: used in PLSC
                        continue

                    if offset == idx:
                        offset += 1
                        block._insert_op(
                            offset,
                            type='c_sync_calc_stream',
                            inputs={'X': grad},
                            outputs={'Out': grad},
598 599
                            attrs={self.op_role_key: OpRole.Backward},
                        )
D
danleifeng 已提交
600 601 602 603 604
                        offset += 1

                    # As we search ops reversedly, we should insert c_allgather
                    # op in the same way to keep the ring_id alternate
                    ring_id = (ring_id + 1) % self.nrings
605 606 607 608 609 610 611 612 613 614 615
                    block._insert_op(
                        offset,
                        type='c_allgather',
                        inputs={'X': grad},
                        outputs={'Out': new_grad_var},
                        attrs={
                            'nranks': self.allgather_ranks,
                            'ring_id': ring_id,
                            self.op_role_key: OpRole.Backward,
                        },
                    )
D
danleifeng 已提交
616 617 618 619 620 621 622

        if grad is None:
            return

        for idx, op in enumerate(block.ops):
            if self._is_optimizer_op(op):
                for ring_id in range(self.nrings):
623 624 625 626 627 628 629 630 631 632
                    block._insert_op(
                        idx + ring_id,
                        type='c_sync_comm_stream',
                        inputs={'X': grad},
                        outputs={'Out': grad},
                        attrs={
                            'ring_id': ring_id,
                            self.op_role_key: OpRole.Backward,
                        },
                    )
D
danleifeng 已提交
633 634 635 636 637 638 639 640 641 642 643
                break

    def _update_adam_ops(self):
        """
        remove the original adam op, and add new adam ops
        """
        block = self.main_program.global_block()

        for idx, op in reversed(list(enumerate(block.ops))):
            if self._is_optimizer_op(op):
                offset = idx
644 645 646
                if (
                    op.type != 'adam' and op.type != 'lamb'
                ):  # filter out scale op
D
danleifeng 已提交
647 648 649 650 651 652 653 654
                    continue
                param_name = op.input("Param")[0]
                inputs = {
                    "Param": block.vars[op.input("Param")[0]],
                    "LearningRate": block.vars[op.input("LearningRate")[0]],
                    "Moment1": block.vars[op.input("Moment1")[0]],
                    "Moment2": block.vars[op.input("Moment2")[0]],
                    "Beta1Pow": block.vars[op.input("Beta1Pow")[0]],
655
                    "Beta2Pow": block.vars[op.input("Beta2Pow")[0]],
D
danleifeng 已提交
656 657 658 659 660 661
                }
                outputs = {
                    "ParamOut": block.vars[op.output("ParamOut")[0]],
                    "Moment1Out": block.vars[op.output("Moment1Out")[0]],
                    "Moment2Out": block.vars[op.output("Moment2Out")[0]],
                    "Beta1PowOut": block.vars[op.output("Beta1PowOut")[0]],
662
                    "Beta2PowOut": block.vars[op.output("Beta2PowOut")[0]],
D
danleifeng 已提交
663 664
                }
                attrs = {
665 666 667 668 669 670 671
                    "epsilon": op.attr('epsilon'),
                    "beta1": op.attr('beta1'),
                    "beta2": op.attr('beta2'),
                    "lazy_mode": op.attr('lazy_mode'),
                    "min_row_size_to_use_multithread": op.attr(
                        'min_row_size_to_use_multithread'
                    ),
D
danleifeng 已提交
672 673 674 675 676 677 678
                }
                split_vars = [
                    block.create_var(
                        name=param_name + "_" + str(i),
                        shape=block.vars[op.input("Param")[0]].shape,
                        persistable=False,
                        dtype=core.VarDesc.VarType.FP32,
679 680 681
                        stop_gradient=True,
                    )
                    for i in range(self.allgather_ranks)
D
danleifeng 已提交
682
                ]
683 684 685 686 687 688 689 690 691
                block._insert_op(
                    offset,
                    type="split",
                    inputs={
                        'X': block.vars[op.input("Param")[0] + "_allgather"]
                    },
                    outputs={'Out': split_vars},
                    attrs={'num': self.allgather_ranks, 'axis': 0},
                )
D
danleifeng 已提交
692 693 694 695
                offset += 1

