common.py 48.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define the common classes to build a neural network
16 17 18 19
from ...fluid.dygraph import BilinearTensorProduct  #DEFINE_ALIAS
from ...fluid.dygraph import Pool2D  #DEFINE_ALIAS
from ...fluid.dygraph import Embedding  #DEFINE_ALIAS
from ...fluid.dygraph import Linear  #DEFINE_ALIAS
20
from ...fluid.dygraph import Flatten  #DEFINE_ALIAS
21 22
from ...fluid.dygraph import layers
from .. import functional as F
23
from ...fluid.framework import _dygraph_tracer
24

C
ceci3 已提交
25
__all__ = [
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
    'BilinearTensorProduct',
    'Pool2D',
    'Embedding',
    'Linear',
    'UpSample',
    'Pad2D',
    'ReflectionPad1d',
    'ReplicationPad1d',
    'ConstantPad1d',
    'ReflectionPad2d',
    'ReplicationPad2d',
    'ConstantPad2d',
    'ZeroPad2d',
    'ConstantPad3d',
    'ReplicationPad3d',
    'CosineSimilarity',
    'Dropout',
    'Dropout2D',
    'Dropout3D',
    'Bilinear',
    'AlphaDropout',
C
ceci3 已提交
47
]
48 49 50 51 52 53 54 55 56 57 58 59


class UpSample(layers.Layer):
    """
    This op resizes a batch of images.
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
    and the resizing only applies on the three dimensions(depth, height and width).
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the
    future and only use :attr:`out_shape` instead.
    Supporting resample methods:
60 61 62 63 64 65
        'linear' : Linear interpolation
        'bilinear' : Bilinear interpolation
        'trilinear' : Trilinear interpolation
        'nearest' : Nearest neighbor interpolation
        'bicubic' : Bicubic interpolation

66 67 68 69 70 71 72 73 74 75 76 77
    Linear interpolation is the method of using a line connecting two known quantities 
    to determine the value of an unknown quantity between the two known quantities. 
    
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.

    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.
78 79 80 81 82
    
    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.
83 84 85 86 87 88 89 90 91 92 93 94

    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
    The linear interpolation is performed on three directions.
    Align_corners and align_mode are optional parameters,the calculation method
    of interpolation can be selected by them.

    Example:

    .. code-block:: text

95
        For scale_factor:
96 97 98 99 100
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            else:
              scale_factor = float(in_size/out_size)

101 102 103 104 105 106 107 108 109 110
        Linear interpolation:
            if:
                align_corners = False , align_mode = 0
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = W_{in} * scale_{factor}
111 112 113 114 115 116 117 118 119 120 121 122 123 124

        Nearest neighbor interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
          else:
              align_corners = True
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
125
        
126 127 128
        Bilinear interpolation:
          if:
              align_corners = False , align_mode = 0
129

130 131 132 133 134
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
135

136 137 138 139 140 141 142 143 144 145 146 147
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

        Bicubic interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
148

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

        Trilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

170 171 172
    https://en.wikipedia.org/wiki/Linear_interpolation.
    For details of linear interpolation, please refer to Wikipedia:
    
173 174
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
175
    
176 177
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
178 179 180 181
    
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
    
182 183
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
184
    
185 186 187
    Parameters:
        input (Variable): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
188 189 190 191
        size (list|tuple|Variable|None): Output shape of image resize
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w) 
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor. 
             Default: None. If a list, each element can be an integer or a Tensor Variable of shape: [1].
192
             If a Tensor Variable, its dimensions size should be a 1.
193 194 195
        scale_factor (float|Variable|None): The multiplier for the input height or width. At
             least one of :attr:`out_shape` or :attr:`scale_factor` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale_factor`.
196
             Default: None.
197 198
        mode (str): The resample method. It supports 'linear', 'nearst', 'bilinear',
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
199 200 201
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the
                               input and output tensors are aligned, preserving the values at the
                               corner pixels.
202 203 204 205
                               Default: False
        align_mode(int)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
206
        data_format (str, optional): Specify the data format of the input, and the data format of the output
207
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
208 209 210
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
211 212 213
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
214 215 216
    Returns:
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
217
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
218
    Raises:
219 220 221 222 223 224 225 226 227 228 229
        TypeError: size should be a list or tuple or Variable.
        ValueError: The 'mode' of image_resize can only be 'linear', 'bilinear',
                    'trilinear', 'bicubic', or 'nearest' currently.
        ValueError: 'linear' only support 3-D tensor.
        ValueError: 'bilinear', 'bicubic' and 'nearest' only support 4-D tensor.
        ValueError: 'trilinear' only support 5-D tensor.
        ValueError: One of size and scale_factor must not be None.
        ValueError: size length should be 1 for input 3-D tensor.
        ValueError: size length should be 2 for input 4-D tensor.
        ValueError: size length should be 3 for input 5-D tensor.
        ValueError: scale_factor should be greater than zero.
230 231
        TypeError: align_corners should be a bool value
        ValueError: align_mode can only be '0' or '1'
232
        ValueError: data_format can only be 'NCW', 'NWC', 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.
233 234 235 236 237 238

