common.py 36.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define the common classes to build a neural network  
16 17 18 19
from ...fluid.dygraph import BilinearTensorProduct  #DEFINE_ALIAS
from ...fluid.dygraph import Pool2D  #DEFINE_ALIAS
from ...fluid.dygraph import Embedding  #DEFINE_ALIAS
from ...fluid.dygraph import Linear  #DEFINE_ALIAS
20
from ...fluid.dygraph import Flatten  #DEFINE_ALIAS
21 22
from ...fluid.dygraph import layers
from .. import functional as F
23

C
ceci3 已提交
24
__all__ = [
L
littletomatodonkey 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
    'BilinearTensorProduct',
    'Pool2D',
    'Embedding',
    'Linear',
    'UpSample',
    'Pad2D',
    'ReflectionPad1d',
    'ReplicationPad1d',
    'ConstantPad1d',
    'ReflectionPad2d',
    'ReplicationPad2d',
    'ConstantPad2d',
    'ZeroPad2d',
    'ConstantPad3d',
    'ReplicationPad3d',
    'CosineSimilarity',
C
ceci3 已提交
41
]
42 43 44 45 46 47 48 49 50 51 52 53


class UpSample(layers.Layer):
    """
    This op resizes a batch of images.
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
    and the resizing only applies on the three dimensions(depth, height and width).
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the
    future and only use :attr:`out_shape` instead.
    Supporting resample methods:
54 55 56 57 58 59
        'linear' : Linear interpolation
        'bilinear' : Bilinear interpolation
        'trilinear' : Trilinear interpolation
        'nearest' : Nearest neighbor interpolation
        'bicubic' : Bicubic interpolation

60 61 62 63 64 65 66 67 68 69 70 71
    Linear interpolation is the method of using a line connecting two known quantities 
    to determine the value of an unknown quantity between the two known quantities. 
    
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.

    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.
72 73 74 75 76
    
    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.
77 78 79 80 81 82 83 84 85 86 87 88

    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
    The linear interpolation is performed on three directions.
    Align_corners and align_mode are optional parameters,the calculation method
    of interpolation can be selected by them.

    Example:

    .. code-block:: text

89
        For scale_factor:
90 91 92 93 94
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            else:
              scale_factor = float(in_size/out_size)

95 96 97 98 99 100 101 102 103 104
        Linear interpolation:
            if:
                align_corners = False , align_mode = 0
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = W_{in} * scale_{factor}
105 106 107 108 109 110 111 112 113 114 115 116 117 118

        Nearest neighbor interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
          else:
              align_corners = True
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
119
        
120 121 122
        Bilinear interpolation:
          if:
              align_corners = False , align_mode = 0
123

124 125 126 127 128
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
129

130 131 132 133 134 135 136 137 138 139 140 141
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

        Bicubic interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
142

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

        Trilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

164 165 166
    https://en.wikipedia.org/wiki/Linear_interpolation.
    For details of linear interpolation, please refer to Wikipedia:
    
167 168
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
169
    
170 171
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
172 173 174 175
    
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
    
176 177
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
178
    
179 180 181
    Parameters:
        input (Variable): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
182 183 184 185
        size (list|tuple|Variable|None): Output shape of image resize
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w) 
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor. 
             Default: None. If a list, each element can be an integer or a Tensor Variable of shape: [1].
186
             If a Tensor Variable, its dimensions size should be a 1.
187 188 189
        scale_factor (float|Variable|None): The multiplier for the input height or width. At
             least one of :attr:`out_shape` or :attr:`scale_factor` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale_factor`.
190
             Default: None.
191 192
        mode (str): The resample method. It supports 'linear', 'nearst', 'bilinear',
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
193 194 195
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the
                               input and output tensors are aligned, preserving the values at the
                               corner pixels.
196 197 198 199
                               Default: False
        align_mode(int)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
200
        data_format (str, optional): Specify the data format of the input, and the data format of the output
201
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
202 203 204
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
205 206 207
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
208 209 210
    Returns:
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
211
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
212
    Raises:
213 214 215 216 217 218 219 220 221 222 223
        TypeError: size should be a list or tuple or Variable.
        ValueError: The 'mode' of image_resize can only be 'linear', 'bilinear',
                    'trilinear', 'bicubic', or 'nearest' currently.
        ValueError: 'linear' only support 3-D tensor.
        ValueError: 'bilinear', 'bicubic' and 'nearest' only support 4-D tensor.
        ValueError: 'trilinear' only support 5-D tensor.
        ValueError: One of size and scale_factor must not be None.
        ValueError: size length should be 1 for input 3-D tensor.
        ValueError: size length should be 2 for input 4-D tensor.
        ValueError: size length should be 3 for input 5-D tensor.
        ValueError: scale_factor should be greater than zero.
224 225
        TypeError: align_corners should be a bool value
        ValueError: align_mode can only be '0' or '1'
226
        ValueError: data_format can only be 'NCW', 'NWC', 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.
227 228 229 230 231 232