                for i in range(self.allgather_ranks):
                    inputs["Grad"] = split_vars[i]
696 697 698 699 700 701 702
                    block._insert_op(
                        offset,
                        type=op.type,
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                    )
D
danleifeng 已提交
703 704 705 706 707 708 709 710 711 712 713 714 715 716
                    offset += 1
                # remove the original adam op
                block._remove_op(offset)

    def _insert_fuse_allreduce_ops(self):
        """
        insert coalesce_tensor and all reduce ops
        """
        block = self.main_program.global_block()
        ring_id = 0 % self.nrings
        grad = None
        param_grads = []
        # find all grad params
        for op in reversed(block.ops):
717 718 719 720
            if (
                self._is_backward_op(op)
                and self.op_role_var_key in op.attr_names
            ):
D
danleifeng 已提交
721 722 723
                op_role_var = op.all_attrs()[self.op_role_var_key]
                if len(op_role_var) == 0:
                    continue
724 725 726 727
                assert len(op_role_var) % 2 == 0, (
                    "vars need to be one param var followed by one grad var, "
                    "but got odd number of vars"
                )
D
danleifeng 已提交
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
                for i in range(0, len(op_role_var), 2):
                    param_name = op_role_var[i]
                    param = block.var(param_name)
                    grad_name = op_role_var[i + 1]
                    grad = block.var(grad_name)
                    if param.is_distributed:
                        continue
                    param_grads.append(grad)
        if grad is None:
            return

        segments = []
        last_dtype = None
        # split the grad based on dtype and fused size
        for var in param_grads:
743 744 745 746 747
            if (
                len(segments) == 0
                or len(segments[-1]) == self.fuse_grad_size_in_num
                or var.dtype != last_dtype
            ):
D
danleifeng 已提交
748 749 750 751 752 753 754 755 756 757
                segments.append([var])
                last_dtype = var.dtype
            else:
                segments[-1].append(var)

        fused_vars = []
        for idx, op in enumerate(block.ops):
            if self._is_optimizer_op(op):
                for segment in segments:
                    # insert coalesce tensor
758 759 760 761 762 763 764 765
                    tmp_var = block.create_var(
                        name=unique_name.generate(
                            'FusedOutput_{}'.format(segment[0].name)
                        ),
                        dtype=segment[0].dtype,
                        persistable=False,
                        stop_gradient=True,
                    )
D
danleifeng 已提交
766
                    fused_vars.append(tmp_var)
767 768 769 770 771 772 773 774 775 776 777 778
                    block._insert_op(
                        idx,
                        type="coalesce_tensor",
                        inputs={"Input": segment},
                        outputs={"Output": segment, "FusedOutput": tmp_var},
                        attrs={
                            "copy_data": True,
                            "use_align": True,
                            "dtype": segment[0].dtype,
                            self.op_role_key: OpRole.Backward,
                        },
                    )
D
danleifeng 已提交
779 780 781 782 783 784
                break

        # insert the allreduce_sum op
        for idx, op in enumerate(block.ops):
            if self._is_optimizer_op(op):
                for fused_var in fused_vars:
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
                    block._insert_op(
                        idx,
                        type='c_allreduce_sum',
                        inputs={'X': fused_var},
                        outputs={'Out': fused_var},
                        attrs={
                            'ring_id': ring_id,
                            'use_calc_stream': False,
                            self.op_role_key: OpRole.Backward,
                        },
                    )
                    block._insert_op(
                        idx,
                        type='c_sync_calc_stream',
                        inputs={'X': fused_var},
                        outputs={'Out': fused_var},
                        attrs={self.op_role_key: OpRole.Backward},
                    )
D
danleifeng 已提交
803 804 805 806 807 808 809 810 811
                break

        if len(fused_vars) == 0:
            block._sync_with_cpp()
            return

        # insert the sync comm op
        for idx, op in enumerate(block.ops):
            if self._is_optimizer_op(op):
812 813 814 815 816 817 818 819 820 821
                block._insert_op(
                    idx,
                    type='c_sync_comm_stream',
                    inputs={'X': fused_vars[0]},
                    outputs={'Out': fused_vars[0]},
                    attrs={
                        'ring_id': ring_id,
                        self.op_role_key: OpRole.Backward,
                    },
                )
D
danleifeng 已提交
822 823
                break
        block._sync_with_cpp()