elementwise_op.cc 10.3 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
    http://www.apache.org/licenses/LICENSE-2.0
N
nhzlx 已提交
8 9 10 11 12 13 14 15

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
16
#include "paddle/fluid/inference/tensorrt/plugin/elementwise_op_plugin.h"
N
nhzlx 已提交
17 18 19 20 21

namespace paddle {
namespace inference {
namespace tensorrt {

22 23 24 25 26 27 28 29 30 31 32 33 34
static bool CheckDims(const nvinfer1::Dims& dims_x,
                      const nvinfer1::Dims& dims_y) {
  if (dims_x.nbDims != dims_y.nbDims) {
    return false;
  }
  for (int i = 0; i < dims_x.nbDims; i++) {
    if (dims_x.d[i] != dims_y.d[i]) {
      return false;
    }
  }
  return true;
}

N
nhzlx 已提交
35 36 37 38 39 40 41
class ElementwiseWeightOpConverter : public OpConverter {
 public:
  ElementwiseWeightOpConverter() {}
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
    // Here the two nullptr looks strange, that's because the
    // framework::OpDesc's constructor is strange.
42
    nvinfer1::ILayer* layer = nullptr;
N
nhzlx 已提交
43
    framework::OpDesc op_desc(op, nullptr);
44
    VLOG(3) << "Convert a fluid elementwise op to TensorRT IScaleLayer";
N
nhzlx 已提交
45 46 47 48 49 50 51

    PADDLE_ENFORCE_EQ(op_desc.Input("X").size(), 1);
    PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1);  // Y is a weight
    PADDLE_ENFORCE_EQ(op_desc.Output("Out").size(), 1);

    auto* X = engine_->GetITensor(op_desc.Input("X").front());
    nvinfer1::Dims dims_x = X->getDimensions();
52 53
    PADDLE_ENFORCE(dims_x.nbDims >= 3, "x dims experts 3, but %d is given.",
                   dims_x.nbDims);
N
nhzlx 已提交
54 55 56 57

    auto* Y_v = scope.FindVar(op_desc.Input("Y").front());
    PADDLE_ENFORCE_NOT_NULL(Y_v);
    auto* Y_t = Y_v->GetMutable<framework::LoDTensor>();
N
nhzlx 已提交
58 59

    platform::CPUPlace cpu_place;
N
nhzlx 已提交
60 61
    std::unique_ptr<framework::LoDTensor> weight_tensor(
        new framework::LoDTensor());
N
nhzlx 已提交
62
    weight_tensor->Resize(Y_t->dims());
N
nhzlx 已提交
63
    TensorCopySync((*Y_t), cpu_place, weight_tensor.get());
N
nhzlx 已提交
64 65
    auto* weight_data =
        weight_tensor->mutable_data<float>(platform::CPUPlace());
N
nhzlx 已提交
66 67
    auto scale_mode = nvinfer1::ScaleMode::kELEMENTWISE;

N
nhzlx 已提交
68
    std::vector<int> dims_y = framework::vectorize2int(weight_tensor->dims());
N
nhzlx 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
    if (static_cast<int>(dims_y.size()) == dims_x.nbDims + 1) {
      if (dims_y[0] == 1) dims_y.erase(dims_y.begin());
    }

    if (static_cast<int>(dims_y.size()) == 1 && dims_y[0] == dims_x.d[0]) {
      scale_mode = nvinfer1::ScaleMode::kCHANNEL;
    } else if (static_cast<int>(dims_y.size()) == dims_x.nbDims &&
               dims_y[0] == dims_x.d[0]) {
      scale_mode = nvinfer1::ScaleMode::kELEMENTWISE;
      for (int i = 1; i < dims_x.nbDims; i++) {
        if (dims_y[i] != dims_x.d[i]) {
          scale_mode = nvinfer1::ScaleMode::kCHANNEL;
          break;
        }
      }
      if (scale_mode == nvinfer1::ScaleMode::kCHANNEL) {
        for (int i = 1; i < dims_x.nbDims; i++) {
          if (dims_y[i] != 1)
            PADDLE_THROW(
                "TensorRT unsupported weight shape for Elementwise op!");
        }
      }
    } else {
      PADDLE_THROW("TensorRT unsupported weight Shape for Elementwise op!");
    }