    Examples:
        .. code-block:: python
            import paddle
            import numpy as np
            import paddle.fluid.dygraph as dg
239
            upsample_op = paddle.nn.UpSample(size=[12,12])
240 241 242 243 244 245 246 247 248 249
            input_data = np.random.rand(2,3,6,10).astype("float32")
            place = paddle.fluid.CPUPlace()
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                output = upsample_op(input=input)
                print(output.shape)
                # [2L, 3L, 12L, 12L]
    """

    def __init__(self,
250 251 252 253
                 size=None,
                 scale_factor=None,
                 mode='nearest',
                 align_corners=False,
254 255 256
                 align_mode=1,
                 data_format='NCHW'):
        super(UpSample, self).__init__()
257 258 259
        self.size = size
        self.scale_factor = scale_factor
        self.mode = mode.lower()
260 261 262 263 264 265 266
        self.align_corners = align_corners
        self.align_mode = align_mode
        self.data_format = data_format

    def forward(self, input):
        out = F.interpolate(
            input,
267 268 269
            size=self.size,
            scale_factor=self.scale_factor,
            mode=self.mode,
270 271 272 273 274
            align_corners=self.align_corners,
            align_mode=self.align_mode,
            data_format=self.data_format)

        return out
C
ceci3 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354


class Pad2D(layers.Layer):
    """
        :alias_main: paddle.nn.Pad2D
        :alias: paddle.nn.Pad2D,paddle.nn.layer.Pad2D,paddle.nn.layer.common.Pad2D
    This interface is used to construct a callable object of the ``Pad2D``  class.
    The Pad2D layer pads the input tensor boundaries according to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.
    Parameters:
        paddings (int | List[int32]): The padding size. If padding is a int, uses the same 
            padding in all boundaries, if padding is a List, it must contain four integers, 
            (padding_top, padding_bottom, padding_left, padding_right).
            Default is [0, 0, 0, 0].
        mode (str): Three modes: 'constant' (default), 'reflect', 'edge' .
        	When in 'constant' mode, this op uses a constant value to pad the input tensor.
        	When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
        	When in 'edge' mode, uses input boundaries to pad the input tensor.
        	Default is 'constant'
        pad_value (float32): The value to fill the padded areas in 'constant' mode . Default is 0.0
        data_format (str): An string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default is  "NCHW"
    Returns: 
        None
    Examples:
        .. code-block:: text
            Input = [[[[1., 2., 3.],
                       [4., 5., 6.]]]]
            Case 0:
                paddings = [0, 1, 2, 3],
                mode = 'constant'
                pad_value = 0
                Out = [[[[0., 0., 1., 2., 3., 0., 0., 0.],
                         [0., 0., 4., 5., 6., 0., 0., 0.],
                         [0., 0., 0., 0., 0., 0., 0., 0.]]]]
            Case 1:
                paddings = [0, 1, 2, 1],
                mode = 'reflect'
                Out = [[[[3., 2., 1., 2., 3., 2.],
                         [6., 5., 4., 5., 6., 5.],
                         [3., 2., 1., 2., 3., 2.]]]]
            Case 2:
                paddings = [0, 1, 2, 1],
                mode = 'edge'
                Out = [[[[1., 1., 1., 2., 3., 3.],
                         [4., 4., 4., 5., 6., 6.],
                         [4., 4., 4., 5., 6., 6.]]]]
    Code Examples:
        .. code-block:: python
            import paddle.fluid as fluid
            import paddle.nn as nn
            import numpy as np
            data = np.ones((2, 2, 2, 2)).astype('float32')
            my_pad = nn.Pad2D(paddings=[1, 1, 1, 1])
            with fluid.dygraph.guard():
                data = fluid.dygraph.to_variable(data)
                result = my_pad(data)
    """

    def __init__(self,
                 paddings=0,
                 mode='constant',
                 pad_value=0.0,
                 data_format="NCHW"):
        super(Pad2D, self).__init__()
        self._mode = mode
        self._pad_value = pad_value
        self._data_format = data_format
        self._paddings = [paddings] * 4 if isinstance(paddings,
                                                      int) else paddings

    def forward(self, input):
        return F.pad2d(
            input,
            paddings=self._paddings,
            mode=self._mode,
            pad_value=self._pad_value,
            data_format=self._data_format)
L
littletomatodonkey 已提交
355 356


357 358 359 360 361 362
class Bilinear(layers.Layer):
    """

    This layer performs bilinear on two inputs.

    .. math::
363

364
      out_{i} = x1 * W_{i} * {x2^\mathrm{T}}, i=0,1,...,size-1
365

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
      out = out + b

    In this formula:
     - :math:`x1`: the first input contains in1_features elements, shape is [batch_size, in1_features].
     - :math:`x2`: the second input contains in2_features elements, shape is [batch_size, in2_features].
     - :math:`W_{i}`: the i-th learned weight, shape is [in1_features, in2_features], and learned weight's shape is [out_features, in1_features, in2_features].
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, out_features].
     - :math:`b`: the learned bias, shape is [1, out_features].
     - :math:`x2^\mathrm{T}`: the transpose of :math:`x2`.

