test_jit_save_load.py 58.9 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

18
import os
19
import pickle
20
import shutil
21
import unittest
22
import tempfile
23
import numpy as np
L
Leo Chen 已提交
24
import paddle
25
from paddle.static import InputSpec
26
import paddle.fluid as fluid
27
from paddle.fluid.layers.utils import flatten
28
from paddle.fluid.dygraph import Linear
29
from paddle.fluid.dygraph import declarative, ProgramTranslator
30
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX, INFER_PARAMS_INFO_SUFFIX
W
WeiXin 已提交
31
from paddle.fluid import unique_name
32 33

BATCH_SIZE = 32
34
BATCH_NUM = 10
35 36 37
SEED = 10


38
def random_batch_reader(input_size, label_size):
39

40
    def _get_random_inputs_and_labels(input_size, label_size):
41
        np.random.seed(SEED)
42 43 44
        input = np.random.random(size=input_size).astype('float32')
        label = np.random.random(size=label_size).astype('int64')
        return input, label
45 46 47

    def __reader__():
        for _ in range(BATCH_NUM):
48 49 50
            batch_input, batch_label = _get_random_inputs_and_labels(
                [BATCH_SIZE, input_size], [BATCH_SIZE, label_size])
            yield batch_input, batch_label
51 52 53 54 55

    return __reader__


class LinearNet(fluid.dygraph.Layer):
56

57 58 59 60 61 62 63 64 65
    def __init__(self, in_size, out_size):
        super(LinearNet, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        return self._linear(x)


66
class LinearNetWithInputSpec(fluid.dygraph.Layer):
67

68 69 70 71 72 73 74 75 76
    def __init__(self, in_size, out_size):
        super(LinearNetWithInputSpec, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative(input_spec=[InputSpec(shape=[None, 784], dtype='float32')])
    def forward(self, x):
        return self._linear(x)


77
class LinearNetNotDeclarative(fluid.dygraph.Layer):
78

79 80 81 82 83 84 85 86
    def __init__(self, in_size, out_size):
        super(LinearNetNotDeclarative, self).__init__()
        self._linear = Linear(in_size, out_size)

    def forward(self, x):
        return self._linear(x)


87
class LinerNetWithLabel(paddle.nn.Layer):
88

89 90 91 92 93
    def __init__(self, in_size, out_size):
        super(LinerNetWithLabel, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative(input_spec=[
94 95
        InputSpec(shape=[None, 784], dtype='float32', name="image"),
        InputSpec(shape=[None, 1], dtype='int64', name="label")
96 97 98 99
    ])
    def forward(self, x, label):
        out = self._linear(x)
        loss = fluid.layers.cross_entropy(out, label)
100
        avg_loss = paddle.mean(loss)
101 102 103
        return out, avg_loss


C
Chen Weihang 已提交
104
class LinerNetWithPruneInput(paddle.nn.Layer):
105

C
Chen Weihang 已提交
106 107 108 109 110
    def __init__(self, in_size, out_size):
        super(LinerNetWithPruneInput, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative(input_spec=[
111 112
        InputSpec(shape=[None, 784], dtype='float32', name="image"),
        InputSpec(shape=[None, 1], dtype='int64', name="label")
C
Chen Weihang 已提交
113 114 115 116
    ])
    def forward(self, x, label):
        out = self._linear(x)
        loss = fluid.layers.cross_entropy(out, label)
117
        avg_loss = paddle.mean(loss)
C
Chen Weihang 已提交
118 119 120 121
        return out


class LinerNetWithUselessInput(paddle.nn.Layer):
122

C
Chen Weihang 已提交
123 124 125 126 127
    def __init__(self, in_size, out_size):
        super(LinerNetWithUselessInput, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative(input_spec=[
128 129
        InputSpec(shape=[None, 784], dtype='float32', name="image"),
        InputSpec(shape=[None, 1], dtype='int64', name="label")
C
Chen Weihang 已提交
130 131 132 133 134 135
    ])
    def forward(self, x, label):
        out = self._linear(x)
        return out


136
class LinearNetReturnLoss(fluid.dygraph.Layer):
137

138 139 140 141 142 143 144 145
    def __init__(self, in_size, out_size):
        super(LinearNetReturnLoss, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear(x)
        z = self._linear(y)
146
        loss = paddle.mean(z)
147 148 149
        return z, loss


150
class LinearNetMultiInput(fluid.dygraph.Layer):
151

152 153 154 155 156 157
    def __init__(self, in_size, out_size):
        super(LinearNetMultiInput, self).__init__()
        self._linear1 = Linear(in_size, out_size)
        self._linear2 = Linear(in_size, out_size)

    @declarative(input_spec=[
158 159
        InputSpec([None, 8], dtype='float32'),
        InputSpec([None, 8], dtype='float32')
160 161 162 163
    ])
    def forward(self, x, y):
        x_out = self._linear1(x)
        y_out = self._linear2(y)
164
        loss = paddle.mean(x_out + y_out)
165 166 167
        return x_out, y_out, loss


168
class LinearNetMultiInput1(fluid.dygraph.Layer):
169

170 171 172 173 174
    def __init__(self, in_size, out_size):
        super(LinearNetMultiInput1, self).__init__()
        self._linear1 = Linear(in_size, out_size)
        self._linear2 = Linear(in_size, out_size)

175 176
    @declarative(input_spec=(InputSpec([None, 8], dtype='float32'),
                             InputSpec([None, 8], dtype='float32')))
177 178 179
    def forward(self, x, y):
        x_out = self._linear1(x)
        y_out = self._linear2(y)
180
        loss = paddle.mean(x_out + y_out)
181 182 183
        return x_out, y_out, loss


184
class MultiLoadingLinearNet(fluid.dygraph.Layer):
185

186 187 188
    def __init__(self, size, model_path):
        super(MultiLoadingLinearNet, self).__init__()
        self._linear = Linear(size, size)
189 190
        self._load_linear1 = paddle.jit.load(model_path)
        self._load_linear2 = paddle.jit.load(model_path)
191 192 193 194 195 196 197 198 199 200 201

    @declarative
    def forward(self, x):
        tmp1 = self._linear(x)
        tmp2 = self._load_linear1(tmp1)
        tmp3 = self._load_linear2(tmp2)
        y = self._linear(tmp3)
        return y


class LinearNetReturnHidden(fluid.dygraph.Layer):
202

203 204 205 206 207 208 209 210 211
    def __init__(self, in_size, out_size):
        super(LinearNetReturnHidden, self).__init__()
        self._linear_1 = Linear(in_size, out_size)
        self._linear_2 = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear_1(x)
        z = self._linear_2(y)
212
        loss = paddle.mean(z)
213 214 215
        return y, loss


216
class LinearNetWithNestOut(fluid.dygraph.Layer):
217

218 219 220 221 222 223 224 225 226 227
    def __init__(self, in_size, out_size):
        super(LinearNetWithNestOut, self).__init__()
        self._linear_1 = Linear(in_size, out_size)
        self._linear_2 = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear_1(x)
        z = self._linear_2(y)
        out = y + z
228
        loss = paddle.mean(out)
229 230 231
        return y, [(z, loss), out]


232
class LinearNetWithDictInput(paddle.nn.Layer):
233

234 235 236 237 238
    def __init__(self, in_size, out_size):
        super(LinearNetWithDictInput, self).__init__()
        self._linear = Linear(in_size, out_size)

    @paddle.jit.to_static(input_spec=[{
239 240
        'img':
        InputSpec(shape=[None, 8], dtype='float32', name='img')
241
    }, {
242 243
        'label':
        InputSpec(shape=[None, 1], dtype='int64', name='label')
244 245 246 247 248 249 250 251
    }])
    def forward(self, img, label):
        out = self._linear(img['img'])
        # not return loss to avoid prune output
        loss = paddle.nn.functional.cross_entropy(out, label['label'])
        return out


