common.py 65.6 KB
Newer Older
S
shiyutang 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
S
shiyutang 已提交
7
#    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define the common classes to build a neural network
16
import paddle
Z
zhiboniu 已提交
17
from ...fluid.dygraph import Flatten  # noqa: F401
18
from .. import functional as F
19
from ...fluid.framework import _dygraph_tracer
Z
zhiboniu 已提交
20
from paddle.nn import Layer
Z
zhiboniu 已提交
21
from paddle import in_dynamic_mode
22

23 24
__all__ = []

25

26
def _npairs(x, n):
27
    if isinstance(x, (paddle.Tensor, list, tuple)):
28 29 30 31 32
        return x
    x = [x] * (n * 2)
    return x


S
shiyutang 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
class Identity(Layer):
    r"""

    A placeholder identity operator that is argument-insensitive. For each input :math:`X` ,
    the output :math:`Out` is:

    .. math::

        Out = X

    Parameters:
        args: any argument (unused)
        kwargs: any keyword argument (unused)

    Shape:
        - input: Multi-dimentional tensor with shape :math:`[batch\_size, n1, n2, ...]` .
        - output: Multi-dimentional tensor with shape :math:`[batch\_size, n1, n2, ...]` .

    Examples:
        .. code-block:: python

          import paddle

          input_tensor = paddle.randn(shape=[3, 2])
          layer = paddle.nn.Identity()
          out = layer(input_tensor)
          # input_tensor: [[-0.32342386 -1.200079  ]
          #                [ 0.7979031  -0.90978354]
          #                [ 0.40597573  1.8095392 ]]
          # out: [[-0.32342386 -1.200079  ]
          #      [ 0.7979031  -0.90978354]
          #      [ 0.40597573  1.8095392 ]]


    """

    def __init__(self, *args, **kwargs):
        super(Identity, self).__init__()

    def forward(self, input):
        return input


Z
zhiboniu 已提交
76
class Linear(Layer):
77
    r"""
78 79 80

    Fully-connected linear transformation layer. For each input :math:`X` ,
    the equation is:
81 82 83

    .. math::

84
        Out = XW + b
85

86
    where :math:`W` is the weight and :math:`b` is the bias.
87

88 89 90 91 92 93 94
    Linear layer takes only one multi-dimensional tensor as input with the
    shape :math:`[batch\_size, *, in\_features]` , where :math:`*` means any
    number of additional dimensions. It multiplies input tensor with the weight
    (a 2-D tensor of shape :math:`[in\_features, out\_features]` ) and produces
    an output tensor of shape :math:`[batch\_size, *, out\_features]` .
    If :math:`bias\_attr` is not False, the bias (a 1-D tensor of
    shape :math:`[out\_features]` ) will be created and added to the output.
95 96

    Parameters:
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
        in_features (int): The number of input units.
        out_features (int): The number of output units.
        weight_attr (ParamAttr, optional): The attribute for the learnable
            weight of this layer. The default value is None and the weight will be
            initialized to zero. For detailed information, please refer to
            paddle.ParamAttr.
        bias_attr (ParamAttr|bool, optional): The attribute for the learnable bias
            of this layer. If it is set to False, no bias will be added to the output.
            If it is set to None or one kind of ParamAttr, a bias parameter will
            be created according to ParamAttr. For detailed information, please refer
            to paddle.ParamAttr. The default value is None and the bias will be
            initialized to zero.
        name (str, optional): Normally there is no need for user to set this parameter.
            For detailed information, please refer to :ref:`api_guide_Name` .

    Attribute:
        **weight** (Parameter): the learnable weight of this layer.

        **bias** (Parameter): the learnable bias of this layer.

    Shape:
        - input: Multi-dimentional tensor with shape :math:`[batch\_size, *, in\_features]` .
        - output: Multi-dimentional tensor with shape :math:`[batch\_size, *, out\_features]` .
120 121 122 123 124

    Examples:
        .. code-block:: python

          import paddle
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145

          # Define the linear layer.
          weight_attr = paddle.ParamAttr(
              name="weight",
              initializer=paddle.nn.initializer.Constant(value=0.5))
          bias_attr = paddle.ParamAttr(
              name="bias",
              initializer=paddle.nn.initializer.Constant(value=1.0))
          linear = paddle.nn.Linear(2, 4, weight_attr=weight_attr, bias_attr=bias_attr)
          # linear.weight: [[0.5 0.5 0.5 0.5]
          #                 [0.5 0.5 0.5 0.5]]
          # linear.bias: [1. 1. 1. 1.]

          x = paddle.randn((3, 2), dtype="float32")
          # x: [[-0.32342386 -1.200079  ]
          #     [ 0.7979031  -0.90978354]
          #     [ 0.40597573  1.8095392 ]]
          y = linear(x)
          # y: [[0.23824859 0.23824859 0.23824859 0.23824859]
          #     [0.9440598  0.9440598  0.9440598  0.9440598 ]
          #     [2.1077576  2.1077576  2.1077576  2.1077576 ]]
146 147 148 149 150 151 152 153 154 155 156 157
    """

    def __init__(self,
                 in_features,
                 out_features,
                 weight_attr=None,
                 bias_attr=None,
                 name=None):
        super(Linear, self).__init__()
        self._dtype = self._helper.get_default_dtype()
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
158 159 160 161 162 163 164 165
        self.weight = self.create_parameter(shape=[in_features, out_features],
                                            attr=self._weight_attr,
                                            dtype=self._dtype,
                                            is_bias=False)
        self.bias = self.create_parameter(shape=[out_features],
                                          attr=self._bias_attr,
                                          dtype=self._dtype,
                                          is_bias=True)
166 167 168
        self.name = name

    def forward(self, input):
169 170 171 172
        out = F.linear(x=input,
                       weight=self.weight,
                       bias=self.bias,
                       name=self.name)
173 174
        return out

175 176 177 178 179
    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'in_features={}, out_features={}, dtype={}{}'.format(
            self.weight.shape[0], self.weight.shape[1], self._dtype, name_str)

180

Z
zhiboniu 已提交
181
class Upsample(Layer):
182 183
    """
    This op resizes a batch of images.
184

185 186 187
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
188 189
    Where in_w is width of the input tensor, in_h is the height of the input tensor,
    in_d is the depth of the intput tensor.
190
    and the resizing only applies on the three dimensions(depth, height and width).
X
xiaoting 已提交
191

192
    Supporting resample methods:
193 194 195 196 197 198
        'linear' : Linear interpolation
        'bilinear' : Bilinear interpolation
        'trilinear' : Trilinear interpolation
        'nearest' : Nearest neighbor interpolation
        'bicubic' : Bicubic interpolation

T
tangwei12 已提交
199 200 201
    Linear interpolation is the method of using a line connecting two known quantities
    to determine the value of an unknown quantity between the two known quantities.

202 203 204 205 206 207 208 209 210
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.