    Examples:
        .. code-block:: python
            import paddle
            import numpy as np
            import paddle.fluid.dygraph as dg
233
            upsample_op = paddle.nn.UpSample(size=[12,12])
234 235 236 237 238 239 240 241 242 243
            input_data = np.random.rand(2,3,6,10).astype("float32")
            place = paddle.fluid.CPUPlace()
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                output = upsample_op(input=input)
                print(output.shape)
                # [2L, 3L, 12L, 12L]
    """

    def __init__(self,
244 245 246 247
                 size=None,
                 scale_factor=None,
                 mode='nearest',
                 align_corners=False,
248 249 250
                 align_mode=1,
                 data_format='NCHW'):
        super(UpSample, self).__init__()
251 252 253
        self.size = size
        self.scale_factor = scale_factor
        self.mode = mode.lower()
254 255 256 257 258 259 260
        self.align_corners = align_corners
        self.align_mode = align_mode
        self.data_format = data_format

    def forward(self, input):
        out = F.interpolate(
            input,
261 262 263
            size=self.size,
            scale_factor=self.scale_factor,
            mode=self.mode,
264 265 266 267 268
            align_corners=self.align_corners,
            align_mode=self.align_mode,
            data_format=self.data_format)

        return out
C
ceci3 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348


class Pad2D(layers.Layer):
    """
        :alias_main: paddle.nn.Pad2D
        :alias: paddle.nn.Pad2D,paddle.nn.layer.Pad2D,paddle.nn.layer.common.Pad2D
    This interface is used to construct a callable object of the ``Pad2D``  class.
    The Pad2D layer pads the input tensor boundaries according to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.
    Parameters:
        paddings (int | List[int32]): The padding size. If padding is a int, uses the same 
            padding in all boundaries, if padding is a List, it must contain four integers, 
            (padding_top, padding_bottom, padding_left, padding_right).
            Default is [0, 0, 0, 0].
        mode (str): Three modes: 'constant' (default), 'reflect', 'edge' .
        	When in 'constant' mode, this op uses a constant value to pad the input tensor.
        	When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
        	When in 'edge' mode, uses input boundaries to pad the input tensor.
        	Default is 'constant'
        pad_value (float32): The value to fill the padded areas in 'constant' mode . Default is 0.0
        data_format (str): An string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default is  "NCHW"
    Returns: 
        None
    Examples:
        .. code-block:: text
            Input = [[[[1., 2., 3.],
                       [4., 5., 6.]]]]
            Case 0:
                paddings = [0, 1, 2, 3],
                mode = 'constant'
                pad_value = 0
                Out = [[[[0., 0., 1., 2., 3., 0., 0., 0.],
                         [0., 0., 4., 5., 6., 0., 0., 0.],
                         [0., 0., 0., 0., 0., 0., 0., 0.]]]]
            Case 1:
                paddings = [0, 1, 2, 1],
                mode = 'reflect'
                Out = [[[[3., 2., 1., 2., 3., 2.],
                         [6., 5., 4., 5., 6., 5.],
                         [3., 2., 1., 2., 3., 2.]]]]
            Case 2:
                paddings = [0, 1, 2, 1],
                mode = 'edge'
                Out = [[[[1., 1., 1., 2., 3., 3.],
                         [4., 4., 4., 5., 6., 6.],
                         [4., 4., 4., 5., 6., 6.]]]]
    Code Examples:
        .. code-block:: python
            import paddle.fluid as fluid
            import paddle.nn as nn
            import numpy as np
            data = np.ones((2, 2, 2, 2)).astype('float32')
            my_pad = nn.Pad2D(paddings=[1, 1, 1, 1])
            with fluid.dygraph.guard():
                data = fluid.dygraph.to_variable(data)
                result = my_pad(data)
    """

