elementwise_op.cc 9.5 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
    http://www.apache.org/licenses/LICENSE-2.0
N
nhzlx 已提交
8 9 10 11 12 13 14 15

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
16
#include "paddle/fluid/inference/tensorrt/plugin/elementwise_op_plugin.h"
N
nhzlx 已提交
17 18 19 20 21

namespace paddle {
namespace inference {
namespace tensorrt {

22 23 24 25 26 27 28 29 30 31 32 33 34
static bool CheckDims(const nvinfer1::Dims& dims_x,
                      const nvinfer1::Dims& dims_y) {
  if (dims_x.nbDims != dims_y.nbDims) {
    return false;
  }
  for (int i = 0; i < dims_x.nbDims; i++) {
    if (dims_x.d[i] != dims_y.d[i]) {
      return false;
    }
  }
  return true;
}

N
nhzlx 已提交
35 36 37 38 39 40 41 42
class ElementwiseWeightOpConverter : public OpConverter {
 public:
  ElementwiseWeightOpConverter() {}
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
    // Here the two nullptr looks strange, that's because the
    // framework::OpDesc's constructor is strange.
    framework::OpDesc op_desc(op, nullptr);
43
    VLOG(3) << "Convert a fluid elementwise op to TensorRT IScaleLayer";
N
nhzlx 已提交
44 45 46 47 48 49 50

    PADDLE_ENFORCE_EQ(op_desc.Input("X").size(), 1);
    PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1);  // Y is a weight
    PADDLE_ENFORCE_EQ(op_desc.Output("Out").size(), 1);

    auto* X = engine_->GetITensor(op_desc.Input("X").front());
    nvinfer1::Dims dims_x = X->getDimensions();
51 52
    PADDLE_ENFORCE(dims_x.nbDims >= 3, "x dims experts 3, but %d is given.",
                   dims_x.nbDims);
N
nhzlx 已提交
53 54 55 56

    auto* Y_v = scope.FindVar(op_desc.Input("Y").front());
    PADDLE_ENFORCE_NOT_NULL(Y_v);
    auto* Y_t = Y_v->GetMutable<framework::LoDTensor>();
N
nhzlx 已提交
57 58

    platform::CPUPlace cpu_place;
N
nhzlx 已提交
59 60
    std::unique_ptr<framework::LoDTensor> weight_tensor(
        new framework::LoDTensor());
N
nhzlx 已提交
61
    weight_tensor->Resize(Y_t->dims());
N
nhzlx 已提交
62
    TensorCopySync((*Y_t), cpu_place, weight_tensor.get());
N
nhzlx 已提交
63 64
    auto* weight_data =
        weight_tensor->mutable_data<float>(platform::CPUPlace());
N
nhzlx 已提交
65 66
    auto scale_mode = nvinfer1::ScaleMode::kELEMENTWISE;

N
nhzlx 已提交
67
    std::vector<int> dims_y = framework::vectorize2int(weight_tensor->dims());
N
nhzlx 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    if (static_cast<int>(dims_y.size()) == dims_x.nbDims + 1) {
      if (dims_y[0] == 1) dims_y.erase(dims_y.begin());
    }

    if (static_cast<int>(dims_y.size()) == 1 && dims_y[0] == dims_x.d[0]) {
      scale_mode = nvinfer1::ScaleMode::kCHANNEL;
    } else if (static_cast<int>(dims_y.size()) == dims_x.nbDims &&
               dims_y[0] == dims_x.d[0]) {
      scale_mode = nvinfer1::ScaleMode::kELEMENTWISE;
      for (int i = 1; i < dims_x.nbDims; i++) {
        if (dims_y[i] != dims_x.d[i]) {
          scale_mode = nvinfer1::ScaleMode::kCHANNEL;
          break;
        }
      }
      if (scale_mode == nvinfer1::ScaleMode::kCHANNEL) {
        for (int i = 1; i < dims_x.nbDims; i++) {
          if (dims_y[i] != 1)
            PADDLE_THROW(
                "TensorRT unsupported weight shape for Elementwise op!");
        }
      }
    } else {
      PADDLE_THROW("TensorRT unsupported weight Shape for Elementwise op!");
    }

N
nhzlx 已提交
94 95 96
    TensorRTEngine::Weight shift_weights{
        nvinfer1::DataType::kFLOAT, static_cast<void*>(weight_data),
        weight_tensor->memory_size() / sizeof(float)};
N
nhzlx 已提交
97 98 99 100 101 102 103 104 105
    TensorRTEngine::Weight scale_weights{nvinfer1::DataType::kFLOAT, nullptr,
                                         0};
    TensorRTEngine::Weight power_weights{nvinfer1::DataType::kFLOAT, nullptr,
                                         0};

    nvinfer1::IScaleLayer* layer = TRT_ENGINE_ADD_LAYER(
        engine_, Scale, *const_cast<nvinfer1::ITensor*>(X), scale_mode,
        shift_weights.get(), scale_weights.get(), power_weights.get());
    auto output_name = op_desc.Output("Out")[0];
N
nhzlx 已提交
106