    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.
T
tangwei12 已提交
211

212 213 214 215
    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.
216 217 218 219 220

    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
    The linear interpolation is performed on three directions.
X
xiaoting 已提交
221
    align_corners and align_mode are optional parameters,the calculation method
222 223
    of interpolation can be selected by them.

224 225 226 227 228 229
    Area interpolation is to perform area interpolation
    in both the 3rd dimension(in height direction) , the 4th dimension(in width
    direction) and the 5th dimension(in depth direction) on input tensor. Set to
    area will directly call `paddle.nn.functional.adaptive_avg_pool1d` or
    `paddle.nn.functional.adaptive_avg_pool2d` or `paddle.nn.functional.adaptive_avg_pool3d`.

230 231 232 233
    Example:

    .. code-block:: text

234
        For scale_factor:
235 236 237 238 239
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            else:
              scale_factor = float(in_size/out_size)

240 241 242 243 244 245 246 247 248 249
        Linear interpolation:
            if:
                align_corners = False , align_mode = 0
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = W_{in} * scale_{factor}
250 251 252 253 254 255 256 257 258 259 260 261 262 263

        Nearest neighbor interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
          else:
              align_corners = True
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
T
tangwei12 已提交
264

265 266 267
        Bilinear interpolation:
          if:
              align_corners = False , align_mode = 0
268

269 270 271 272 273
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
274

275 276 277 278 279 280 281 282 283 284 285 286
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

        Bicubic interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
287

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

        Trilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

309 310
    https://en.wikipedia.org/wiki/Linear_interpolation.
    For details of linear interpolation, please refer to Wikipedia:
T
tangwei12 已提交
311

312 313
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
T
tangwei12 已提交
314

315 316
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
T
tangwei12 已提交
317

318 319
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
T
tangwei12 已提交
320

321 322
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
T
tangwei12 已提交
323

324
    Parameters:
X
xiaoting 已提交
325
        x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
326
                          its data format is specified by :attr:`data_format`.
X
xiaoting 已提交
327
        size (list|tuple|Tensor|None): Output shape of image resize
328 329
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w)
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor.
330
             Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1].
X
xiaoting 已提交
331
             If a Tensor , its dimensions size should be a 1.
332 333 334
        scale_factor (float|Tensor|list|tuple|None): The multiplier for the input height or width. At
             least one of :attr:`size` or :attr:`scale_factor` must be set.
             And :attr:`size` has a higher priority than :attr:`scale_factor`. Has to match input size if it is either a list or a tuple or a Tensor.
335
             Default: None.
336 337
        mode (str): The resample method. It supports 'linear', 'nearst', 'bilinear',
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
338 339 340
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the
                               input and output tensors are aligned, preserving the values at the
                               corner pixels.
341 342 343 344
                               Default: False
        align_mode(int)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
345
        data_format (str, optional): Specify the data format of the input, and the data format of the output
346
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
347 348 349
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
350 351 352
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
353 354 355
    Returns:
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
356
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
357
    Raises:
X
xiaoting 已提交
358
        TypeError: size should be a list or tuple or Tensor.
359 360 361
        ValueError: The 'mode' of image_resize can only be 'linear', 'bilinear',
                    'trilinear', 'bicubic', or 'nearest' currently.
        ValueError: 'linear' only support 3-D tensor.
362
        ValueError: 'bilinear' and 'bicubic'  only support 4-D tensor.
363
        ValueError: 'trilinear' only support 5-D tensor.
364
        ValueError: 'nearest' only support 4-D or 5-D tensor.
365 366 367 368 369
        ValueError: One of size and scale_factor must not be None.
        ValueError: size length should be 1 for input 3-D tensor.
        ValueError: size length should be 2 for input 4-D tensor.
        ValueError: size length should be 3 for input 5-D tensor.
        ValueError: scale_factor should be greater than zero.
370 371
        TypeError: align_corners should be a bool value
        ValueError: align_mode can only be '0' or '1'
372
        ValueError: data_format can only be 'NCW', 'NWC', 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.
373 374 375

    Examples:
        .. code-block:: python
376

377
            import paddle
X
xiaoting 已提交
378
            import paddle.nn as nn
379
            import numpy as np
X
xiaoting 已提交
380

381
            input_data = np.random.rand(2,3,6,10).astype("float32")
382
            upsample_out  = paddle.nn.Upsample(size=[12,12])
X
xiaoting 已提交
383 384 385 386 387 388

            input = paddle.to_tensor(input_data)
            output = upsample_out(x=input)
            print(output.shape)
            # [2L, 3L, 12L, 12L]

389 390 391
    """

    def __init__(self,
392 393 394 395
                 size=None,
                 scale_factor=None,
                 mode='nearest',
                 align_corners=False,
X
xiaoting 已提交
396 397 398
                 align_mode=0,
                 data_format='NCHW',
                 name=None):
399
        super(Upsample, self).__init__()
400 401 402
        self.size = size
        self.scale_factor = scale_factor
        self.mode = mode.lower()
403 404 405
        self.align_corners = align_corners
        self.align_mode = align_mode
        self.data_format = data_format
X
xiaoting 已提交
406
        self.name = name
407

X
xiaoting 已提交
408
    def forward(self, x):
409 410 411 412 413 414 415 416
        out = F.interpolate(x,
                            size=self.size,
                            scale_factor=self.scale_factor,
                            mode=self.mode,
                            align_corners=self.align_corners,
                            align_mode=self.align_mode,
                            data_format=self.data_format,
                            name=self.name)
X
xiaoting 已提交
417 418 419

        return out

420 421 422 423 424 425 426 427 428 429
    def extra_repr(self):
        if self.scale_factor is not None:
            main_str = 'scale_factor={}'.format(self.scale_factor)
        else:
            main_str = 'size={}'.format(self.size)
        name_str = ', name={}'.format(self.name) if self.name else ''
        return '{}, mode={}, align_corners={}, align_mode={}, data_format={}{}'.format(
            main_str, self.mode, self.align_corners, self.align_mode,
            self.data_format, name_str)

X
xiaoting 已提交
430

Z
zhiboniu 已提交
431
class UpsamplingNearest2D(Layer):
X
xiaoting 已提交
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
    """
    This op upsamples a batch of images, using nearest neighbours' pixel values.
    The input must be a 4-D Tensor of the shape (num_batches, channels, in_h, in_w),
    where in_w is width of the input tensor, in_h is the height of the input tensor.
    And the upsampling only applies on the two dimensions(height and width).
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.