    def __init__(self,
                 paddings=0,
                 mode='constant',
                 pad_value=0.0,
                 data_format="NCHW"):
        super(Pad2D, self).__init__()
        self._mode = mode
        self._pad_value = pad_value
        self._data_format = data_format
        self._paddings = [paddings] * 4 if isinstance(paddings,
                                                      int) else paddings

    def forward(self, input):
        return F.pad2d(
            input,
            paddings=self._paddings,
            mode=self._mode,
            pad_value=self._pad_value,
            data_format=self._data_format)
L
littletomatodonkey 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966


class ReflectionPad1d(layers.Layer):
    """
    This interface is used to construct a callable object of the ``ReflectionPad1d`` class.
    Uses reflection of the input boundaries to pad the input tensor.

    Parameters:
        padding (Tensor | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
            of input will be padded. The pad has the form (pad_left, pad_right).
        data_format (str): An string from: "NCL", "NLC". Specify the data format of the input data.
           Default is  "NCL"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
        
    Returns: 
        None

    Examples:
        .. code-block:: text

            x = [[[1., 2., 3.],
                  [4., 5., 6.]]]
            padding = [1, 2],
            Out = [[[2. 1. 2. 3. 2. 1.]
                    [5. 4. 5. 6. 5. 4.]]]

    Code Examples:
        .. code-block:: python

            import paddle
            import paddle.nn as nn
            import numpy as np
            paddle.disable_static()

            input_shape = (1, 2, 3)
            pad = [1, 2]
            data = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) + 1
            my_pad = nn.ReflectionPad1d(padding=pad)
            data = paddle.to_tensor(data)
            result = my_pad(data)
            print(result.numpy())
            # [[[2. 1. 2. 3. 2. 1.]
            #   [5. 4. 5. 6. 5. 4.]]]
    """

    def __init__(self, padding, data_format="NCL", name=None):
        super(ReflectionPad1d, self).__init__()
        self._mode = "reflect"
        self._data_format = data_format
        self._pad = padding
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
                     data_format=self._data_format,
                     name=self._name)


class ReplicationPad1d(layers.Layer):
    """
    This interface is used to construct a callable object of the ``ReplicationPad1d`` class.
    Uses input boundaries to pad the input tensor.

    Parameters:
        padding (Tensor | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
            of input will be padded. The pad has the form (pad_left, pad_right).
        data_format (str): An string from: "NCL", "NLC". Specify the data format of the input data.
           Default is  "NCL"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
        
    Returns: 
        None

    Examples:
        .. code-block:: text

            x = [[[1., 2., 3.],
                  [4., 5., 6.]]]
            padding = [1, 2],
            Out = [[[2. 1. 2. 3. 2. 1.]
                    [5. 4. 5. 6. 5. 4.]]]

    Code Examples:
        .. code-block:: python
        
            import paddle
            import paddle.nn as nn
            import numpy as np
            paddle.disable_static()

            input_shape = (1, 2, 3)
            pad = [1, 2]
            data = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) + 1
            my_pad = nn.ReplicationPad1d(padding=pad)
            data = paddle.to_tensor(data)
            result = my_pad(data)
            print(result.numpy())
            # [[[1. 1. 2. 3. 3. 3.]
            #   [1. 4. 5. 6. 6. 6.]]]
    """

    def __init__(self, padding, data_format="NCL", name=None):
        super(ReplicationPad1d, self).__init__()
        self._mode = "replicate"
        self._data_format = data_format
        self._pad = padding
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
                     data_format=self._data_format,
                     name=self._name)


class ConstantPad1d(layers.Layer):
    """
    This interface is used to construct a callable object of the ``ConstantPad1d`` class.
    Uses a constant value to pad the input tensor.

    Parameters:
        padding (Tensor | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
            of input will be padded. The pad has the form (pad_left, pad_right).
        value (float32): The value to fill the padded areas. Default is 0.0
        data_format (str): An string from: "NCL", "NLC". Specify the data format of the input data.
           Default is  "NCL"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
        
    Returns: 
        None

    Examples:
        .. code-block:: text

            x = [[[1., 2., 3.],
                  [4., 5., 6.]]]
            padding = [1, 2],
            value = 0.0
            Out = [[[0. 1. 2. 3. 0. 0.]
                    [0. 4. 5. 6. 0. 0.]]]