252
class LinearNetWithDictInputNoPrune(paddle.nn.Layer):
253

254 255 256 257 258 259 260 261 262
    def __init__(self, in_size, out_size):
        super(LinearNetWithDictInputNoPrune, self).__init__()
        self._linear = Linear(in_size, out_size)

    def forward(self, img):
        out = self._linear(img['img'] + img['img2'])
        return out


263
class EmptyLayer(paddle.nn.Layer):
264

265 266 267 268 269 270 271 272 273
    def __init__(self):
        super(EmptyLayer, self).__init__()

    @paddle.jit.to_static
    def forward(self, x):
        return x


class NoParamLayer(paddle.nn.Layer):
274

275 276 277 278 279 280 281 282
    def __init__(self):
        super(NoParamLayer, self).__init__()

    @paddle.jit.to_static
    def forward(self, x, y):
        return x + y


283
class LinearNetWithMultiStaticFunc(fluid.dygraph.Layer):
284

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
    def __init__(self, in_size, out_size):
        super(LinearNetWithMultiStaticFunc, self).__init__()
        self._linear_0 = Linear(in_size, out_size)
        self._linear_1 = Linear(in_size, out_size)
        self._scale = paddle.to_tensor(9.9)

    @paddle.jit.to_static
    def forward(self, x):
        return self._linear_0(x)

    @paddle.jit.to_static
    def forward_no_param(self, x):
        return x

    @paddle.jit.to_static
    def forward_general(self, x):
        return self._linear_0(x) + self._linear_1(x) * self._scale


304
def train(layer, input_size=784, label_size=1):
305
    # create optimizer
306 307
    sgd = fluid.optimizer.SGDOptimizer(learning_rate=0.01,
                                       parameter_list=layer.parameters())
308 309
    # create data loader
    train_loader = fluid.io.DataLoader.from_generator(capacity=5)
310 311
    train_loader.set_batch_generator(random_batch_reader(
        input_size, label_size))
312 313 314 315 316 317 318 319
    # train
    for data in train_loader():
        img, label = data
        label.stop_gradient = True

        cost = layer(img)

        loss = fluid.layers.cross_entropy(cost, label)
320
        avg_loss = paddle.mean(loss)
321 322

        avg_loss.backward()
L
Leo Chen 已提交
323
        sgd.minimize(avg_loss)
324 325 326 327
        layer.clear_gradients()
    return [img], layer, avg_loss


328 329
def train_with_label(layer, input_size=784, label_size=1):
    # create optimizer
330 331
    sgd = fluid.optimizer.SGDOptimizer(learning_rate=0.01,
                                       parameter_list=layer.parameters())
332 333
    # create data loader
    train_loader = fluid.io.DataLoader.from_generator(capacity=5)
334 335
    train_loader.set_batch_generator(random_batch_reader(
        input_size, label_size))
336 337 338 339 340 341 342 343 344 345 346 347 348
    # train
    for data in train_loader():
        img, label = data
        label.stop_gradient = True

        out, avg_loss = layer(img, label)

        avg_loss.backward()
        sgd.minimize(avg_loss)
        layer.clear_gradients()
    return out


349
class TestJitSaveLoad(unittest.TestCase):
350

351
    def setUp(self):
352 353 354
        self.temp_dir = tempfile.TemporaryDirectory()
        self.model_path = os.path.join(self.temp_dir.name,
                                       "test_jit_save_load/model")
355 356 357
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
358
        paddle.seed(SEED)
L
Leo Chen 已提交
359
        paddle.framework.random._manual_program_seed(SEED)
360

361 362 363
    def tearDown(self):
        self.temp_dir.cleanup()

364
    def train_and_save_model(self, model_path=None):
365 366
        layer = LinearNet(784, 1)
        example_inputs, layer, _ = train(layer)
367
        final_model_path = model_path if model_path else self.model_path
368
        orig_input_types = [type(x) for x in example_inputs]
369 370 371
        paddle.jit.save(layer=layer,
                        path=final_model_path,
                        input_spec=example_inputs)
372 373
        new_input_types = [type(x) for x in example_inputs]
        self.assertEqual(orig_input_types, new_input_types)
374 375
        return layer

376
    def test_save_load(self):
377 378 379
        # train and save model
        train_layer = self.train_and_save_model()
        # load model
380
        loaded_layer = paddle.jit.load(self.model_path)
381 382 383 384 385
        self.load_and_inference(train_layer, loaded_layer)
        self.load_dygraph_state_dict(train_layer)
        self.load_and_finetune(train_layer, loaded_layer)

    def load_and_inference(self, train_layer, infer_layer):
386
        train_layer.eval()
387
        infer_layer.eval()
388 389 390
        # inference & compare
        x = fluid.dygraph.to_variable(
            np.random.random((1, 784)).astype('float32'))
391 392 393
        np.testing.assert_array_equal(
            train_layer(x).numpy(),
            infer_layer(x).numpy())
394

395 396
    def load_and_finetune(self, train_layer, load_train_layer):
        train_layer.train()
397 398
        load_train_layer.train()
        # train & compare
L
Leo Chen 已提交
399 400
        img0, _, train_loss = train(train_layer)
        img1, _, load_train_loss = train(load_train_layer)
401 402
        np.testing.assert_array_equal(train_loss.numpy(),
                                      load_train_loss.numpy())
403

404 405
    def load_dygraph_state_dict(self, train_layer):
        train_layer.eval()
406
        # construct new model
407
        new_layer = LinearNet(784, 1)
408
        orig_state_dict = new_layer.state_dict()
409
        load_state_dict = paddle.load(self.model_path)
410 411 412
        for structured_name in orig_state_dict:
            self.assertTrue(structured_name in load_state_dict)
        new_layer.set_state_dict(load_state_dict)
413 414 415 416
        new_layer.eval()
        # inference & compare
        x = fluid.dygraph.to_variable(
            np.random.random((1, 784)).astype('float32'))
417 418 419
        np.testing.assert_array_equal(
            train_layer(x).numpy(),
            new_layer(x).numpy())
420

421
    def test_load_dygraph_no_path(self):
422 423
        model_path = os.path.join(self.temp_dir.name,
                                  "test_jit_save_load.no_path/model_path")
424 425 426
        with self.assertRaises(ValueError):
            model_dict, _ = fluid.dygraph.load_dygraph(model_path)

427
    def test_jit_load_no_path(self):
428 429
        path = os.path.join(self.temp_dir.name,
                            "test_jit_save_load.no_path/model_path")
430 431 432
        with self.assertRaises(ValueError):
            loaded_layer = paddle.jit.load(path)

433

434
class TestSaveLoadWithNestOut(unittest.TestCase):
435

436 437 438
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()
439 440 441 442
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
443 444 445 446 447 448 449 450 451

    def test_nest_output(self):
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))

        net = LinearNetWithNestOut(8, 8)
        dy_outs = flatten(net(x))
        net = declarative(net, input_spec=[InputSpec([None, 8], name='x')])

452
        model_path = os.path.join(self.temp_dir.name, "net_with_nest_out/model")
453 454 455 456 457 458 459
        paddle.jit.save(net, model_path)

        load_net = paddle.jit.load(model_path)
        load_outs = flatten(load_net(x))

        self.assertTrue(len(dy_outs) == 4)
        for dy_out, load_out in zip(dy_outs, load_outs):
460 461 462
            np.testing.assert_allclose(dy_out.numpy(),
                                       load_out.numpy(),
                                       rtol=1e-05)
463 464