    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    Parameters:
        x (Tensor): 4-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
        size (list|tuple|Tensor|None): Output shape of image resize
             layer, the shape is (out_h, out_w) when input is a 4-D Tensor.
449
             Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1].
X
xiaoting 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
             If a Tensor , its dimensions size should be a 1.
        scale_factor (float|int|list|tuple|Tensor|None): The multiplier for the input height or width. At
             least one of :attr:`size` or :attr:`scale_factor` must be set.
             And :attr:`size` has a higher priority than :attr:`scale_factor`.
             Has to match input size if it is either a list or a tuple or a Tensor.
             Default: None.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
    Returns:
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),


    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn as nn

X
xiaoting 已提交
474
            input_data = paddle.rand(shape=(2,3,6,10)).astype("float32")
X
xiaoting 已提交
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
            upsample_out  = paddle.nn.UpsamplingNearest2D(size=[12,12])
            input = paddle.to_tensor(input_data)
            output = upsample_out(x=input)
            print(output.shape)
            # [2L, 3L, 12L, 12L]
    """

    def __init__(self,
                 size=None,
                 scale_factor=None,
                 data_format='NCHW',
                 name=None):
        super(UpsamplingNearest2D, self).__init__()
        self.size = size
        self.scale_factor = scale_factor
        self.data_format = data_format
        self.name = name

    def forward(self, x):
494 495 496 497 498 499 500 501
        out = F.interpolate(x,
                            size=self.size,
                            scale_factor=self.scale_factor,
                            mode='nearest',
                            align_corners=False,
                            align_mode=0,
                            data_format=self.data_format,
                            name=self.name)
X
xiaoting 已提交
502 503 504

        return out

505 506 507 508 509 510 511 512 513
    def extra_repr(self):
        if self.scale_factor is not None:
            main_str = 'scale_factor={}'.format(self.scale_factor)
        else:
            main_str = 'size={}'.format(self.size)
        name_str = ', name={}'.format(self.name) if self.name else ''
        return '{}, data_format={}{}'.format(main_str, self.data_format,
                                             name_str)

X
xiaoting 已提交
514

Z
zhiboniu 已提交
515
class UpsamplingBilinear2D(Layer):
X
xiaoting 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
    """
    This op upsamples a batch of images, using bilinear' pixel values.
    The input must be a 4-D Tensor of the shape (num_batches, channels, in_h, in_w),
    where in_w is width of the input tensor, in_h is the height of the input tensor.
    And the upsampling only applies on the two dimensions(height and width).
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.

    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.

    Parameters:
        x (Tensor): 4-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
        size (list|tuple|Tensor|None): Output shape of image resize
             layer, the shape is (out_h, out_w) when input is a 4-D Tensor.
535
             Default: None. If a list/tuple, each element can be an integer or a Tensor  of shape: [1].
X
xiaoting 已提交
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
             If a Tensor , its dimensions size should be a 1.
        scale_factor (float|int|list|tuple|Tensor|None): The multiplier for the input height or width. At
             least one of :attr:`size` or :attr:`scale_factor` must be set.
             And :attr:`size` has a higher priority than :attr:`scale_factor`.
             Has to match input size if it is either a list or a tuple or a Tensor.
             Default: None.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
    Returns:
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn as nn

X
xiaoting 已提交
559
            input_data = paddle.rand(shape=(2,3,6,10)).astype("float32")
X
xiaoting 已提交
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
            upsample_out  = paddle.nn.UpsamplingBilinear2D(size=[12,12])
            input = paddle.to_tensor(input_data)
            output = upsample_out(x=input)
            print(output.shape)
            # [2L, 3L, 12L, 12L]
    """

    def __init__(self,
                 size=None,
                 scale_factor=None,
                 data_format='NCHW',
                 name=None):
        super(UpsamplingBilinear2D, self).__init__()
        self.size = size
        self.scale_factor = scale_factor
        self.data_format = data_format
        self.name = name

    def forward(self, x):
579 580 581 582 583 584 585 586
        out = F.interpolate(x,
                            size=self.size,
                            scale_factor=self.scale_factor,
                            mode='bilinear',
                            align_corners=True,
                            align_mode=0,
                            data_format=self.data_format,
                            name=self.name)
X
xiaoting 已提交
587 588 589

        return out

590 591 592 593 594 595 596 597 598
    def extra_repr(self):
        if self.scale_factor is not None:
            main_str = 'scale_factor={}'.format(self.scale_factor)
        else:
            main_str = 'size={}'.format(self.size)
        name_str = ', name={}'.format(self.name) if self.name else ''
        return '{}, data_format={}{}'.format(main_str, self.data_format,
                                             name_str)

X
xiaoting 已提交
599

Z
zhiboniu 已提交
600
class Bilinear(Layer):
601
    r"""
602 603 604 605

    This layer performs bilinear on two inputs.

    .. math::
606

607
      out_{i} = x1 * W_{i} * {x2^\mathrm{T}}, i=0,1,...,outfeatures-1
608

609 610 611 612 613 614
      out = out + b

    In this formula:
     - :math:`x1`: the first input contains in1_features elements, shape is [batch_size, in1_features].
     - :math:`x2`: the second input contains in2_features elements, shape is [batch_size, in2_features].
     - :math:`W_{i}`: the i-th learned weight, shape is [in1_features, in2_features], and learned weight's shape is [out_features, in1_features, in2_features].
615
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size], and out's shape is [batch_size, out_features].
616 617 618 619 620 621 622
     - :math:`b`: the learned bias, shape is [1, out_features].
     - :math:`x2^\mathrm{T}`: the transpose of :math:`x2`.

    Parameters:
       in1_features (int): The dimension of each first input(`x1`).
       in2_features (int): The dimension of each second input(`x2`).
       out_features (int): The dimension of output of this layer.
T
tangwei12 已提交
623
       weight_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of
624 625 626
       this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
           of this layer. If it is set to False, no bias will be added to the output units.
T
tangwei12 已提交
627
           If it is set to None, the bias is initialized zero. The default value is None.
628 629 630 631 632 633 634 635 636
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.

    Returns:
637
       Tensor: A 2-D Tensor of shape [batch_size, out_features].
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672

    Examples:
       .. code-block:: python

        import paddle
        import numpy

        layer1 = numpy.random.random((5, 5)).astype('float32')
        layer2 = numpy.random.random((5, 4)).astype('float32')
        bilinear = paddle.nn.Bilinear(
            in1_features=5, in2_features=4, out_features=1000)
        result = bilinear(paddle.to_tensor(layer1),
                        paddle.to_tensor(layer2))     # result shape [5, 1000]

    """

    def __init__(self,
                 in1_features,
                 in2_features,
                 out_features,
                 weight_attr=None,
                 bias_attr=None,
                 name=None):
        super(Bilinear, self).__init__()
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        self._name = name
        self._in1_features = in1_features
        self._in2_features = in2_features
        self._out_features = out_features
        self._dtype = self._helper.get_default_dtype()

        weight_shape = [
            self._out_features, self._in1_features, self._in2_features
        ]
673 674 675 676
        self.weight = self.create_parameter(attr=self._weight_attr,
                                            shape=weight_shape,
                                            dtype=self._dtype,
                                            is_bias=False)
677
        bias_shape = [1, self._out_features]
678 679 680 681
        self.bias = self.create_parameter(attr=self._bias_attr,
                                          shape=bias_shape,
                                          dtype=self._dtype,
                                          is_bias=True)
682 683 684 685

    def forward(self, x1, x2):
        return F.bilinear(x1, x2, self.weight, self.bias, self._name)

686 687 688 689 690 691
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'in1_features={}, in2_features={}, out_features={}, dtype={}{}'.format(
            self._in1_features, self._in2_features, self._out_features,
            self._dtype, name_str)

692

Z
zhiboniu 已提交
693
class Dropout(Layer):
694 695 696
    """
    Dropout is a regularization technique for reducing overfitting by preventing
    neuron co-adaption during training as described in the paper:
T
tangwei12 已提交
697
    `Improving neural networks by preventing co-adaptation of feature detectors <https://arxiv.org/abs/1207.0580>`_
698 699 700 701
    The dropout operator randomly sets the outputs of some units to zero, while upscale others
    according to the given dropout probability.