    Code Examples:
        .. code-block:: python
        
            import paddle
            import paddle.nn as nn
            import numpy as np
            paddle.disable_static()

            input_shape = (1, 2, 3)
            pad = [1, 2]
            data = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) + 1
            my_pad = nn.ConstantPad1d(padding=pad)
            data = paddle.to_tensor(data)
            result = my_pad(data)
            print(result.numpy())
            # [[[0. 1. 2. 3. 0. 0.]
            #   [0. 4. 5. 6. 0. 0.]]]
    """

    def __init__(self, padding, value=0.0, data_format="NCL", name=None):
        super(ConstantPad1d, self).__init__()
        self._mode = "constant"
        self._data_format = data_format
        self._pad = padding
        self._value = value
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
                     value=self._value,
                     data_format=self._data_format,
                     name=self._name)


class ConstantPad2d(layers.Layer):
    """
    This interface is used to construct a callable object of the ``ConstantPad2d`` class.
    Uses a constant value to pad the input tensor.

    Parameters:
        padding (Tensor | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
            of input will be padded. The pad has the form (pad_left, pad_right, pad_top, pad_bottom).
        value (float32): The value to fill the padded areas. Default is 0.0
        data_format (str): An string from: "NCHW", "NHWC". Specify the data format of the input data.
           Default is  "NCHW"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
        
    Returns: 
        None

    Examples:
        .. code-block:: text

            x = [[[[1., 2., 3.],
                   [4., 5., 6.]]]]
            padding = [1, 1, 0, 0]
            value = 0.0
            Out = [[[[0. 1. 2. 3. 0.]
                     [0. 4. 5. 6. 0.]]]]

    Code Examples:
        .. code-block:: python
        
            import paddle
            import paddle.nn as nn
            import numpy as np
            paddle.disable_static()

            input_shape = (1, 1, 2, 3)
            pad = [1, 0, 1, 2]
            data = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) + 1
            my_pad = nn.ConstantPad2d(padding=pad)
            data = paddle.to_tensor(data)
            result = my_pad(data)
            print(result.numpy())
            # [[[[0. 0. 0. 0.]
            #    [0. 1. 2. 3.]
            #    [0. 4. 5. 6.]
            #    [0. 0. 0. 0.]
            #    [0. 0. 0. 0.]]]]
    """

    def __init__(self, padding, value=0.0, data_format="NCHW", name=None):
        super(ConstantPad2d, self).__init__()
        self._mode = "constant"
        self._data_format = data_format
        self._pad = padding
        self._value = value
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
                     value=self._value,
                     data_format=self._data_format,
                     name=self._name)


class ZeroPad2d(layers.Layer):
    """
    This interface is used to construct a callable object of the ``ZeroPad2d`` class.
    Uses 0 to pad the input tensor.

    Parameters:
        padding (Variable | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
            of input will be padded. The pad has the form (pad_left, pad_right, pad_top, pad_bottom).
        data_format (str): An string from: "NCHW", "NHWC". Specify the data format of the input data.
           Default is  "NCHW"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
        
    Returns: 
        None

    Examples:
        .. code-block:: text

            x = [[[[1., 2., 3.],
                   [4., 5., 6.]]]]
            padding = [1, 1, 0, 0]
            Out = [[[[0. 1. 2. 3. 0.]
                     [0. 4. 5. 6. 0.]]]]

    Code Examples:
        .. code-block:: python
        
            import paddle
            import paddle.nn as nn
            import numpy as np
            paddle.disable_static()

            input_shape = (1, 1, 2, 3)
            pad = [1, 0, 1, 2]
            data = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) + 1
            my_pad = nn.ZeroPad2d(padding=pad)
            data = paddle.to_tensor(data)
            result = my_pad(data)
            print(result.numpy())
            # [[[[0. 0. 0. 0.]
            #    [0. 1. 2. 3.]
            #    [0. 4. 5. 6.]
            #    [0. 0. 0. 0.]
            #    [0. 0. 0. 0.]]]]
    """

    def __init__(self, padding, data_format="NCHW", name=None):
        super(ZeroPad2d, self).__init__()
        self._mode = "constant"
        self._data_format = data_format
        self._pad = padding
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
                     data_format=self._data_format,
                     name=self._name)


class ReplicationPad2d(layers.Layer):
    """
    This interface is used to construct a callable object of the ``ReplicationPad2d`` class.
    Uses input boundaries to pad the input tensor.

