test_recognize_digits.py 9.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Y
Yang Yu 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15 16
from __future__ import print_function

17
import paddle.fluid.core as core
18
import math
武毅 已提交
19
import os
20 21 22 23 24 25 26 27
import sys
import unittest

import numpy

import paddle
import paddle.fluid as fluid
from paddle.fluid.layers.device import get_places
Y
Yang Yu 已提交
28 29 30 31 32 33 34

BATCH_SIZE = 64


def loss_net(hidden, label):
    prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
Y
Yu Yang 已提交
35
    avg_loss = fluid.layers.mean(loss)
L
Liu Yiqun 已提交
36 37
    acc = fluid.layers.accuracy(input=prediction, label=label)
    return prediction, avg_loss, acc
Y
Yang Yu 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53


def mlp(img, label):
    hidden = fluid.layers.fc(input=img, size=200, act='tanh')
    hidden = fluid.layers.fc(input=hidden, size=200, act='tanh')
    return loss_net(hidden, label)


def conv_net(img, label):
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=img,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu")
Y
Yang Yang(Tony) 已提交
54
    conv_pool_1 = fluid.layers.batch_norm(conv_pool_1)
Y
Yang Yu 已提交
55 56 57 58 59 60 61 62 63 64
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu")
    return loss_net(conv_pool_2, label)


65 66 67 68 69
def train(nn_type,
          use_cuda,
          parallel,
          save_dirname=None,
          model_filename=None,
武毅 已提交
70 71
          params_filename=None,
          is_local=True):
72 73
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
Y
Yang Yu 已提交
74 75 76
    img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

77
    if nn_type == 'mlp':
Y
Yang Yu 已提交
78 79 80 81
        net_conf = mlp
    else:
        net_conf = conv_net

82
    if parallel:
83
        places = get_places()
Y
Yang Yu 已提交
84 85 86 87
        pd = fluid.layers.ParallelDo(places)
        with pd.do():
            img_ = pd.read_input(img)
            label_ = pd.read_input(label)
L
Liu Yiqun 已提交
88 89
            prediction, avg_loss, acc = net_conf(img_, label_)
            for o in [avg_loss, acc]:
Y
Yang Yu 已提交
90 91 92 93
                pd.write_output(o)

        avg_loss, acc = pd()
        # get mean loss and acc through every devices.
Y
Yu Yang 已提交
94 95
        avg_loss = fluid.layers.mean(avg_loss)
        acc = fluid.layers.mean(acc)
Y
Yang Yu 已提交
96
    else:
L
Liu Yiqun 已提交
97
        prediction, avg_loss, acc = net_conf(img, label)
Y
Yang Yu 已提交
98

99
    test_program = fluid.default_main_program().clone(for_test=True)
Y
Yang Yu 已提交
100

W
Wu Yi 已提交
101
    optimizer = fluid.optimizer.Adam(learning_rate=0.001, LARS_weight_decay=0.3)
W
Wu Yi 已提交
102
    optimizer.minimize(avg_loss)
Y
Yang Yu 已提交
103

104
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
Y
Yang Yu 已提交
105 106 107 108 109 110 111

    exe = fluid.Executor(place)

    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.mnist.train(), buf_size=500),
        batch_size=BATCH_SIZE)
Y
Yang Yu 已提交
112 113
    test_reader = paddle.batch(
        paddle.dataset.mnist.test(), batch_size=BATCH_SIZE)
Y
Yang Yu 已提交
114 115
    feeder = fluid.DataFeeder(feed_list=[img, label], place=place)

武毅 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    def train_loop(main_program):
        exe.run(fluid.default_startup_program())