    See ``paddle.nn.functional.dropout`` for more details.
702 703

    In dygraph mode, please use ``eval()`` to switch to evaluation mode, where dropout is disabled.
704 705

    Parameters:
706 707
        p (float|int): Probability of setting units to zero. Default: 0.5
        axis (int|list|tuple): The axis along which the dropout is performed. Default None.
708 709 710 711 712 713 714 715 716 717 718
        mode(str, optional): ['upscale_in_train'(default) | 'downscale_in_infer']

                               1. upscale_in_train(default), upscale the output at training time

                                  - train: out = input * mask / ( 1.0 - p )
                                  - inference: out = input

                               2. downscale_in_infer, downscale the output at inference

                                  - train: out = input * mask
                                  - inference: out = input * (1.0 - p)
719
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
720 721 722 723 724

    Shape:
        - input: N-D tensor.
        - output: N-D tensor, the same shape as input.

725

726 727
    Examples:
        .. code-block:: python
728

729 730 731 732 733 734 735 736 737
            import paddle
            import numpy as np

            x = np.array([[1,2,3], [4,5,6]]).astype('float32')
            x = paddle.to_tensor(x)
            m = paddle.nn.Dropout(p=0.5)
            y_train = m(x)
            m.eval()  # switch the model to test phase
            y_test = m(x)
738 739 740
            print(x)
            print(y_train)
            print(y_test)
741 742 743 744 745 746 747 748 749 750 751
   """

    def __init__(self, p=0.5, axis=None, mode="upscale_in_train", name=None):
        super(Dropout, self).__init__()

        self.p = p
        self.axis = axis
        self.mode = mode
        self.name = name

    def forward(self, input):
752 753 754 755 756 757
        out = F.dropout(input,
                        p=self.p,
                        axis=self.axis,
                        training=self.training,
                        mode=self.mode,
                        name=self.name)
758 759
        return out

760 761 762 763 764
    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'p={}, axis={}, mode={}{}'.format(self.p, self.axis, self.mode,
                                                 name_str)

765

Z
zhiboniu 已提交
766
class Dropout2D(Layer):
767 768 769 770
    """
    Randomly zero out entire channels (in the batched input 4d tensor with the shape `NCHW` ,
    a channel is a 2D feature map with the shape `HW`). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.
C
cnn 已提交
771
    Dropout2D will help promote independence between feature maps as described in the paper:
T
tangwei12 已提交
772
    `Efficient Object Localization Using Convolutional Networks <https://arxiv.org/abs/1411.4280>`_
773 774 775

    See ``paddle.nn.functional.dropout2d`` for more details.

776 777
    In dygraph mode, please use ``eval()`` to switch to evaluation mode, where dropout is disabled.

778 779
    Parameters:
        p (float, optional): Probability of setting units to zero. Default: 0.5
780
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from `NCHW` or `NHWC`. The default is `NCHW`. When it is `NCHW`, the data is stored in the order of: [batch_size, input_channels, input_height, input_width].
781 782 783 784 785 786
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: 4-D tensor.
        - output: 4-D tensor, the same shape as input.

787

788 789
    Examples:
        .. code-block:: python
790

791 792 793 794 795
            import paddle
            import numpy as np

            x = np.random.random(size=(2, 3, 4, 5)).astype('float32')
            x = paddle.to_tensor(x)
C
cnn 已提交
796
            m = paddle.nn.Dropout2D(p=0.5)
797 798 799
            y_train = m(x)
            m.eval()  # switch the model to test phase
            y_test = m(x)
800 801 802
            print(x)
            print(y_train)
            print(y_test)
803 804 805
   """

    def __init__(self, p=0.5, data_format='NCHW', name=None):
C
cnn 已提交
806
        super(Dropout2D, self).__init__()
807 808 809 810 811 812

        self.p = p
        self.data_format = data_format
        self.name = name

    def forward(self, input):
813 814 815 816 817
        out = F.dropout2d(input,
                          p=self.p,
                          training=self.training,
                          data_format=self.data_format,
                          name=self.name)
818 819
        return out

820 821 822 823 824
    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'p={}, data_format={}{}'.format(self.p, self.data_format,
                                               name_str)

825

Z
zhiboniu 已提交
826
class Dropout3D(Layer):
827 828 829 830
    """
    Randomly zero out entire channels (in the batched input 5d tensor with the shape `NCDHW` ,
    a channel is a 3D feature map with the shape `DHW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.
C
cnn 已提交
831
    Dropout3D will help promote independence between feature maps as described in the paper:
T
tangwei12 已提交
832
    `Efficient Object Localization Using Convolutional Networks <https://arxiv.org/abs/1411.4280>`_
833 834 835

    See ``paddle.nn.functional.dropout3d`` for more details.

836 837
    In dygraph mode, please use ``eval()`` to switch to evaluation mode, where dropout is disabled.

838 839
    Parameters:
        p (float | int): Probability of setting units to zero. Default: 0.5
840
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from `NCDHW` or `NDHWC`. The default is `NCDHW`. When it is `NCDHW`, the data is stored in the order of: [batch_size, input_channels, input_depth, input_height, input_width].
841 842 843 844 845 846
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: 5-D tensor.
        - output: 5-D tensor, the same shape as input.

847

848 849
    Examples:
        .. code-block:: python
850

851 852 853 854 855
            import paddle
            import numpy as np

            x = np.random.random(size=(2, 3, 4, 5, 6)).astype('float32')
            x = paddle.to_tensor(x)
C
cnn 已提交
856
            m = paddle.nn.Dropout3D(p=0.5)
857 858 859
            y_train = m(x)
            m.eval()  # switch the model to test phase
            y_test = m(x)
860 861 862
            print(x)
            print(y_train)
            print(y_test)
863 864 865
   """

    def __init__(self, p=0.5, data_format='NCDHW', name=None):
C
cnn 已提交
866
        super(Dropout3D, self).__init__()
867 868 869 870 871 872

        self.p = p
        self.data_format = data_format
        self.name = name

    def forward(self, input):
873 874 875 876 877
        out = F.dropout3d(input,
                          p=self.p,
                          training=self.training,
                          data_format=self.data_format,
                          name=self.name)
878 879
        return out

880 881 882 883 884
    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'p={}, data_format={}{}'.format(self.p, self.data_format,
                                               name_str)

885

Z
zhiboniu 已提交
886
class AlphaDropout(Layer):
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
    """
    Alpha Dropout is a type of Dropout that maintains the self-normalizing property. For an input with
    zero mean and unit standard deviation, the output of Alpha Dropout maintains the original mean and
    standard deviation of the input. Alpha Dropout fits well to SELU activate function by randomly setting
    activations to the negative saturation value.