N
nhzlx 已提交
95 96 97
    TensorRTEngine::Weight shift_weights{
        nvinfer1::DataType::kFLOAT, static_cast<void*>(weight_data),
        weight_tensor->memory_size() / sizeof(float)};
N
nhzlx 已提交
98 99 100 101
    TensorRTEngine::Weight scale_weights{nvinfer1::DataType::kFLOAT, nullptr,
                                         0};
    TensorRTEngine::Weight power_weights{nvinfer1::DataType::kFLOAT, nullptr,
                                         0};
102 103 104 105 106 107 108 109 110 111 112
    if (op_type_ == "add") {
      nvinfer1::IScaleLayer* scale_layer = TRT_ENGINE_ADD_LAYER(
          engine_, Scale, *X, scale_mode, shift_weights.get(),
          scale_weights.get(), power_weights.get());
      layer = scale_layer;
    } else if (op_type_ == "mul") {
      nvinfer1::IScaleLayer* scale_layer = TRT_ENGINE_ADD_LAYER(
          engine_, Scale, *X, scale_mode, scale_weights.get(),
          shift_weights.get(), power_weights.get());
      layer = scale_layer;
    }
N
nhzlx 已提交
113 114

    auto output_name = op_desc.Output("Out")[0];
115 116
    layer->setName(
        ("elementwise_" + op_type_ + "(Output: " + output_name + ")").c_str());
117
    layer->getOutput(0)->setName(output_name.c_str());
N
nhzlx 已提交
118
    engine_->weight_map[op_desc.Input("Y").front()] = std::move(weight_tensor);
N
nhzlx 已提交
119 120 121 122 123 124
    engine_->SetITensor(output_name, layer->getOutput(0));
    if (test_mode) {  // the test framework can not determine which is the
                      // output, so place the declaration inside.
      engine_->DeclareOutput(output_name);
    }
  }
125 126 127

 protected:
  std::string op_type_;
N
nhzlx 已提交
128 129 130 131 132 133 134
};

class ElementwiseTensorOpConverter : public OpConverter {
 public:
  ElementwiseTensorOpConverter() {}
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
135 136 137
    auto op_pair = ops.find(op_type_);
    PADDLE_ENFORCE(op_pair != ops.end(), "Wrong elementwise op type!");

N
nhzlx 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150
    // Here the two nullptr looks strange, that's because the
    // framework::OpDesc's constructor is strange.
    framework::OpDesc op_desc(op, nullptr);

    PADDLE_ENFORCE_EQ(op_desc.Input("X").size(), 1);
    PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1);  // Y is a weight
    PADDLE_ENFORCE_EQ(op_desc.Output("Out").size(), 1);

    auto* X = engine_->GetITensor(op_desc.Input("X").front());
    auto* Y = engine_->GetITensor(op_desc.Input("Y").front());
    nvinfer1::Dims dims_x = X->getDimensions();
    nvinfer1::Dims dims_y = Y->getDimensions();

151 152 153 154 155
    int axis = boost::get<int>(op_desc.GetAttr("axis"));
    auto output_name = op_desc.Output("Out")[0];
    if (CheckDims(dims_x, dims_y)) {
      // The two input tensor should have the same dims
      VLOG(3) << "Convert a fluid elementwise op to TensorRT IElementWiseLayer";
N
nhzlx 已提交
156

157 158 159
      nvinfer1::IElementWiseLayer* layer = TRT_ENGINE_ADD_LAYER(
          engine_, ElementWise, *const_cast<nvinfer1::ITensor*>(X),
          *const_cast<nvinfer1::ITensor*>(Y), op_pair->second);
N
nhzlx 已提交
160