465
class TestSaveLoadWithDictInput(unittest.TestCase):
466

467
    def test_dict_input(self):
468
        # NOTE: This net cannot be executed, it is just
469 470 471
        # a special case for exporting models in model validation
        # We DO NOT recommend this writing way of Layer
        net = LinearNetWithDictInput(8, 8)
472 473 474
        # net.forward.concrete_program.inputs:
        # (<__main__.LinearNetWithDictInput object at 0x7f2655298a98>,
        #  {'img': var img : fluid.VarType.LOD_TENSOR.shape(-1, 8).astype(VarType.FP32)},
475 476
        #  {'label': var label : fluid.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)})
        self.assertEqual(len(net.forward.concrete_program.inputs), 3)
477 478 479
        temp_dir = tempfile.TemporaryDirectory()
        path = os.path.join(temp_dir.name,
                            "test_jit_save_load_with_dict_input/model")
480
        # prune inputs
481 482 483 484 485 486 487 488
        paddle.jit.save(layer=net,
                        path=path,
                        input_spec=[{
                            'img':
                            InputSpec(shape=[None, 8],
                                      dtype='float32',
                                      name='img')
                        }])
489 490 491 492 493 494 495 496

        img = paddle.randn(shape=[4, 8], dtype='float32')
        loaded_net = paddle.jit.load(path)
        loaded_out = loaded_net(img)

        # loaded_net._input_spec():
        # [InputSpec(shape=(-1, 8), dtype=VarType.FP32, name=img)]
        self.assertEqual(len(loaded_net._input_spec()), 1)
497
        temp_dir.cleanup()
498 499


500
class TestSaveLoadWithDictInputNoPrune(unittest.TestCase):
501

502 503
    def test_dict_input(self):
        net = LinearNetWithDictInputNoPrune(8, 8)
504 505 506
        temp_dir = tempfile.TemporaryDirectory()
        path = os.path.join(
            temp_dir.name, "test_jit_save_load_with_dict_input_no_prune/model")
507
        # prune inputs
508 509 510 511 512 513 514 515 516 517 518 519
        paddle.jit.save(layer=net,
                        path=path,
                        input_spec=[{
                            'img':
                            InputSpec(shape=[None, 8],
                                      dtype='float32',
                                      name='img'),
                            'img2':
                            InputSpec(shape=[None, 8],
                                      dtype='float32',
                                      name='img2')
                        }])
520 521 522 523 524 525 526

        img = paddle.randn(shape=[4, 8], dtype='float32')
        img2 = paddle.randn(shape=[4, 8], dtype='float32')
        loaded_net = paddle.jit.load(path)
        loaded_out = loaded_net(img, img2)

        self.assertEqual(len(loaded_net._input_spec()), 2)
527
        temp_dir.cleanup()
528 529


530
class TestSaveLoadWithInputSpec(unittest.TestCase):
531

532 533 534
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()
535 536 537 538
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
539 540 541 542

    def test_with_input_spec(self):
        net = LinearNetReturnLoss(8, 8)
        # set x.shape = [None, 8]
543 544
        net.forward = declarative(net.forward,
                                  input_spec=[InputSpec([None, 8], name='x')])
545

546 547
        model_path = os.path.join(self.temp_dir.name,
                                  "input_spec.output_spec/model")
548 549 550 551 552 553 554
        # check inputs and outputs
        self.assertTrue(len(net.forward.inputs) == 1)
        input_x = net.forward.inputs[0]
        self.assertTrue(input_x.shape == (-1, 8))
        self.assertTrue(input_x.name == 'x')

        # 1. prune loss
555 556
        output_spec = net.forward.outputs[:1]
        paddle.jit.save(net, model_path, output_spec=output_spec)
557 558

        # 2. load to infer
559
        infer_layer = paddle.jit.load(model_path)
560 561 562 563 564 565 566
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        pred = infer_layer(x)

    def test_multi_in_out(self):
        net = LinearNetMultiInput(8, 8)

567 568
        model_path = os.path.join(self.temp_dir.name,
                                  "multi_inout.output_spec1/model")
569 570 571 572 573 574 575 576
        # 1. check inputs and outputs
        self.assertTrue(len(net.forward.inputs) == 2)
        input_x = net.forward.inputs[0]
        input_y = net.forward.inputs[1]
        self.assertTrue(input_x.shape == (-1, 8))
        self.assertTrue(input_y.shape == (-1, 8))

        # 2. prune loss
577 578
        output_spec = net.forward.outputs[:2]
        paddle.jit.save(net, model_path, output_spec=output_spec)
579 580

        # 3. load to infer
581
        infer_layer = paddle.jit.load(model_path)
582 583 584 585 586 587 588 589
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        y = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        # 4. predict
        pred_x, pred_y = infer_layer(x, y)

        # 1. prune y and loss
590 591
        model_path = os.path.join(self.temp_dir.name,
                                  "multi_inout.output_spec2/model")
592 593
        output_spec = net.forward.outputs[:1]
        paddle.jit.save(net, model_path, [input_x], output_spec=output_spec)
594
        # 2. load again
595
        infer_layer2 = paddle.jit.load(model_path)
596 597 598 599
        # 3. predict
        pred_xx = infer_layer2(x)

        # 4. assert pred_x == pred_xx
600
        np.testing.assert_allclose(pred_x.numpy(), pred_xx.numpy(), rtol=1e-05)
601 602 603 604

    def test_multi_in_out1(self):
        net = LinearNetMultiInput1(8, 8)

605 606
        model_path = os.path.join(self.temp_dir.name,
                                  "multi_inout1.output_spec1/model")
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
        # 1. check inputs and outputs
        self.assertTrue(len(net.forward.inputs) == 2)
        input_x = net.forward.inputs[0]
        input_y = net.forward.inputs[1]
        self.assertTrue(input_x.shape == (-1, 8))
        self.assertTrue(input_y.shape == (-1, 8))

        # 2. prune loss
        output_spec = net.forward.outputs[:2]
        paddle.jit.save(net, model_path, output_spec=output_spec)

        # 3. load to infer
        infer_layer = paddle.jit.load(model_path)
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        y = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        # 4. predict
        pred_x, pred_y = infer_layer(x, y)

        # 1. prune y and loss
628 629
        model_path = os.path.join(self.temp_dir.name,
                                  "multi_inout1.output_spec2/model")
630 631 632 633 634 635 636 637
        output_spec = net.forward.outputs[:1]
        paddle.jit.save(net, model_path, (input_x, ), output_spec=output_spec)
        # 2. load again
        infer_layer2 = paddle.jit.load(model_path)
        # 3. predict
        pred_xx = infer_layer2(x)

        # 4. assert pred_x == pred_xx
638
        np.testing.assert_allclose(pred_x.numpy(), pred_xx.numpy(), rtol=1e-05)
639 640


641
class TestJitSaveLoadConfig(unittest.TestCase):
642

643 644 645 646
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
647
        paddle.seed(SEED)
L
Leo Chen 已提交
648
        paddle.framework.random._manual_program_seed(SEED)
649 650 651 652
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
653 654 655 656 657 658 659 660 661 662 663 664 665

    def test_output_spec(self):
        train_layer = LinearNetReturnLoss(8, 8)
        adam = fluid.optimizer.AdamOptimizer(
            learning_rate=0.1, parameter_list=train_layer.parameters())
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        for i in range(10):
            out, loss = train_layer(x)
            loss.backward()
            adam.minimize(loss)
            train_layer.clear_gradients()

666 667
        model_path = os.path.join(self.temp_dir.name,
                                  "save_load_config.output_spec")
668
        output_spec = [out]
669 670 671 672
        paddle.jit.save(layer=train_layer,
                        path=model_path,
                        input_spec=[x],
                        output_spec=output_spec)
673 674

        train_layer.eval()
675
        infer_layer = paddle.jit.load(model_path)
676 677
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
678 679 680
        np.testing.assert_array_equal(
            train_layer(x)[0].numpy(),
            infer_layer(x).numpy())
681