    For more information, please refer to:
    `Self-Normalizing Neural Networks <https://arxiv.org/abs/1706.02515>`_

    In dygraph mode, please use ``eval()`` to switch to evaluation mode, where dropout is disabled.

    Parameters:
        p (float | int): Probability of setting units to zero. Default: 0.5
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: N-D tensor.
        - output: N-D tensor, the same shape as input.

    Examples:
        .. code-block:: python
908

909 910 911 912 913 914 915 916 917
            import paddle
            import numpy as np

            x = np.array([[-1, 1], [-1, 1]]).astype('float32')
            x = paddle.to_tensor(x)
            m = paddle.nn.AlphaDropout(p=0.5)
            y_train = m(x)
            m.eval()  # switch the model to test phase
            y_test = m(x)
918 919
            print(x)
            print(y_train)
920
            # [[-0.10721093, 1.6655989 ], [-0.7791938, -0.7791938]] (randomly)
921
            print(y_test)
922 923 924 925 926 927 928 929
   """

    def __init__(self, p=0.5, name=None):
        super(AlphaDropout, self).__init__()
        self.p = p
        self.name = name

    def forward(self, input):
930 931 932 933
        out = F.alpha_dropout(input,
                              p=self.p,
                              training=self.training,
                              name=self.name)
934 935
        return out

936 937 938 939
    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'p={}{}'.format(self.p, name_str)

940

Z
zhiboniu 已提交
941
class Pad1D(Layer):
L
littletomatodonkey 已提交
942
    """
L
littletomatodonkey 已提交
943 944 945
    This interface is used to construct a callable object of the ``Pad1D`` class.
    Pad tensor according to 'pad', 'mode' and 'value'.
    If mode is 'reflect', pad[0] and pad[1] must be no greater than width-1.
L
littletomatodonkey 已提交
946 947

    Parameters:
948
        padding (Tensor|list[int]|int): The padding size with data type int. If is int, use the
949
            same padding in both dimensions. Else [len(padding)/2] dimensions
L
littletomatodonkey 已提交
950
            of input will be padded. The pad has the form (pad_left, pad_right).
951 952 953 954 955 956 957 958 959
        mode (str, optional): Four modes: 'constant' (default), 'reflect', 'replicate', 'circular'. Default is 'constant'.

           - 'constant' mode, uses a constant value to pad the input tensor.
           - 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
           - 'replicate' mode, uses input boundaries to pad the input tensor.
           - 'circular' mode, uses circular input to pad the input tensor.

        value (float, optional): The value to fill the padded areas. Default is :math:`0.0`。
        data_format (str, optional): An string from: "NCL", "NLC". Specify the data format of the input data.
L
littletomatodonkey 已提交
960
           Default is  "NCL"
961
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
962 963

    Returns:
L
littletomatodonkey 已提交
964 965 966 967
        None

    Examples:
        .. code-block:: python
968

L
littletomatodonkey 已提交
969 970 971 972 973
            import paddle
            import paddle.nn as nn

            input_shape = (1, 2, 3)
            pad = [1, 2]
L
littletomatodonkey 已提交
974
            mode = "constant"
975
            data = paddle.arange(paddle.prod(paddle.to_tensor(input_shape)), dtype="float32").reshape(input_shape) + 1
L
littletomatodonkey 已提交
976
            my_pad = nn.Pad1D(padding=pad, mode=mode)
L
littletomatodonkey 已提交
977
            result = my_pad(data)
L
littletomatodonkey 已提交
978
            print(result)
L
littletomatodonkey 已提交
979 980 981 982
            # [[[0. 1. 2. 3. 0. 0.]
            #   [0. 4. 5. 6. 0. 0.]]]
    """

L
littletomatodonkey 已提交
983 984 985 986 987 988 989
    def __init__(self,
                 padding,
                 mode='constant',
                 value=0.0,
                 data_format="NCL",
                 name=None):
        super(Pad1D, self).__init__()
990
        self._pad = _npairs(padding, 1)
L
littletomatodonkey 已提交
991
        self._mode = mode
L
littletomatodonkey 已提交
992
        self._value = value
L
littletomatodonkey 已提交
993
        self._data_format = data_format
L
littletomatodonkey 已提交
994 995 996 997 998 999 1000 1001 1002 1003
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
                     value=self._value,
                     data_format=self._data_format,
                     name=self._name)

1004 1005 1006 1007 1008
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'padding={}, mode={}, value={}, data_format={}{}'.format(
            self._pad, self._mode, self._value, self._data_format, name_str)

L
littletomatodonkey 已提交
1009

Z
zhiboniu 已提交
1010
class Pad2D(Layer):
L
littletomatodonkey 已提交
1011
    """
L
littletomatodonkey 已提交
1012 1013 1014 1015
    This interface is used to construct a callable object of the ``Pad2D`` class.
    Pad tensor according to 'pad', 'mode' and 'value'.
    If mode is 'reflect', pad[0] and pad[1] must be no greater
    than width-1. The height dimension has the same condition.
L
littletomatodonkey 已提交
1016 1017

    Parameters:
1018
        padding (Tensor|list[int]|int): The padding size with data type int. If is int, use the
1019 1020
            same padding in all dimensions. Else [len(padding)/2] dimensions of input will be padded.
            The pad has the form (pad_left, pad_right, pad_top, pad_bottom).
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
        mode (str, optional): Four modes: 'constant' (default), 'reflect', 'replicate', 'circular'. Default is 'constant'.

           - 'constant' mode, uses a constant value to pad the input tensor.
           - 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
           - 'replicate' mode, uses input boundaries to pad the input tensor.
           - 'circular' mode, uses circular input to pad the input tensor.

        value (float, optional): The value to fill the padded areas. Default is :math:`0.0`。
        data_format (str, optional): An string from: "NCHW", "NHWC". Specify the data format of the input data.
           Default is  "NCHW"。
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1032 1033

    Returns:
L
littletomatodonkey 已提交
1034 1035 1036 1037
        None

    Examples:
        .. code-block:: python
1038

L
littletomatodonkey 已提交
1039 1040
            import paddle
            import paddle.nn as nn
1041

L
littletomatodonkey 已提交
1042 1043
            input_shape = (1, 1, 2, 3)
            pad = [1, 0, 1, 2]
L
littletomatodonkey 已提交
1044
            mode = "constant"
1045
            data = paddle.arange(paddle.prod(paddle.to_tensor(input_shape)), dtype="float32").reshape(input_shape) + 1
L
littletomatodonkey 已提交
1046
            my_pad = nn.Pad2D(padding=pad, mode=mode)
L
littletomatodonkey 已提交
1047
            result = my_pad(data)
L
littletomatodonkey 已提交
1048
            print(result)
L
littletomatodonkey 已提交
1049 1050 1051 1052 1053 1054 1055
            # [[[[0. 0. 0. 0.]
            #    [0. 1. 2. 3.]
            #    [0. 4. 5. 6.]
            #    [0. 0. 0. 0.]
            #    [0. 0. 0. 0.]]]]
    """