        PASS_NUM = 100
        for pass_id in range(PASS_NUM):
            for batch_id, data in enumerate(train_reader()):
                # train a mini-batch, fetch nothing
                exe.run(main_program, feed=feeder.feed(data))
                if (batch_id + 1) % 10 == 0:
                    acc_set = []
                    avg_loss_set = []
                    for test_data in test_reader():
                        acc_np, avg_loss_np = exe.run(
                            program=test_program,
                            feed=feeder.feed(test_data),
                            fetch_list=[acc, avg_loss])
                        acc_set.append(float(acc_np))
                        avg_loss_set.append(float(avg_loss_np))
                    # get test acc and loss
                    acc_val = numpy.array(acc_set).mean()
                    avg_loss_val = numpy.array(avg_loss_set).mean()
                    if float(acc_val
                             ) > 0.2:  # Smaller value to increase CI speed
                        if save_dirname is not None:
                            fluid.io.save_inference_model(
                                save_dirname, ["img"], [prediction],
                                exe,
                                model_filename=model_filename,
                                params_filename=params_filename)
                        return
                    else:
147
                        print(
武毅 已提交
148 149
                            'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'.
                            format(pass_id, batch_id + 1,
150
                                   float(avg_loss_val), float(acc_val)))
武毅 已提交
151 152 153 154 155 156 157
                        if math.isnan(float(avg_loss_val)):
                            sys.exit("got NaN loss, training failed.")
        raise AssertionError("Loss of recognize digits is too large")

    if is_local:
        train_loop(fluid.default_main_program())
    else:
G
gongweibao 已提交
158 159
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
160 161 162 163
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
164
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
165
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
166 167
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
武毅 已提交
168
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
169
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
170 171 172 173 174 175 176 177
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
Y
Yang Yu 已提交
178 179


180 181 182 183
def infer(use_cuda,
          save_dirname=None,
          model_filename=None,
          params_filename=None):
L
Liu Yiqun 已提交
184 185 186
    if save_dirname is None:
        return

187
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
L
Liu Yiqun 已提交
188 189
    exe = fluid.Executor(place)

190 191 192 193 194 195
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
        # the feed_target_names (the names of variables that will be feeded
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
196 197 198
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(
             save_dirname, exe, model_filename, params_filename)
199 200 201 202 203 204 205 206 207 208 209 210

        # The input's dimension of conv should be 4-D or 5-D.
        # Use normilized image pixels as input data, which should be in the range [-1.0, 1.0].
        batch_size = 1
        tensor_img = numpy.random.uniform(
            -1.0, 1.0, [batch_size, 1, 28, 28]).astype("float32")

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)
211
        print("infer results: ", results[0])
L
Liu Yiqun 已提交
212 213


214
def main(use_cuda, parallel, nn_type, combine):
215 216 217
    save_dirname = None
    model_filename = None
    params_filename = None
218 219
    if not use_cuda and not parallel:
        save_dirname = "recognize_digits_" + nn_type + ".inference.model"
220
        if combine == True:
221 222
            model_filename = "__model_combined__"
            params_filename = "__params_combined__"
223

武毅 已提交
224
    # call train() with is_local argument to run distributed train
225 226 227 228
    train(
        nn_type=nn_type,
        use_cuda=use_cuda,
        parallel=parallel,
229
        save_dirname=save_dirname,
230 231
        model_filename=model_filename,
        params_filename=params_filename)
232 233 234
    infer(
        use_cuda=use_cuda,
        save_dirname=save_dirname,
235 236
        model_filename=model_filename,
        params_filename=params_filename)
237 238 239 240 241 242


class TestRecognizeDigits(unittest.TestCase):
    pass


243
def inject_test_method(use_cuda, parallel, nn_type, combine):
244 245 246 247 248 249
    def __impl__(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
250
                main(use_cuda, parallel, nn_type, combine)
251

252 253 254 255
    fn = 'test_{0}_{1}_{2}_{3}'.format(nn_type, 'cuda'
                                       if use_cuda else 'cpu', 'parallel'
                                       if parallel else 'normal', 'combine'
                                       if combine else 'separate')
256 257 258 259 260 261

    setattr(TestRecognizeDigits, fn, __impl__)


def inject_all_tests():
    for use_cuda in (False, True):
262 263
        if use_cuda and not core.is_compiled_with_cuda():
            continue
264 265
        for parallel in (False, True):
            for nn_type in ('mlp', 'conv'):
266 267
                inject_test_method(use_cuda, parallel, nn_type, True)

268
    # Two unit-test for saving parameters as separate files
269
    inject_test_method(False, False, 'mlp', False)
270
    inject_test_method(False, False, 'conv', False)
271 272 273 274 275 276


inject_all_tests()

if __name__ == '__main__':
    unittest.main()