682 683
    def test_save_no_support_config_error(self):
        layer = LinearNet(784, 1)
684
        path = os.path.join(self.temp_dir.name, "no_support_config_test")
685 686 687 688
        with self.assertRaises(ValueError):
            paddle.jit.save(layer=layer, path=path, model_filename="")

    def test_load_empty_model_filename_error(self):
689
        path = os.path.join(self.temp_dir.name, "error_model_filename_test")
690 691 692 693
        with self.assertRaises(ValueError):
            paddle.jit.load(path, model_filename="")

    def test_load_empty_params_filename_error(self):
694
        path = os.path.join(self.temp_dir.name, "error_params_filename_test")
695 696 697 698
        with self.assertRaises(ValueError):
            paddle.jit.load(path, params_filename="")

    def test_load_with_no_support_config(self):
699
        path = os.path.join(self.temp_dir.name, "no_support_config_test")
700 701 702
        with self.assertRaises(ValueError):
            paddle.jit.load(path, separate_params=True)

703

704
class TestJitMultipleLoading(unittest.TestCase):
705

706 707
    def setUp(self):
        self.linear_size = 4
708 709 710
        self.temp_dir = tempfile.TemporaryDirectory()
        self.model_path = os.path.join(self.temp_dir.name,
                                       "jit_multi_load/model")
711 712 713
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
714
        paddle.seed(SEED)
L
Leo Chen 已提交
715
        paddle.framework.random._manual_program_seed(SEED)
716 717 718
        # train and save base model
        self.train_and_save_orig_model()

719 720 721
    def tearDown(self):
        self.temp_dir.cleanup()

722 723 724
    def train_and_save_orig_model(self):
        layer = LinearNet(self.linear_size, self.linear_size)
        example_inputs, layer, _ = train(layer, self.linear_size, 1)
725 726 727
        paddle.jit.save(layer=layer,
                        path=self.model_path,
                        input_spec=example_inputs)
728 729 730 731 732 733 734 735 736 737 738

    def test_load_model_retransform_inference(self):
        multi_loaded_layer = MultiLoadingLinearNet(self.linear_size,
                                                   self.model_path)
        state_dict = multi_loaded_layer.state_dict()
        name_set = set()
        for _, var in state_dict.items():
            self.assertTrue(var.name not in name_set)
            name_set.add(var.name)


739
class TestJitPruneModelAndLoad(unittest.TestCase):
740

741 742
    def setUp(self):
        self.linear_size = 4
743 744 745
        self.temp_dir = tempfile.TemporaryDirectory()
        self.model_path = os.path.join(self.temp_dir.name,
                                       "jit_prune_model_and_load/model")
746 747 748
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
749
        paddle.seed(SEED)
L
Leo Chen 已提交
750
        paddle.framework.random._manual_program_seed(SEED)
751

752 753 754
    def tearDown(self):
        self.temp_dir.cleanup()

755 756 757 758 759 760 761 762 763 764 765 766
    def train_and_save(self):
        train_layer = LinearNetReturnHidden(8, 8)
        adam = fluid.optimizer.AdamOptimizer(
            learning_rate=0.1, parameter_list=train_layer.parameters())
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        for i in range(10):
            hidden, loss = train_layer(x)
            loss.backward()
            adam.minimize(loss)
            train_layer.clear_gradients()

767
        output_spec = [hidden]
768 769 770 771
        paddle.jit.save(layer=train_layer,
                        path=self.model_path,
                        input_spec=[x],
                        output_spec=output_spec)
772 773 774 775 776 777 778

        return train_layer

    def test_load_pruned_model(self):
        train_layer = self.train_and_save()
        train_layer.eval()

779
        infer_layer = paddle.jit.load(self.model_path)
780 781 782

        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
783 784 785
        np.testing.assert_array_equal(
            train_layer(x)[0].numpy(),
            infer_layer(x).numpy())
786 787 788 789 790

    def test_load_var_not_in_extra_var_info(self):
        self.train_and_save()

        # chage extra var info
791
        var_info_path = self.model_path + INFER_PARAMS_INFO_SUFFIX
792 793 794 795 796 797 798
        with open(var_info_path, 'rb') as f:
            extra_var_info = pickle.load(f)
            extra_var_info.clear()
        with open(var_info_path, 'wb') as f:
            pickle.dump(extra_var_info, f, protocol=2)

        with self.assertRaises(RuntimeError):
799
            paddle.jit.load(self.model_path)
800 801


802
class TestJitSaveMultiCases(unittest.TestCase):
803

804 805 806 807
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
808
        paddle.seed(SEED)
809
        paddle.framework.random._manual_program_seed(SEED)
810 811 812 813
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
814

C
Chen Weihang 已提交
815 816 817 818 819
    def verify_inference_correctness(self,
                                     layer,
                                     model_path,
                                     with_label_and_loss=False,
                                     with_label=False):
820 821 822 823
        layer.eval()
        loaded_layer = paddle.jit.load(model_path)
        loaded_layer.eval()
        # inference & compare
Z
Zhou Wei 已提交
824
        x = paddle.to_tensor(np.random.random((1, 784)).astype('float32'))
C
Chen Weihang 已提交
825
        if with_label_and_loss:
Z
Zhou Wei 已提交
826
            y = paddle.to_tensor(np.random.random((1, 1)).astype('int64'))
827 828
            pred, _ = layer(x, y)
            pred = pred.numpy()
C
Chen Weihang 已提交
829 830 831 832
        elif with_label:
            y = paddle.to_tensor(np.random.random((1, 1)).astype('int64'))
            pred = layer(x, y)
            pred = pred.numpy()
833 834 835
        else:
            pred = layer(x).numpy()
        loaded_pred = loaded_layer(x).numpy()
836 837 838 839 840 841
        np.testing.assert_array_equal(
            pred,
            loaded_pred,
            err_msg=
            'Result diff when load and inference:\nlayer result:\n{}\nloaded layer result:\n{}'
            .format(pred, loaded_pred))
842 843 844 845 846 847

    def test_no_prune_to_static_after_train(self):
        layer = LinearNet(784, 1)

        train(layer)

848 849
        model_path = os.path.join(self.temp_dir.name,
                                  "test_no_prune_to_static_after_train/model")
850 851 852 853 854 855 856
        paddle.jit.save(layer, model_path)

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_to_static_no_train(self):
        layer = LinearNetWithInputSpec(784, 1)

857 858
        model_path = os.path.join(self.temp_dir.name,
                                  "test_no_prune_to_static_no_train/model")
859 860 861 862 863 864 865 866 867
        paddle.jit.save(layer, model_path)

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_after_train(self):
        layer = LinearNetNotDeclarative(784, 1)

        train(layer)

868 869
        model_path = os.path.join(
            self.temp_dir.name, "test_no_prune_no_to_static_after_train/model")
870 871 872
        paddle.jit.save(
            layer,
            model_path,
873
            input_spec=[InputSpec(shape=[None, 784], dtype='float32')])
874 875 876 877 878 879 880 881

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_after_train_with_examples(self):
        layer = LinearNetNotDeclarative(784, 1)

        example_inputs, _, _ = train(layer)

882 883 884
        model_path = os.path.join(
            self.temp_dir.name,
            "test_no_prune_no_to_static_after_train_with_examples/model")
885
        paddle.jit.save(layer=layer, path=model_path, input_spec=example_inputs)
886 887 888 889 890 891

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_no_train(self):
        layer = LinearNetNotDeclarative(784, 1)

892 893
        model_path = os.path.join(self.temp_dir.name,
                                  "test_no_prune_no_to_static_no_train/model")
894 895 896
        paddle.jit.save(
            layer,
            model_path,
897
            input_spec=[InputSpec(shape=[None, 784], dtype='float32')])
898 899 900 901 902 903 904 905

        self.verify_inference_correctness(layer, model_path)

    def test_prune_to_static_after_train(self):
        layer = LinerNetWithLabel(784, 1)

        out = train_with_label(layer)