L
littletomatodonkey 已提交
1056 1057 1058 1059 1060 1061 1062
    def __init__(self,
                 padding,
                 mode='constant',
                 value=0.0,
                 data_format="NCHW",
                 name=None):
        super(Pad2D, self).__init__()
1063
        self._pad = _npairs(padding, 2)
L
littletomatodonkey 已提交
1064
        self._mode = mode
L
littletomatodonkey 已提交
1065 1066 1067 1068 1069 1070 1071 1072
        self._value = value
        self._data_format = data_format
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
L
littletomatodonkey 已提交
1073
                     value=self._value,
L
littletomatodonkey 已提交
1074 1075 1076
                     data_format=self._data_format,
                     name=self._name)

1077 1078 1079 1080 1081
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'padding={}, mode={}, value={}, data_format={}{}'.format(
            self._pad, self._mode, self._value, self._data_format, name_str)

L
littletomatodonkey 已提交
1082

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
class ZeroPad2D(Layer):
    """
    This interface is used to construct a callable object of the ``ZeroPad2D`` class.
    Pads the input tensor boundaries with zero.

    Parameters:
        padding (Tensor | List[int] | int): The padding size with data type int. If is int, use the
            same padding in all dimensions. Else [len(padding)/2] dimensions of input will be padded.
            The pad has the form (pad_left, pad_right, pad_top, pad_bottom).
        data_format (str): An string from: "NCHW", "NHWC". Specify the data format of the input data.
           Default is  "NCHW"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - x(Tensor): The input tensor of zeropad2d operator, which is a 4-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of zeropad2d operator, which is a 4-D tensor.
          The data type is same as input x.

    Examples:
        Examples are as follows.

        .. code-block:: python

            import paddle
            import paddle.nn as nn
            import numpy as np

            input_shape = (1, 1, 2, 3)
            pad = [1, 0, 1, 2]
            data = paddle.arange(np.prod(input_shape), dtype="float32").reshape(input_shape) + 1

            my_pad = nn.ZeroPad2D(padding=pad)
            result = my_pad(data)

            print(result)
            # [[[[0. 0. 0. 0.]
            #    [0. 1. 2. 3.]
            #    [0. 4. 5. 6.]
            #    [0. 0. 0. 0.]
            #    [0. 0. 0. 0.]]]]
    """

    def __init__(self, padding, data_format="NCHW", name=None):
        super(ZeroPad2D, self).__init__()
        self._pad = _npairs(padding, 2)
        self._mode = 'constant'
        self._value = 0.
        self._data_format = data_format
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
                     value=self._value,
                     data_format=self._data_format,
                     name=self._name)

    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
1145 1146 1147
        return 'padding={}, data_format={}{}'.format(self._pad,
                                                     self._data_format,
                                                     name_str)
1148 1149


Z
zhiboniu 已提交
1150
class Pad3D(Layer):
L
littletomatodonkey 已提交
1151
    """
L
littletomatodonkey 已提交
1152 1153 1154 1155
    This interface is used to construct a callable object of the ``Pad3D`` class.
    Pad tensor according to 'pad', 'mode' and 'value'.
    If mode is 'reflect', pad[0] and pad[1] must be no greater
    than width-1. The height and depth dimension has the same condition.
L
littletomatodonkey 已提交
1156 1157

    Parameters:
1158
        padding (Tensor|list[int]|int): The padding size with data type int. If is int, use the
1159
            same padding in all dimensions. Else [len(padding)/2] dimensions
L
littletomatodonkey 已提交
1160
            of input will be padded. The pad has the form (pad_left, pad_right, pad_top, pad_bottom, pad_front, pad_back).
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
        mode (str, optional): Four modes: 'constant' (default), 'reflect', 'replicate', 'circular'. Default is 'constant'.

           - 'constant' mode, uses a constant value to pad the input tensor.
           - 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
           - 'replicate' mode, uses input boundaries to pad the input tensor.
           - 'circular' mode, uses circular input to pad the input tensor.

        value (float, optional): The value to fill the padded areas. Default is :math:`0.0`。
        data_format (str, optional): An string from: "NCDHW", "NDHWC". Specify the data format of the input data.
           Default is  "NCDHW"。
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1172 1173

    Returns:
L
littletomatodonkey 已提交
1174 1175 1176 1177
        None

    Examples:
        .. code-block:: python
1178

L
littletomatodonkey 已提交
1179 1180
            import paddle
            import paddle.nn as nn
1181

L
littletomatodonkey 已提交
1182 1183
            input_shape = (1, 1, 1, 2, 3)
            pad = [1, 0, 1, 2, 0, 0]
L
littletomatodonkey 已提交
1184
            mode = "constant"
1185
            data = paddle.arange(paddle.prod(paddle.to_tensor(input_shape)), dtype="float32").reshape(input_shape) + 1
L
littletomatodonkey 已提交
1186
            my_pad = nn.Pad3D(padding=pad, mode=mode)
L
littletomatodonkey 已提交
1187
            result = my_pad(data)
L
littletomatodonkey 已提交
1188
            print(result)
L
littletomatodonkey 已提交
1189 1190 1191 1192 1193 1194 1195
            # [[[[[0. 0. 0. 0.]
            #     [0. 1. 2. 3.]
            #     [0. 4. 5. 6.]
            #     [0. 0. 0. 0.]
            #     [0. 0. 0. 0.]]]]]
    """

L
littletomatodonkey 已提交
1196 1197 1198 1199 1200 1201 1202
    def __init__(self,
                 padding,
                 mode='constant',
                 value=0.0,
                 data_format="NCDHW",
                 name=None):
        super(Pad3D, self).__init__()
1203
        self._pad = _npairs(padding, 3)
L
littletomatodonkey 已提交
1204
        self._mode = mode
L
littletomatodonkey 已提交
1205 1206 1207 1208 1209 1210 1211 1212
        self._value = value
        self._data_format = data_format
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
L
littletomatodonkey 已提交
1213
                     value=self._value,
L
littletomatodonkey 已提交
1214 1215 1216
                     data_format=self._data_format,
                     name=self._name)

1217 1218 1219 1220 1221
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'padding={}, mode={}, value={}, data_format={}{}'.format(
            self._pad, self._mode, self._value, self._data_format, name_str)

L
littletomatodonkey 已提交
1222

Z
zhiboniu 已提交
1223
class CosineSimilarity(Layer):
L
littletomatodonkey 已提交
1224
    """
1225
    This interface is used to compute cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
1226 1227