    Parameters:
        padding (Tensor | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
            of input will be padded. The pad has the form (pad_left, pad_right, pad_top, pad_bottom).
        data_format (str): An string from: "NCHW", "NHWC". Specify the data format of the input data.
           Default is  "NCHW"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
        
    Returns: 
        None

    Examples:
        .. code-block:: text

            x = [[[[1., 2., 3.],
                   [4., 5., 6.]]]]
            padding = [1, 1, 0, 0]
            Out = [[[[1. 1. 2. 3. 3.]
                     [4. 4. 5. 6. 6.]]]]

    Code Examples:
        .. code-block:: python
        
            import paddle
            import paddle.nn as nn
            import numpy as np
            paddle.disable_static()

            input_shape = (1, 1, 2, 3)
            pad = [1, 0, 1, 2]
            data = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) + 1
            my_pad = nn.ReplicationPad2d(padding=pad)
            data = paddle.to_tensor(data)
            result = my_pad(data)
            print(result.numpy())
            # [[[[1. 1. 2. 3.]
            #    [1. 1. 2. 3.]
            #    [4. 4. 5. 6.]
            #    [4. 4. 5. 6.]
            #    [4. 4. 5. 6.]]]]
    """

    def __init__(self, padding, data_format="NCHW", name=None):
        super(ReplicationPad2d, self).__init__()
        self._mode = "replicate"
        self._data_format = data_format
        self._pad = padding
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
                     data_format=self._data_format,
                     name=self._name)


class ReflectionPad2d(layers.Layer):
    """
    This interface is used to construct a callable object of the ``ReflectionPad2d`` class.
    Uses reflection of the input boundaries to pad the input tensor.

    Parameters:
        padding (Variable | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
            of input will be padded. The pad has the form (pad_left, pad_right, pad_top, pad_bottom).
        data_format (str): An string from: "NCHW", "NHWC". Specify the data format of the input data.
           Default is  "NCHW"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
        
    Returns: 
        None

    Examples:
        .. code-block:: text

            x = [[[[1., 2., 3.],
                   [4., 5., 6.]]]]
            padding = [1, 1, 0, 0]
            Out = [[[[2. 1. 2. 3. 2.]
                     [5. 4. 5. 6. 5.]]]]

    Code Examples:
        .. code-block:: python
        
            import paddle
            import paddle.nn as nn
            import numpy as np
            paddle.disable_static()

            input_shape = (1, 1, 4, 3)
            pad = [1, 0, 1, 2]
            data = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) + 1
            my_pad = nn.ReflectionPad2d(padding=pad)
            data = paddle.to_tensor(data)
            result = my_pad(data)
            print(result.numpy())
            # [[[[ 5.  4.  5.  6.]
            #    [ 2.  1.  2.  3.]
            #    [ 5.  4.  5.  6.]
            #    [ 8.  7.  8.  9.]
            #    [11. 10. 11. 12.]
            #    [ 8.  7.  8.  9.]
            #    [ 5.  4.  5.  6.]]]]
    """

    def __init__(self, padding, data_format="NCHW", name=None):
        super(ReflectionPad2d, self).__init__()
        self._mode = "reflect"
        self._data_format = data_format
        self._pad = padding
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
                     data_format=self._data_format,
                     name=self._name)


class ConstantPad3d(layers.Layer):
    """
    This interface is used to construct a callable object of the ``ConstantPad3d`` class.
    Uses a constant value to pad the input tensor.

    Parameters:
        padding (Tensor | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
            of input will be padded. The pad has the form (pad_left, pad_right, pad_top, pad_bottom, pad_front, pad_back).
        value (float32): The value to fill the padded areas. Default is 0.0
        data_format (str): An string from: "NCDHW", "NDHWC". Specify the data format of the input data.
           Default is  "NCDHW"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
        
    Returns: 
        None

    Examples:
        .. code-block:: text

            x = [[[[[1., 2., 3.],
                    [4., 5., 6.]]]]]
            padding = [1, 2, 0, 0, 0, 0]
            value = 0.0
            Out = [[[[[0. 1. 2. 3. 0. 0.]
                      [0. 4. 5. 6. 0. 0.]]]]]