906 907
        model_path = os.path.join(self.temp_dir.name,
                                  "test_prune_to_static_after_train/model")
908 909 910 911 912 913 914 915 916 917 918 919
        paddle.jit.save(layer,
                        model_path,
                        input_spec=[
                            InputSpec(shape=[None, 784],
                                      dtype='float32',
                                      name="image")
                        ],
                        output_spec=[out])

        self.verify_inference_correctness(layer,
                                          model_path,
                                          with_label_and_loss=True)
920 921 922 923

    def test_prune_to_static_no_train(self):
        layer = LinerNetWithLabel(784, 1)

924 925
        model_path = os.path.join(self.temp_dir.name,
                                  "test_prune_to_static_no_train/model")
926 927
        # TODO: no train, cannot get output_spec var here
        # now only can use index
928
        output_spec = layer.forward.outputs[:1]
929 930 931 932 933 934 935 936 937 938 939 940
        paddle.jit.save(layer,
                        model_path,
                        input_spec=[
                            InputSpec(shape=[None, 784],
                                      dtype='float32',
                                      name="image")
                        ],
                        output_spec=output_spec)

        self.verify_inference_correctness(layer,
                                          model_path,
                                          with_label_and_loss=True)
C
Chen Weihang 已提交
941 942 943 944

    def test_prune_input_to_static_no_train(self):
        layer = LinerNetWithPruneInput(784, 1)

945 946
        model_path = os.path.join(self.temp_dir.name,
                                  "test_prune_input_to_static_no_train/model")
947 948 949 950 951 952 953
        paddle.jit.save(layer,
                        model_path,
                        input_spec=[
                            InputSpec(shape=[None, 784],
                                      dtype='float32',
                                      name="image")
                        ])
C
Chen Weihang 已提交
954 955 956 957 958 959

        self.verify_inference_correctness(layer, model_path, with_label=True)

    def test_prune_useless_input_to_static_no_train(self):
        layer = LinerNetWithUselessInput(784, 1)

960 961 962
        model_path = os.path.join(
            self.temp_dir.name,
            "test_prune_useless_input_to_static_no_train/model")
963 964 965 966 967 968 969
        paddle.jit.save(layer,
                        model_path,
                        input_spec=[
                            InputSpec(shape=[None, 784],
                                      dtype='float32',
                                      name="image")
                        ])
C
Chen Weihang 已提交
970 971

        self.verify_inference_correctness(layer, model_path, with_label=True)
972 973 974 975 976 977

    def test_no_prune_input_spec_name_warning(self):
        layer = LinearNetWithInputSpec(784, 1)

        train(layer)

978 979
        model_path = os.path.join(
            self.temp_dir.name, "test_no_prune_input_spec_name_warning/model")
980 981 982
        paddle.jit.save(
            layer,
            model_path,
983 984 985 986 987 988 989 990
            input_spec=[InputSpec(shape=[None, 784], dtype='float32')])
        paddle.jit.save(layer,
                        model_path,
                        input_spec=[
                            InputSpec(shape=[None, 784],
                                      dtype='float32',
                                      name='feed_input')
                        ])
991 992 993 994 995 996 997 998

        self.verify_inference_correctness(layer, model_path)

    def test_not_prune_output_spec_name_warning(self):
        layer = LinearNet(784, 1)

        train(layer)

999 1000
        model_path = os.path.join(
            self.temp_dir.name, "test_not_prune_output_spec_name_warning/model")
Z
Zhou Wei 已提交
1001
        out = paddle.to_tensor(np.random.random((1, 1)).astype('float'))
1002
        paddle.jit.save(layer, model_path, output_spec=[out])
1003 1004 1005 1006 1007 1008

        self.verify_inference_correctness(layer, model_path)

    def test_prune_input_spec_name_error(self):
        layer = LinerNetWithLabel(784, 1)

1009 1010
        model_path = os.path.join(self.temp_dir.name,
                                  "test_prune_input_spec_name_error/model")
1011 1012 1013 1014
        with self.assertRaises(ValueError):
            paddle.jit.save(
                layer,
                model_path,
1015
                input_spec=[InputSpec(shape=[None, 784], dtype='float32')])
1016
        with self.assertRaises(ValueError):
1017 1018 1019 1020 1021 1022 1023
            paddle.jit.save(layer,
                            model_path,
                            input_spec=[
                                InputSpec(shape=[None, 784],
                                          dtype='float32',
                                          name='feed_input')
                            ])
1024 1025 1026 1027 1028 1029

    def test_prune_output_spec_name_error(self):
        layer = LinerNetWithLabel(784, 1)

        train_with_label(layer)

1030 1031
        model_path = os.path.join(self.temp_dir.name,
                                  "test_prune_to_static_after_train/model")
Z
Zhou Wei 已提交
1032
        out = paddle.to_tensor(np.random.random((1, 1)).astype('float'))
1033
        with self.assertRaises(ValueError):
1034 1035 1036 1037 1038 1039 1040 1041
            paddle.jit.save(layer,
                            model_path,
                            input_spec=[
                                InputSpec(shape=[None, 784],
                                          dtype='float32',
                                          name="image")
                            ],
                            output_spec=[out])
1042 1043


1044
class TestJitSaveLoadEmptyLayer(unittest.TestCase):
1045

1046
    def setUp(self):
1047 1048 1049
        self.temp_dir = tempfile.TemporaryDirectory()
        self.model_path = os.path.join(self.temp_dir.name,
                                       "jit_save_load_empty_layer/model")
1050 1051 1052
        # enable dygraph mode
        paddle.disable_static()

1053 1054 1055
    def tearDown(self):
        self.temp_dir.cleanup()

1056 1057
    def test_save_load_empty_layer(self):
        layer = EmptyLayer()
Z
Zhou Wei 已提交
1058
        x = paddle.to_tensor(np.random.random((10)).astype('float32'))
1059 1060 1061 1062
        out = layer(x)
        paddle.jit.save(layer, self.model_path)
        load_layer = paddle.jit.load(self.model_path)
        load_out = load_layer(x)
1063
        np.testing.assert_array_equal(out, load_out)
1064 1065 1066


class TestJitSaveLoadNoParamLayer(unittest.TestCase):
1067

1068
    def setUp(self):
1069 1070 1071
        self.temp_dir = tempfile.TemporaryDirectory()
        self.model_path = os.path.join(self.temp_dir.name,
                                       "jit_save_load_no_param_layer/model")
1072 1073 1074
        # enable dygraph mode
        paddle.disable_static()

1075 1076 1077
    def tearDown(self):
        self.temp_dir.cleanup()

1078 1079
    def test_save_load_no_param_layer(self):
        layer = NoParamLayer()
Z
Zhou Wei 已提交
1080 1081
        x = paddle.to_tensor(np.random.random((5)).astype('float32'))
        y = paddle.to_tensor(np.random.random((5)).astype('float32'))
1082 1083 1084 1085
        out = layer(x, y)
        paddle.jit.save(layer, self.model_path)
        load_layer = paddle.jit.load(self.model_path)
        load_out = load_layer(x, y)
1086
        np.testing.assert_array_equal(out, load_out)
1087 1088