    Parameters:
1228
        axis (int): Dimension of vectors to compute cosine similarity. Default is 1.
L
littletomatodonkey 已提交
1229
        eps(float): Small value to avoid division by zero. Default is 1e-8.
1230
    Returns:
L
littletomatodonkey 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
        None

    Examples:
        .. code-block:: text

            Case 0:
                x1 = [[0.8024077  0.9927354  0.27238318 0.8344984 ]
                     [0.48949873 0.5797396  0.65444374 0.66510963]
                     [0.1031398  0.9614342  0.08365563 0.6796464 ]
                     [0.10760343 0.7461209  0.7726148  0.5801006 ]]
                x2 = [[0.62913156 0.1536727  0.9847992  0.04591406]
                     [0.9098952  0.15715368 0.8671125  0.3156102 ]
                     [0.4427798  0.54136837 0.5276275  0.32394758]
                     [0.3769419  0.8535014  0.48041078 0.9256797 ]]
1245
                axis = 1
L
littletomatodonkey 已提交
1246 1247 1248 1249 1250
                eps = 1e-8
                Out: [0.5275037  0.8368967  0.75037485 0.9245899]

    Code Examples:
        .. code-block:: python
1251

L
littletomatodonkey 已提交
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
            import paddle
            import paddle.nn as nn
            import numpy as np

            np.random.seed(0)
            x1 = np.random.rand(2,3)
            x2 = np.random.rand(2,3)
            x1 = paddle.to_tensor(x1)
            x2 = paddle.to_tensor(x2)

1262
            cos_sim_func = nn.CosineSimilarity(axis=0)
L
littletomatodonkey 已提交
1263
            result = cos_sim_func(x1, x2)
L
littletomatodonkey 已提交
1264
            print(result)
L
littletomatodonkey 已提交
1265 1266 1267
            # [0.99806249 0.9817672  0.94987036]
    """

1268
    def __init__(self, axis=1, eps=1e-8):
L
littletomatodonkey 已提交
1269
        super(CosineSimilarity, self).__init__()
1270
        self._axis = axis
L
littletomatodonkey 已提交
1271 1272 1273
        self._eps = eps

    def forward(self, x1, x2):
1274
        return F.cosine_similarity(x1, x2, axis=self._axis, eps=self._eps)
T
tangwei12 已提交
1275

1276 1277 1278
    def extra_repr(self):
        return 'axis={_axis}, eps={_eps}'.format(**self.__dict__)

T
tangwei12 已提交
1279

Z
zhiboniu 已提交
1280
class Embedding(Layer):
1281
    r"""
1282

1283
    Embedding Layer, used to construct a callable object of the ``Embedding`` class.
T
tangwei12 已提交
1284
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
T
tangwei12 已提交
1285
    This layer is used to lookup embeddings vector of ids provided by :attr:`x` .
T
tangwei12 已提交
1286
    It automatically constructs a 2D embedding matrix based on the
T
tangwei12 已提交
1287
    input :attr:`num_embeddings` and :attr:`embedding_dim`.
T
tangwei12 已提交
1288 1289 1290 1291

    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.

1292 1293 1294
    Note:
        The id in :attr:`x` must satisfy :math:`0 =< id < num_embeddings` ,
        otherwise the program will throw an exception and exit.
T
tangwei12 已提交
1295 1296 1297 1298 1299

    .. code-block:: text

        Case 1:

T
tangwei12 已提交
1300 1301 1302
        x is a Tensor. padding_idx = -1
            x.data = [[1, 3], [2, 4], [4, 127]
            x.shape = [3, 2]
T
tangwei12 已提交
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],

                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.

    Parameters:
        num_embeddings (int): Just one element which indicate the size
            of the dictionary of embeddings.
T
tangwei12 已提交
1320
        embedding_dim (int):  Just one element which indicate the size of each embedding vector respectively.
1321
        padding_idx(int|long|None, optional): padding_idx needs to be in the interval [-num_embeddings, num_embeddings).
T
tangwei12 已提交
1322 1323 1324 1325
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
1326
        sparse(bool, optional): The flag indicating whether to use sparse update. This parameter only
T
tangwei12 已提交
1327 1328
            affects the performance of the backwards gradient update. It is recommended to set
            True because sparse update is faster. But some optimizer does not support sparse update,
T
tangwei12 已提交
1329
            such as :ref:`api_paddle_optimizer_adadelta_Adadelta` , :ref:`api_paddle_optimizer_adamax_Adamax` , :ref:`api_paddle_optimizer_lamb_Lamb`.
T
tangwei12 已提交
1330
            In these case, sparse must be False. Default: False.
1331
        weight_attr(ParamAttr, optional): To specify the weight parameter property. Default: None, which means the
T
tangwei12 已提交
1332
            default weight parameter property is used. See usage for details in :ref:`api_ParamAttr` . In addition,
T
tangwei12 已提交
1333 1334
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tangwei12 已提交
1335 1336
            vector should be consistent with :attr:`num_embeddings` . Then :ref:`api_initializer_NumpyArrayInitializer`
            is used to load custom or pre-trained word vectors. See code example for details.
1337
        name(str|None, optional): For detailed information, please refer
T
tangwei12 已提交
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
               to :ref:`api_guide_Name`. Usually name is no need to set and
               None by default.

    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

    Returns:
        None

    Examples:

        .. code-block:: python

T
tangwei12 已提交
1351 1352 1353 1354 1355
            import paddle
            import numpy as np

            x_data = np.arange(3, 6).reshape((3, 1)).astype(np.int64)
            y_data = np.arange(6, 12).reshape((3, 2)).astype(np.float32)
T
tangwei12 已提交
1356

T
tangwei12 已提交
1357 1358 1359 1360 1361 1362 1363
            x = paddle.to_tensor(x_data, stop_gradient=False)
            y = paddle.to_tensor(y_data, stop_gradient=False)

            embedding = paddle.nn.Embedding(10, 3, sparse=True)

            w0=np.full(shape=(10, 3), fill_value=2).astype(np.float32)
            embedding.weight.set_value(w0)
T
tangwei12 已提交
1364

T
tangwei12 已提交
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
            adam = paddle.optimizer.Adam(parameters=[embedding.weight], learning_rate=0.01)
            adam.clear_grad()

            # weight.shape = [10, 3]

            # x.data = [[3],[4],[5]]
            # x.shape = [3, 1]

            # out.data = [[2,2,2], [2,2,2], [2,2,2]]
            # out.shape = [3, 1, 3]
            out=embedding(x)
            out.backward()
            adam.step()
T
tangwei12 已提交
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392

    """

    def __init__(self,
                 num_embeddings,
                 embedding_dim,
                 padding_idx=None,
                 sparse=False,
                 weight_attr=None,
                 name=None):
        super(Embedding, self).__init__()
        self._num_embeddings = num_embeddings
        self._embedding_dim = embedding_dim
        self._sparse = sparse
        self._is_distributed = False
1393
        self._padding_idx = padding_idx
T
tangwei12 已提交
1394 1395 1396 1397 1398 1399 1400

        if self._num_embeddings <= 0:
            raise ValueError("num_embeddings must be gather than 0")

        if self._embedding_dim <= 0:
            raise ValueError("embedding_dim must be gather than 0")