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
      layer->setName(("elementwise (Output: " + output_name + ")").c_str());
      layer->getOutput(0)->setName(output_name.c_str());
      engine_->SetITensor(output_name, layer->getOutput(0));
    } else {
      VLOG(3) << "Convert a fluid elementwise op to TensorRT "
                 "ElementWisePluginLayer";

      plugin::ElementWisePlugin* plugin =
          new plugin::ElementWisePlugin(op_pair->second, dims_x, dims_y, axis);
      plugin->AddInput(X);
      plugin->AddInput(Y);
      nvinfer1::IPluginLayer* layer = engine_->AddPlugin(
          const_cast<nvinfer1::ITensor* const*>(plugin->GetInputs().data()), 2,
          reinterpret_cast<plugin::PluginTensorRT*>(plugin));

      layer->setName(("elementwise (Output: " + output_name + ")").c_str());
      layer->getOutput(0)->setName(output_name.c_str());
      engine_->SetITensor(output_name, layer->getOutput(0));
    }
N
nhzlx 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
    if (test_mode) {  // the test framework can not determine which is the
                      // output, so place the declaration inside.
      engine_->DeclareOutput(output_name);
    }
  }

 protected:
  static const std::unordered_map<std::string, nvinfer1::ElementWiseOperation>
      ops;
  std::string op_type_;
};

const std::unordered_map<std::string, nvinfer1::ElementWiseOperation>
    ElementwiseTensorOpConverter::ops = {
        {"add", nvinfer1::ElementWiseOperation::kSUM},
        {"mul", nvinfer1::ElementWiseOperation::kPROD},
        {"sub", nvinfer1::ElementWiseOperation::kSUB},
        {"div", nvinfer1::ElementWiseOperation::kDIV},
        {"min", nvinfer1::ElementWiseOperation::kMIN},
        {"pow", nvinfer1::ElementWiseOperation::kPOW},
        {"max", nvinfer1::ElementWiseOperation::kMAX},
};

203 204 205 206 207 208 209 210 211 212
class ElementwiseWeightAddOpConverter : public ElementwiseWeightOpConverter {
 public:
  ElementwiseWeightAddOpConverter() { op_type_ = "add"; }
};

class ElementwiseWeightMulOpConverter : public ElementwiseWeightOpConverter {
 public:
  ElementwiseWeightMulOpConverter() { op_type_ = "mul"; }
};

N
nhzlx 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
class ElementwiseTensorAddOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorAddOpConverter() { op_type_ = "add"; }
};

class ElementwiseTensorMulOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorMulOpConverter() { op_type_ = "mul"; }
};

class ElementwiseTensorSubOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorSubOpConverter() { op_type_ = "sub"; }
};

class ElementwiseTensorDivOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorDivOpConverter() { op_type_ = "div"; }
};

class ElementwiseTensorMinOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorMinOpConverter() { op_type_ = "min"; }
};

class ElementwiseTensorMaxOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorMaxOpConverter() { op_type_ = "max"; }
};

class ElementwiseTensorPowOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorPowOpConverter() { op_type_ = "pow"; }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

252 253 254 255
REGISTER_TRT_OP_CONVERTER(elementwise_add_weight,
                          ElementwiseWeightAddOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_mul_weight,
                          ElementwiseWeightMulOpConverter);
N
nhzlx 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270

REGISTER_TRT_OP_CONVERTER(elementwise_add_tensor,
                          ElementwiseTensorAddOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_sub_tensor,
                          ElementwiseTensorSubOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_div_tensor,
                          ElementwiseTensorDivOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_mul_tensor,
                          ElementwiseTensorMulOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_max_tensor,
                          ElementwiseTensorMaxOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_min_tensor,
                          ElementwiseTensorMinOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_pow_tensor,
                          ElementwiseTensorPowOpConverter);