1089
class TestJitSaveLoadMultiMethods(unittest.TestCase):
1090

1091 1092 1093
    def setUp(self):
        # enable dygraph mode
        paddle.disable_static()
1094 1095 1096 1097
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
1098 1099

    def test_jit_save_load_inference(self):
1100 1101
        model_path_inference = os.path.join(
            self.temp_dir.name, "jit_save_load_multi_methods/model")
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
        IMAGE_SIZE = 224
        layer = LinearNetWithMultiStaticFunc(IMAGE_SIZE, 10)
        inps = paddle.randn([1, IMAGE_SIZE])
        result_origin = {}
        for func in dir(layer):
            if func.startswith('forward'):
                result_origin[func] = getattr(layer, func, None)(inps)
        paddle.jit.save(layer, model_path_inference)
        load_net = paddle.jit.load(model_path_inference)
        for func, result in result_origin.items():
            self.assertTrue(
1113 1114
                float((result -
                       getattr(load_net, func, None)(inps)).abs().max()) < 1e-5)
1115 1116

    def test_jit_save_load_multi_methods_inputspec(self):
1117 1118
        model_path = os.path.join(self.temp_dir.name,
                                  'jit_save_load_multi_methods/model')
1119 1120
        layer = LinearNetWithMultiStaticFunc(784, 1)
        with self.assertRaises(ValueError):
1121 1122 1123
            paddle.jit.save(layer,
                            model_path,
                            input_spec=[InputSpec(shape=[None, 784])])
1124

1125
    def test_parse_name(self):
1126 1127
        model_path_inference = os.path.join(self.temp_dir.name,
                                            "jit_save_load_parse_name/model")
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
        IMAGE_SIZE = 224
        layer = LinearNet(IMAGE_SIZE, 1)
        inps = paddle.randn([1, IMAGE_SIZE])
        layer(inps)
        paddle.jit.save(layer, model_path_inference)
        paddle.jit.save(layer, model_path_inference + '_v2')
        load_net = paddle.jit.load(model_path_inference)

        self.assertFalse(hasattr(load_net, 'v2'))

1138

W
WeiXin 已提交
1139
class LayerSaved(paddle.nn.Layer):
1140

W
WeiXin 已提交
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
    def __init__(self, in_size, out_size):
        super(LayerSaved, self).__init__()
        self.hidden = 100
        self._linear_0 = Linear(in_size, self.hidden)
        self._linear_1_0 = Linear(self.hidden, self.hidden)
        self._linear_1_1 = Linear(self.hidden, self.hidden)
        self._linear_2 = Linear(self.hidden, out_size)
        self._scale = paddle.to_tensor(9.9)

    @paddle.jit.to_static
    def forward(self, x):
        y = self._linear_0(x)
        # Multiple blocks
1154
        if paddle.shape(x)[0] == 1:
W
WeiXin 已提交
1155 1156 1157 1158 1159 1160
            y = self._linear_1_0(y)
        else:
            y += self._linear_1_1(y + self._scale)
        return self._linear_2(y)


1161 1162 1163
class Net(paddle.nn.Layer):

    def __init__(self):
1164
        super().__init__()
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
        self.fc1 = paddle.nn.Linear(4, 4)
        self.fc2 = paddle.nn.Linear(4, 4)
        self.bias = 0.4
        self.flag = paddle.ones([2], dtype="int32")

    @paddle.jit.to_static(input_spec=[InputSpec([None, 4], dtype='float32')])
    def log_softmax(self, input):
        return paddle.nn.functional.log_softmax(input, axis=-1)

    @paddle.jit.to_static(input_spec=[InputSpec([None, 4], dtype='float32')])
    def forward(self, x):
        out = self.fc1(x)
        out = paddle.nn.functional.relu(out)
        out = paddle.mean(out)
        return out

    @paddle.jit.to_static(input_spec=[InputSpec([None, 4], dtype='float32')])
    def infer(self, input):
        out = self.fc2(input)
        out = out + self.bias
        out = paddle.mean(out)
        return out

    # For extra Python float
    @paddle.jit.to_static(property=True)
    def fbias(self):
        return self.bias + 1

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
    @paddle.jit.to_static(property=True)
    def down_sampling(self):
        return 4

    @paddle.jit.to_static(property=True)
    def fstr(self):
        return "save str property"

    @paddle.jit.to_static(property=True)
    def ints(self):
        return [10, 20]

    @paddle.jit.to_static(property=True)
    def floats(self):
        return [1.1, 2.2]

    @paddle.jit.to_static(property=True)
    def strs(self):
        return ["hello", "world"]


class NetTensor(paddle.nn.Layer):

    def __init__(self):
        super().__init__()
        self.fc1 = paddle.nn.Linear(4, 4)
        self.fc2 = paddle.nn.Linear(4, 4)
        self.bias = 0.4
        self.flag = paddle.ones([2], dtype="int32")

    @paddle.jit.to_static(input_spec=[InputSpec([None, 4], dtype='float32')])
    def forward(self, x):
        out = self.fc1(x)
        out = paddle.nn.functional.relu(out)
        out = paddle.mean(out)
        return out

1230 1231
    @paddle.jit.to_static(property=True)
    def fflag(self):
1232
        return True
1233 1234


1235
class TestJitSaveCombineProperty(unittest.TestCase):
1236 1237 1238 1239 1240 1241 1242 1243 1244

    def setUp(self):
        # enable dygraph mode
        paddle.disable_static()
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()

1245
    def test_jit_save_combine_property(self):
1246 1247 1248 1249 1250 1251
        model_path = os.path.join(self.temp_dir.name,
                                  "test_jit_save_combine/model")
        # Use new namespace
        with unique_name.guard():
            net = Net()
        #save
1252
        paddle.jit.save(net, model_path, combine_params=True)
1253

1254 1255 1256 1257 1258 1259 1260 1261 1262
    def test_jit_save_tensor_property(self):
        model_path = os.path.join(self.temp_dir.name,
                                  "test_jit_save_combine/model")
        # Use new namespace
        with unique_name.guard():
            net = NetTensor()

        paddle.jit.save(net, model_path, combine_params=True)

1263

W
WeiXin 已提交
1264
class LayerLoadFinetune(paddle.nn.Layer):
1265

W
WeiXin 已提交
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
    def __init__(self, in_size, out_size, load_path):
        super(LayerLoadFinetune, self).__init__()
        # Test duplicate name
        self._linear_0 = Linear(in_size, in_size)
        self._linear_1_0 = Linear(out_size, in_size)
        self._linear_1_1 = Linear(out_size, in_size)
        self._linear_2 = Linear(out_size, out_size)
        self._scale = paddle.to_tensor(9.9)

        # Load multiple times
        self._load_l1 = paddle.jit.load(load_path)
        self._load_l2 = paddle.jit.load(load_path)

    @paddle.jit.to_static
    def forward(self, x):
        y = self._linear_0(x)
        y = self._load_l1(y)
        # Multiple blocks
1284
        if paddle.shape(x)[0] == 1:
W
WeiXin 已提交
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
            y = self._linear_1_0(y)
            y = self._load_l1(y)
        else:
            y += self._linear_1_1(x + self._scale)
            y = self._load_l2(y)
        y = self._linear_1_0(y)
        y = self._load_l1(y)
        y = self._linear_1_0(y)
        # Use the same layer multiple times.
        y = self._load_l1(y)
        return y


1298
class TestJitSaveLoadSaveWithoutRunning(unittest.TestCase):
1299

1300 1301 1302
    def setUp(self):
        # enable dygraph mode
        paddle.disable_static()
1303 1304 1305 1306
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
1307 1308

    def test_save_load_finetune_load(self):
1309 1310
        model_path = os.path.join(
            self.temp_dir.name, "test_jit_save_load_save_without_running/model")
1311 1312 1313 1314 1315 1316 1317
        IMAGE_SIZE = 224
        inps0 = paddle.randn([1, IMAGE_SIZE])
        inps1 = paddle.randn([2, IMAGE_SIZE])
        # Use new namespace
        with unique_name.guard():
            layer_save = LayerSaved(IMAGE_SIZE, IMAGE_SIZE)
        #save
1318 1319 1320 1321 1322 1323
        paddle.jit.save(layer_save,
                        model_path,
                        input_spec=[
                            paddle.static.InputSpec(shape=[None, IMAGE_SIZE],
                                                    dtype='float32')
                        ])
1324 1325 1326 1327 1328
        result_00 = layer_save(inps0)
        result_01 = layer_save(inps1)
        #load and save without running
        with unique_name.guard():
            layer_load = paddle.jit.load(model_path)
1329 1330 1331 1332 1333 1334
            paddle.jit.save(layer_load,
                            model_path,
                            input_spec=[
                                paddle.static.InputSpec(
                                    shape=[None, IMAGE_SIZE], dtype='float32')
                            ])
1335 1336 1337 1338 1339 1340 1341 1342 1343
        #reload
        layer_reload = paddle.jit.load(model_path)
        result_10 = layer_reload(inps0)
        result_11 = layer_reload(inps1)

        self.assertTrue(float((result_00 - result_10).abs().max()) < 1e-5)
        self.assertTrue(float((result_01 - result_11).abs().max()) < 1e-5)