1401 1402 1403 1404
        padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
            num_embeddings + padding_idx)

        if padding_idx >= num_embeddings or padding_idx < -num_embeddings:
T
tangwei12 已提交
1405 1406 1407
            raise ValueError("padding_idx must be within [-{}, {})".format(
                num_embeddings, num_embeddings))

T
tangwei12 已提交
1408 1409 1410 1411 1412 1413
        self._dtype = self._helper.get_default_dtype()
        self._size = [self._num_embeddings, self._embedding_dim]

        self._weight_attr = weight_attr
        self._remote_prefetch = False
        self._name = name
1414 1415 1416 1417
        self.weight = self.create_parameter(attr=self._weight_attr,
                                            shape=self._size,
                                            dtype=self._dtype,
                                            is_bias=False)
T
tangwei12 已提交
1418

Z
zhiboniu 已提交
1419
        if in_dynamic_mode() and padding_idx != -1:
1420 1421
            with paddle.no_grad():
                self.weight[padding_idx] = 0.0
T
tangwei12 已提交
1422

T
tangwei12 已提交
1423
    def forward(self, x):
1424 1425 1426 1427 1428
        return F.embedding(x,
                           weight=self.weight,
                           padding_idx=self._padding_idx,
                           sparse=self._sparse,
                           name=self._name)
1429 1430 1431 1432 1433 1434 1435 1436 1437

    def extra_repr(self):
        main_str = '{_num_embeddings}, {_embedding_dim}'
        if self._padding_idx is not None:
            main_str += ', padding_idx={_padding_idx}'
        main_str += ', sparse={_sparse}'
        if self._name is not None:
            main_str += ', name={_name}'
        return main_str.format(**self.__dict__)
F
FNRE 已提交
1438 1439


Z
zhiboniu 已提交
1440
class Unfold(Layer):
F
FNRE 已提交
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
    """
    This op returns a col buffer of sliding local blocks of input x, also known
    as im2col for batched 2D image tensors. For each block under the convolution filter,
    all element will be rearranged as a column. While the convolution filter sliding over
    the input feature map, a series of such columns will be formed.

    For each input :math:`x` with shape [N, C, H, W], the output shape [N, Cout, Lout]
    can be calculated as following.

    See ``paddle.nn.functional.unfold`` for more details.

1452

F
FNRE 已提交
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
    Parameters:
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
        dilations(int|list):      the dilations of convolution kernel, should be
                                  [dilation_h, dilation_w], or an integer dilation treated as
                                  [dilation, dilation]. For default, it will be [1, 1].
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`


    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn as nn

            x = paddle.randn((100,3,224,224))
            unfold = nn.Unfold(kernel_sizes=[3, 3])
            result = unfold(x)
            print(result)
X
xiaoting 已提交
1484
    """
F
FNRE 已提交
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500

    def __init__(self,
                 kernel_sizes,
                 dilations=1,
                 paddings=0,
                 strides=1,
                 name=None):
        super(Unfold, self).__init__()

        self.kernel_sizes = kernel_sizes
        self.dilations = dilations
        self.paddings = paddings
        self.strides = strides
        self.name = name

    def forward(self, input):
1501 1502 1503 1504 1505 1506
        return F.unfold(input,
                        kernel_sizes=self.kernel_sizes,
                        strides=self.strides,
                        paddings=self.paddings,
                        dilations=self.dilations,
                        name=self.name)
F
FNRE 已提交
1507 1508 1509 1510 1511

    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'kernel_size={}, dilation={}, padding={}, stride={}{}'.\
                format(self.kernel_sizes, self.dilations, self.paddings, self.strides, name_str)
X
xiaoting 已提交
1512 1513 1514


class Fold(Layer):
1515
    r"""
X
xiaoting 已提交
1516

1517
    Combines an array of sliding local blocks into a large containing
1518 1519
    tensor. also known as col2im when operated on batched 2D image tensor. Fold calculates each
    combined value in the resulting large tensor by summing all values from all containing blocks.
X
xiaoting 已提交
1520 1521 1522 1523 1524 1525


    For each input :math:`x` with shape [N, C_in , L], the output shape [N, C_out, H_out, W_out]
    can be calculated as following.

    .. math::
1526

1527 1528 1529
        H_{out} &= output\_size[0] \\
        W_{out} &= output\_size[1] \\
        C_{out} &= \frac{C_{in}}{kernel\_sizes[0]\times kernel\_sizes[1]} \\
X
xiaoting 已提交
1530 1531 1532 1533

    Parameters:
        output_sizes(list):       The size of output size, should be [output_size_h, output_size_w]
                                  or an interger o treated as [o, o].
X
xiaoting 已提交
1534
        kernel_sizes(int|list|tuple):   The size of convolution kernel, should be [k_h, k_w]
X
xiaoting 已提交
1535
                                  or an integer k treated as [k, k].
1536
        strides(int|list|tuple, optional):        The strides, should be [stride_h, stride_w]
X
xiaoting 已提交
1537 1538
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
1539
        paddings(int|list|tuple, optional):       The paddings of each dimension, should be
X
xiaoting 已提交
1540 1541 1542 1543 1544 1545
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
1546
        dilations(int|list|tuple, optional):      the dilations of convolution kernel, should be
X
xiaoting 已提交
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
                                  [dilation_h, dilation_w], or an integer dilation treated as
                                  [dilation, dilation]. For default, it will be [1, 1].
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`


    Returns:
        The tensor formed by combining a group of sliding local blocks
        The output shape is [N, Cout, H, W] as decriabled above.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn as nn

X
xiaoting 已提交
1565 1566
            x = paddle.randn([2,3*2*2,12])
            fold = nn.Fold(output_sizes=[4, 5], kernel_sizes=2)
X
xiaoting 已提交
1567
            y = fold(x)
X
xiaoting 已提交
1568
            # y.shape = [2,3,4,5]
X
xiaoting 已提交
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
   """

    def __init__(self,
                 output_sizes,
                 kernel_sizes,
                 dilations=1,
                 paddings=0,
                 strides=1,
                 name=None):
        super(Fold, self).__init__()

        self.output_sizes = output_sizes
        self.kernel_sizes = kernel_sizes
        self.dilations = dilations
        self.paddings = paddings
        self.strides = strides
        self.name = name

    def forward(self, input):
1588 1589 1590 1591 1592 1593 1594
        return F.fold(input,
                      output_sizes=self.output_sizes,
                      kernel_sizes=self.kernel_sizes,
                      strides=self.strides,
                      paddings=self.paddings,
                      dilations=self.dilations,
                      name=self.name)
X
xiaoting 已提交
1595 1596 1597 1598 1599

    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'kernel_size={}, dilation={}, padding={}, stride={}{}'.\
                format(self.kernel_sizes, self.dilations, self.paddings, self.strides, name_str)