107 108
    layer->setName(("elementwise_add (Output: " + output_name + ")").c_str());
    layer->getOutput(0)->setName(output_name.c_str());
N
nhzlx 已提交
109
    engine_->weight_map[op_desc.Input("Y").front()] = std::move(weight_tensor);
N
nhzlx 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122
    engine_->SetITensor(output_name, layer->getOutput(0));
    if (test_mode) {  // the test framework can not determine which is the
                      // output, so place the declaration inside.
      engine_->DeclareOutput(output_name);
    }
  }
};

class ElementwiseTensorOpConverter : public OpConverter {
 public:
  ElementwiseTensorOpConverter() {}
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
123 124 125
    auto op_pair = ops.find(op_type_);
    PADDLE_ENFORCE(op_pair != ops.end(), "Wrong elementwise op type!");

N
nhzlx 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138
    // Here the two nullptr looks strange, that's because the
    // framework::OpDesc's constructor is strange.
    framework::OpDesc op_desc(op, nullptr);

    PADDLE_ENFORCE_EQ(op_desc.Input("X").size(), 1);
    PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1);  // Y is a weight
    PADDLE_ENFORCE_EQ(op_desc.Output("Out").size(), 1);

    auto* X = engine_->GetITensor(op_desc.Input("X").front());
    auto* Y = engine_->GetITensor(op_desc.Input("Y").front());
    nvinfer1::Dims dims_x = X->getDimensions();
    nvinfer1::Dims dims_y = Y->getDimensions();

139 140 141 142 143
    int axis = boost::get<int>(op_desc.GetAttr("axis"));
    auto output_name = op_desc.Output("Out")[0];
    if (CheckDims(dims_x, dims_y)) {
      // The two input tensor should have the same dims
      VLOG(3) << "Convert a fluid elementwise op to TensorRT IElementWiseLayer";
N
nhzlx 已提交
144

145 146 147
      nvinfer1::IElementWiseLayer* layer = TRT_ENGINE_ADD_LAYER(
          engine_, ElementWise, *const_cast<nvinfer1::ITensor*>(X),
          *const_cast<nvinfer1::ITensor*>(Y), op_pair->second);
N
nhzlx 已提交
148

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
      layer->setName(("elementwise (Output: " + output_name + ")").c_str());
      layer->getOutput(0)->setName(output_name.c_str());
      engine_->SetITensor(output_name, layer->getOutput(0));
    } else {
      VLOG(3) << "Convert a fluid elementwise op to TensorRT "
                 "ElementWisePluginLayer";

      plugin::ElementWisePlugin* plugin =
          new plugin::ElementWisePlugin(op_pair->second, dims_x, dims_y, axis);
      plugin->AddInput(X);
      plugin->AddInput(Y);
      nvinfer1::IPluginLayer* layer = engine_->AddPlugin(
          const_cast<nvinfer1::ITensor* const*>(plugin->GetInputs().data()), 2,
          reinterpret_cast<plugin::PluginTensorRT*>(plugin));

      layer->setName(("elementwise (Output: " + output_name + ")").c_str());
      layer->getOutput(0)->setName(output_name.c_str());
      engine_->SetITensor(output_name, layer->getOutput(0));
    }
N
nhzlx 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
    if (test_mode) {  // the test framework can not determine which is the
                      // output, so place the declaration inside.
      engine_->DeclareOutput(output_name);
    }
  }

 protected:
  static const std::unordered_map<std::string, nvinfer1::ElementWiseOperation>
      ops;
  std::string op_type_;
};

const std::unordered_map<std::string, nvinfer1::ElementWiseOperation>
    ElementwiseTensorOpConverter::ops = {
        {"add", nvinfer1::ElementWiseOperation::kSUM},
        {"mul", nvinfer1::ElementWiseOperation::kPROD},
        {"sub", nvinfer1::ElementWiseOperation::kSUB},
        {"div", nvinfer1::ElementWiseOperation::kDIV},
        {"min", nvinfer1::ElementWiseOperation::kMIN},
        {"pow", nvinfer1::ElementWiseOperation::kPOW},
        {"max", nvinfer1::ElementWiseOperation::kMAX},
};

class ElementwiseTensorAddOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorAddOpConverter() { op_type_ = "add"; }
};

class ElementwiseTensorMulOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorMulOpConverter() { op_type_ = "mul"; }
};

class ElementwiseTensorSubOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorSubOpConverter() { op_type_ = "sub"; }
};

class ElementwiseTensorDivOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorDivOpConverter() { op_type_ = "div"; }
};

class ElementwiseTensorMinOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorMinOpConverter() { op_type_ = "min"; }
};

class ElementwiseTensorMaxOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorMaxOpConverter() { op_type_ = "max"; }
};

class ElementwiseTensorPowOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorPowOpConverter() { op_type_ = "pow"; }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

REGISTER_TRT_OP_CONVERTER(elementwise_add_weight, ElementwiseWeightOpConverter);

REGISTER_TRT_OP_CONVERTER(elementwise_add_tensor,
                          ElementwiseTensorAddOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_sub_tensor,
                          ElementwiseTensorSubOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_div_tensor,
                          ElementwiseTensorDivOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_mul_tensor,
                          ElementwiseTensorMulOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_max_tensor,
                          ElementwiseTensorMaxOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_min_tensor,
                          ElementwiseTensorMinOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_pow_tensor,
                          ElementwiseTensorPowOpConverter);