    Code Examples:
        .. code-block:: python
        
            import paddle
            import paddle.nn as nn
            import numpy as np
            paddle.disable_static()

            input_shape = (1, 1, 1, 2, 3)
            pad = [1, 0, 1, 2, 0, 0]
            data = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) + 1
            my_pad = nn.ConstantPad3d(padding=pad)
            data = paddle.to_tensor(data)
            result = my_pad(data)
            print(result.numpy())
            # [[[[[0. 0. 0. 0.]
            #     [0. 1. 2. 3.]
            #     [0. 4. 5. 6.]
            #     [0. 0. 0. 0.]
            #     [0. 0. 0. 0.]]]]]
    """

    def __init__(self, padding, value=0.0, data_format="NCDHW", name=None):
        super(ConstantPad3d, self).__init__()
        self._mode = "constant"
        self._data_format = data_format
        self._pad = padding
        self._value = value
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
                     value=self._value,
                     data_format=self._data_format,
                     name=self._name)


class ReplicationPad3d(layers.Layer):
    """
    This interface is used to construct a callable object of the ``ReplicationPad3d`` class.
    Uses input boundaries to pad the input tensor.

    Parameters:
        padding (Tensor | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
            of input will be padded. The pad has the form (pad_left, pad_right, pad_top, pad_bottom, pad_front, pad_back).
        data_format (str): An string from: "NCDHW", "NDHWC". Specify the data format of the input data.
           Default is  "NCDHW"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
        
    Returns: 
        None

    Examples:
        .. code-block:: text

            x = [[[[[1., 2., 3.],
                    [4., 5., 6.]]]]]
            padding = [1, 2, 0, 0, 0, 0]
            Out = [[[[[1. 1. 2. 3. 3. 3.]
                      [4. 4. 5. 6. 6. 6.]]]]]

    Code Examples:
        .. code-block:: python
        
            import paddle
            import paddle.nn as nn
            import numpy as np
            paddle.disable_static()

            input_shape = (1, 1, 1, 2, 3)
            pad = [1, 0, 1, 2, 0, 0]
            data = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) + 1
            my_pad = nn.ReplicationPad3d(padding=pad)
            data = paddle.to_tensor(data)
            result = my_pad(data)
            print(result.numpy())
            # [[[[[1. 1. 2. 3.]
            #     [1. 1. 2. 3.]
            #     [4. 4. 5. 6.]
            #     [4. 4. 5. 6.]
            #     [4. 4. 5. 6.]]]]]
    """

    def __init__(self, padding, data_format="NCDHW", name=None):
        super(ReplicationPad3d, self).__init__()
        self._mode = "replicate"
        self._data_format = data_format
        self._pad = padding
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
                     data_format=self._data_format,
                     name=self._name)


class CosineSimilarity(layers.Layer):
    """
    This interface is used to compute cosine similarity between x1 and x2 along dim.

    Parameters:
        dim (int): Dimension of vectors to compute cosine similarity. Default is 1.
        eps(float): Small value to avoid division by zero. Default is 1e-8.
    Returns: 
        None

    Examples:
        .. code-block:: text

            Case 0:
                x1 = [[0.8024077  0.9927354  0.27238318 0.8344984 ]
                     [0.48949873 0.5797396  0.65444374 0.66510963]
                     [0.1031398  0.9614342  0.08365563 0.6796464 ]
                     [0.10760343 0.7461209  0.7726148  0.5801006 ]]
                x2 = [[0.62913156 0.1536727  0.9847992  0.04591406]
                     [0.9098952  0.15715368 0.8671125  0.3156102 ]
                     [0.4427798  0.54136837 0.5276275  0.32394758]
                     [0.3769419  0.8535014  0.48041078 0.9256797 ]]
                dim = 1
                eps = 1e-8
                Out: [0.5275037  0.8368967  0.75037485 0.9245899]

    Code Examples:
        .. code-block:: python
        
            import paddle
            import paddle.nn as nn
            import numpy as np
            paddle.disable_static()

            np.random.seed(0)
            x1 = np.random.rand(2,3)
            x2 = np.random.rand(2,3)
            x1 = paddle.to_tensor(x1)
            x2 = paddle.to_tensor(x2)

            cos_sim_func = nn.CosineSimilarity(dim=0)
            result = cos_sim_func(x1, x2)
            print(result.numpy())
            # [0.99806249 0.9817672  0.94987036]
    """

    def __init__(self, dim=1, eps=1e-8):
        super(CosineSimilarity, self).__init__()
        self._dim = dim
        self._eps = eps

    def forward(self, x1, x2):
        return F.cosine_similarity(x1, x2, dim=self._dim, eps=self._eps)