W
WeiXin 已提交
1344
class TestJitSaveLoadFinetuneLoad(unittest.TestCase):
1345

W
WeiXin 已提交
1346 1347 1348
    def setUp(self):
        # enable dygraph mode
        paddle.disable_static()
1349 1350 1351 1352
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
W
WeiXin 已提交
1353 1354

    def test_save_load_finetune_load(self):
1355 1356
        model_path = os.path.join(self.temp_dir.name,
                                  "test_jit_save_load_finetune_load/model")
W
WeiXin 已提交
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
        IMAGE_SIZE = 224
        inps0 = paddle.randn([1, IMAGE_SIZE])
        inps1 = paddle.randn([2, IMAGE_SIZE])
        # Use new namespace
        with unique_name.guard():
            layer_save = LayerSaved(IMAGE_SIZE, IMAGE_SIZE)
        layer_save(inps0)
        #save
        paddle.jit.save(layer_save, model_path)
        #load
        with unique_name.guard():
            layer_load = LayerLoadFinetune(IMAGE_SIZE, IMAGE_SIZE, model_path)
        #train
        train(layer_load, input_size=IMAGE_SIZE)
        result_00 = layer_load(inps0)
        result_01 = layer_load(inps1)
        #save
        paddle.jit.save(layer_load, model_path)
        #load
        layer_finetune = paddle.jit.load(model_path)
        result_10 = layer_finetune(inps0)
        result_11 = layer_finetune(inps1)

        self.assertTrue(float((result_00 - result_10).abs().max()) < 1e-5)
        self.assertTrue(float(((result_01 - result_11)).abs().max()) < 1e-5)


1384 1385 1386 1387
# NOTE(weixin): When there are multiple test functions in an
# `unittest.TestCase`, functions will affect each other,
# and there is a risk of random failure.
# So divided into three TestCase: TestJitSaveLoadFunctionCase1,
1388 1389
# TestJitSaveLoadFunctionCase2, TestJitSaveLoadFunctionCase3.
class TestJitSaveLoadFunctionCase1(unittest.TestCase):
1390

1391 1392
    def setUp(self):
        paddle.disable_static()
1393 1394 1395 1396
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
1397 1398

    def test_jit_save_load_static_function(self):
1399

1400 1401 1402 1403
        @paddle.jit.to_static
        def fun(inputs):
            return paddle.tanh(inputs)

1404 1405
        path = os.path.join(self.temp_dir.name,
                            'test_jit_save_load_function_1/func')
1406 1407 1408 1409 1410 1411 1412 1413 1414
        inps = paddle.rand([3, 6])
        origin = fun(inps)

        paddle.jit.save(fun, path)
        load_func = paddle.jit.load(path)

        load_result = load_func(inps)
        self.assertTrue((load_result - origin).abs().max() < 1e-10)

1415 1416

class TestJitSaveLoadFunctionCase2(unittest.TestCase):
1417

1418 1419
    def setUp(self):
        paddle.disable_static()
1420 1421 1422 1423
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
1424

1425
    def test_jit_save_load_function_input_spec(self):
1426

1427
        @paddle.jit.to_static(input_spec=[
1428
            InputSpec(shape=[None, 6], dtype='float32', name='x'),
1429 1430 1431 1432
        ])
        def fun(inputs):
            return paddle.nn.functional.relu(inputs)

1433 1434
        path = os.path.join(self.temp_dir.name,
                            'test_jit_save_load_function_2/func')
1435 1436 1437 1438 1439 1440 1441 1442
        inps = paddle.rand([3, 6])
        origin = fun(inps)

        paddle.jit.save(fun, path)
        load_func = paddle.jit.load(path)
        load_result = load_func(inps)
        self.assertTrue((load_result - origin).abs().max() < 1e-10)

1443 1444

class TestJitSaveLoadFunctionCase3(unittest.TestCase):
1445

1446 1447
    def setUp(self):
        paddle.disable_static()
1448 1449 1450 1451
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
1452

1453
    def test_jit_save_load_function_function(self):
1454

1455 1456 1457
        def fun(inputs):
            return paddle.tanh(inputs)

1458 1459
        path = os.path.join(self.temp_dir.name,
                            'test_jit_save_load_function_3/func')
1460 1461 1462
        inps = paddle.rand([3, 6])
        origin = fun(inps)

1463 1464 1465 1466 1467 1468 1469
        paddle.jit.save(fun,
                        path,
                        input_spec=[
                            InputSpec(shape=[None, 6],
                                      dtype='float32',
                                      name='x'),
                        ])
1470 1471 1472 1473 1474 1475
        load_func = paddle.jit.load(path)

        load_result = load_func(inps)
        self.assertTrue((load_result - origin).abs().max() < 1e-10)


1476
class TestJitSaveLoadFunctionWithParamCase1(unittest.TestCase):
1477

1478 1479
    def setUp(self):
        paddle.disable_static()
1480 1481 1482 1483
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
1484 1485

    def test_jit_save_load_function(self):
1486

1487
        class LinearNet(paddle.nn.Layer):
1488

1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
            def __init__(self):
                super(LinearNet, self).__init__()
                self._linear = paddle.nn.Linear(5, 6)

            def forward(self, x):
                return paddle.tanh(x)

            def anothor_forward(self, x):
                return self._linear(x)

        layer = LinearNet()

        inps = paddle.rand([3, 5])
        origin = layer.anothor_forward(inps)

1504 1505
        func = paddle.jit.to_static(layer.anothor_forward,
                                    [paddle.static.InputSpec(shape=[-1, 5])])
1506 1507 1508
        path = os.path.join(
            self.temp_dir.name,
            'test_jit_save_load_function_with_params_case1/func')
1509 1510 1511 1512
        paddle.jit.save(func, path)
        load_func = paddle.jit.load(path)

        load_result = load_func(inps)
1513
        np.testing.assert_array_equal(load_result.numpy(), origin.numpy())
1514 1515 1516


class TestJitSaveLoadFunctionWithParamCase2(unittest.TestCase):
1517

1518 1519
    def setUp(self):
        paddle.disable_static()
1520 1521 1522 1523
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
1524 1525

    def test_jit_save_load_function(self):
1526

1527
        class LinearNet(paddle.nn.Layer):
1528

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
            def __init__(self):
                super(LinearNet, self).__init__()
                self._linear = paddle.nn.Linear(5, 6)

            def forward(self, x):
                return paddle.tanh(x)

            @paddle.jit.to_static(input_spec=[InputSpec(shape=[-1, 5])])
            def anothor_forward(self, x):
                return self._linear(x)

        layer = LinearNet()

        inps = paddle.rand([3, 5])

1544 1545 1546
        path = os.path.join(
            self.temp_dir.name,
            'test_jit_save_load_function_with_params_case2/func')
1547 1548 1549 1550 1551 1552
        paddle.jit.save(layer.anothor_forward, path)
        origin_result = layer.anothor_forward(inps)
        load_func = paddle.jit.load(path)

        load_result = load_func(inps)

1553 1554
        np.testing.assert_array_equal(origin_result.numpy(),
                                      load_result.numpy())
1555 1556 1557


class TestJitSaveLoadFunctionWithParamCase3(unittest.TestCase):
1558

1559 1560
    def setUp(self):
        paddle.disable_static()
1561 1562 1563 1564
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
1565 1566

    def test_jit_save_load_function(self):
1567

1568
        class LinearNet(paddle.nn.Layer):
1569

1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
            def __init__(self):
                super(LinearNet, self).__init__()
                self._linear = paddle.nn.Linear(5, 6)

            def forward(self, x):
                return paddle.tanh(x)

            @paddle.jit.to_static
            def anothor_forward(self, x):
                return self._linear(x)

        layer = LinearNet()

        inps = paddle.rand([3, 5])
        origin = layer.anothor_forward(inps)

1586 1587 1588
        path = os.path.join(
            self.temp_dir.name,
            'test_jit_save_load_function_with_params_case3/func')
1589 1590 1591 1592
        paddle.jit.save(layer.anothor_forward, path)
        load_func = paddle.jit.load(path)

        load_result = load_func(inps)
1593
        np.testing.assert_array_equal(load_result.numpy(), origin.numpy())
1594 1595


1596
class TestJitSaveLoadDataParallel(unittest.TestCase):
1597

1598 1599 1600 1601 1602 1603
    def setUp(self):
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()

1604 1605 1606 1607 1608 1609 1610 1611
    def verify_inference_correctness(self, layer, path):
        layer.eval()
        loaded_layer = paddle.jit.load(path)
        loaded_layer.eval()
        # inference & compare
        x = paddle.to_tensor(np.random.random((1, 784)).astype('float32'))
        pred = layer(x).numpy()
        loaded_pred = loaded_layer(x).numpy()
1612 1613 1614 1615 1616 1617
        np.testing.assert_array_equal(
            pred,
            loaded_pred,
            err_msg=
            'Result diff when load and inference:\nlayer result:\n{}\nloaded layer result:\n{}'
            .format(pred, loaded_pred))
1618 1619 1620 1621

    def test_jit_save_data_parallel_with_inputspec(self):
        layer = LinearNetNotDeclarative(784, 1)
        layer = paddle.DataParallel(layer)
1622 1623
        path = os.path.join(self.temp_dir.name,
                            "jit_save_data_parallel_with_inputspec/model")
1624 1625 1626
        paddle.jit.save(layer=layer,
                        path=path,
                        input_spec=[InputSpec(shape=[None, 784])])
1627 1628 1629 1630 1631 1632 1633

        self.verify_inference_correctness(layer, path)

    def test_jit_save_data_parallel_with_to_static(self):
        layer = LinearNetWithInputSpec(784, 1)
        layer = paddle.DataParallel(layer)

1634 1635
        path = os.path.join(self.temp_dir.name,
                            "jit_save_data_parallel_with_to_static/model")
1636 1637 1638 1639 1640
        paddle.jit.save(layer, path)

        self.verify_inference_correctness(layer, path)


1641 1642 1643 1644 1645 1646
class InputSepcLayer(paddle.nn.Layer):
    '''
    A layer with InputSpec to test InputSpec compatibility
    '''

    @paddle.jit.to_static(input_spec=[
1647 1648
        InputSpec(shape=[None, 8], dtype='float32', name='x'),
        InputSpec(shape=[None, 1], dtype='float64', name='y')
1649 1650 1651 1652 1653 1654
    ])
    def forward(self, x, y):
        return x, y


class TestInputSpecCompatibility(unittest.TestCase):
1655

1656 1657 1658 1659 1660 1661
    def setUp(self):
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
    def _assert_input_spec_layer_return(self, expect_layer, test_layer):
        input_x = paddle.uniform([8, 8], dtype='float32')
        input_y = paddle.uniform([8, 1], dtype='float64')
        expected_result = expect_layer(input_x, input_y)
        test_result = test_layer(input_x, input_y)
        np.testing.assert_allclose(expected_result[0].numpy(),
                                   test_result[0].numpy())
        np.testing.assert_allclose(expected_result[1].numpy(),
                                   test_result[1].numpy())

    def test_jit_save_compatible_input_sepc(self):
        layer = InputSepcLayer()
1674 1675
        save_dir = os.path.join(self.temp_dir.name,
                                "jit_save_compatible_input_spec")
1676 1677 1678 1679 1680 1681 1682
        path = save_dir + "/model"

        paddle.jit.save(layer=layer, path=path)
        no_input_spec_layer = paddle.jit.load(path)
        self._assert_input_spec_layer_return(layer, no_input_spec_layer)
        shutil.rmtree(save_dir)

1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
        paddle.jit.save(layer=layer,
                        path=path,
                        input_spec=[
                            InputSpec(shape=[None, 8],
                                      dtype='float32',
                                      name='x'),
                            InputSpec(shape=[None, 1],
                                      dtype='float64',
                                      name='y')
                        ])
1693 1694 1695 1696
        same_input_spec_layer = paddle.jit.load(path)
        self._assert_input_spec_layer_return(layer, same_input_spec_layer)
        shutil.rmtree(save_dir)

1697 1698 1699 1700 1701 1702
        paddle.jit.save(layer=layer,
                        path=path,
                        input_spec=[
                            InputSpec(shape=[8, 8], dtype='float32'),
                            InputSpec(shape=[8, -1], dtype='float64')
                        ])
1703 1704 1705 1706 1707 1708
        compatible_input_spec_layer = paddle.jit.load(path)
        self._assert_input_spec_layer_return(layer, compatible_input_spec_layer)
        shutil.rmtree(save_dir)

    def test_jit_save_incompatible_input_sepc(self):
        layer = InputSepcLayer()
1709 1710
        save_dir = os.path.join(self.temp_dir.name,
                                "jit_save_compatible_input_spec")
1711 1712 1713 1714
        path = save_dir + "/model"

        with self.assertRaises(ValueError):
            # type mismatch
1715 1716 1717 1718 1719 1720
            paddle.jit.save(layer=layer,
                            path=path,
                            input_spec=[
                                InputSpec(shape=[None, 8], dtype='float64'),
                                InputSpec(shape=[None, 1], dtype='float64')
                            ])
1721 1722 1723

        with self.assertRaises(ValueError):
            # shape len mismatch
1724 1725 1726 1727 1728 1729
            paddle.jit.save(layer=layer,
                            path=path,
                            input_spec=[
                                InputSpec(shape=[None, 8, 1], dtype='float32'),
                                InputSpec(shape=[None, 1], dtype='float64')
                            ])
1730 1731 1732

        with self.assertRaises(ValueError):
            # shape mismatch
1733 1734 1735 1736 1737 1738
            paddle.jit.save(layer=layer,
                            path=path,
                            input_spec=[
                                InputSpec(shape=[None, 8], dtype='float32'),
                                InputSpec(shape=[None, 2], dtype='float64')
                            ])
1739 1740 1741 1742
        if os.path.exists(save_dir):
            shutil.rmtree(save_dir)


1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
class NotJitForward(paddle.nn.Layer):

    def __init__(self):
        super(NotJitForward, self).__init__()

    def forward(self, x, y):
        return x + y


class TestNotJitForward(unittest.TestCase):

    def setUp(self):
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()

    def test_jit_not_save_forward(self):
        layer = NotJitForward()

        save_dir = os.path.join(self.temp_dir.name, "jit_not_save_forward")
        path = save_dir + "/model"

        paddle.jit.save(layer=layer, path=path, skip_forward=True)

        self.assertTrue(not os.path.exists(path + ".pdmodel"))
        self.assertTrue(not os.path.exists(path + ".pdparam"))

        with self.assertRaises(ValueError):
            paddle.jit.load(path=path)

        shutil.rmtree(save_dir)


1777
if __name__ == '__main__':
1778 1779
    with fluid.framework._test_eager_guard():
        unittest.main()