    Parameters:
       in1_features (int): The dimension of each first input(`x1`).
       in2_features (int): The dimension of each second input(`x2`).
       out_features (int): The dimension of output of this layer.
       weight_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of 
       this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
           of this layer. If it is set to False, no bias will be added to the output units.
           If it is set to None, the bias is initialized zero. The default value is None.       
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.

    Returns:
394
       Tensor: A 2-D Tensor of shape [batch_size, out_features].
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446

    Examples:
       .. code-block:: python

        import paddle
        import numpy

        paddle.disable_static()
        layer1 = numpy.random.random((5, 5)).astype('float32')
        layer2 = numpy.random.random((5, 4)).astype('float32')
        bilinear = paddle.nn.Bilinear(
            in1_features=5, in2_features=4, out_features=1000)
        result = bilinear(paddle.to_tensor(layer1),
                        paddle.to_tensor(layer2))     # result shape [5, 1000]

    """

    def __init__(self,
                 in1_features,
                 in2_features,
                 out_features,
                 weight_attr=None,
                 bias_attr=None,
                 name=None):
        super(Bilinear, self).__init__()
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        self._name = name
        self._in1_features = in1_features
        self._in2_features = in2_features
        self._out_features = out_features
        self._dtype = self._helper.get_default_dtype()

        weight_shape = [
            self._out_features, self._in1_features, self._in2_features
        ]
        self.weight = self.create_parameter(
            attr=self._weight_attr,
            shape=weight_shape,
            dtype=self._dtype,
            is_bias=False)
        bias_shape = [1, self._out_features]
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=bias_shape,
            dtype=self._dtype,
            is_bias=True)

    def forward(self, x1, x2):
        return F.bilinear(x1, x2, self.weight, self.bias, self._name)


447 448 449 450 451 452 453 454 455
class Dropout(layers.Layer):
    """
    Dropout is a regularization technique for reducing overfitting by preventing
    neuron co-adaption during training as described in the paper:
    `Improving neural networks by preventing co-adaptation of feature detectors <https://arxiv.org/abs/1207.0580>`_ 
    The dropout operator randomly sets the outputs of some units to zero, while upscale others
    according to the given dropout probability.

    See ``paddle.nn.functional.dropout`` for more details.
456 457

    In dygraph mode, please use ``eval()`` to switch to evaluation mode, where dropout is disabled.
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472

    Parameters:
        p (float | int): Probability of setting units to zero. Default: 0.5
        axis (int | list): The axis along which the dropout is performed. Default None.
        mode(str, optional): ['upscale_in_train'(default) | 'downscale_in_infer']

                               1. upscale_in_train(default), upscale the output at training time

                                  - train: out = input * mask / ( 1.0 - p )
                                  - inference: out = input

                               2. downscale_in_infer, downscale the output at inference

                                  - train: out = input * mask
                                  - inference: out = input * (1.0 - p)
473
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524

    Shape:
        - input: N-D tensor.
        - output: N-D tensor, the same shape as input.

    Examples:
        .. code-block:: python
            import paddle
            import numpy as np

            paddle.disable_static()
            x = np.array([[1,2,3], [4,5,6]]).astype('float32')
            x = paddle.to_tensor(x)
            m = paddle.nn.Dropout(p=0.5)
            y_train = m(x)
            m.eval()  # switch the model to test phase
            y_test = m(x)
            print(x.numpy())
            print(y_train.numpy())
            print(y_test.numpy())
   """

    def __init__(self, p=0.5, axis=None, mode="upscale_in_train", name=None):
        super(Dropout, self).__init__()

        self.p = p
        self.axis = axis
        self.mode = mode
        self.name = name

    def forward(self, input):
        out = F.dropout(
            input,
            p=self.p,
            axis=self.axis,
            training=self.training,
            mode=self.mode,
            name=self.name)
        return out


class Dropout2D(layers.Layer):
    """
    Randomly zero out entire channels (in the batched input 4d tensor with the shape `NCHW` ,
    a channel is a 2D feature map with the shape `HW`). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.
    Dropout2d will help promote independence between feature maps as described in the paper: 
    `Efficient Object Localization Using Convolutional Networks <https://arxiv.org/abs/1411.4280>`_ 

    See ``paddle.nn.functional.dropout2d`` for more details.

525 526
    In dygraph mode, please use ``eval()`` to switch to evaluation mode, where dropout is disabled.

527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
    Parameters:
        p (float, optional): Probability of setting units to zero. Default: 0.5
        data_format (str, optional): Specify the data format of the input, and the data format of the output
                                     will be consistent with that of the input. An optional string from:
                                    `NCHW`, `NHWC`. The default is `NCHW`. When it is `NCHW`, the data is
                                     stored in the order of: [batch_size, input_channels, input_height, input_width].
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: 4-D tensor.
        - output: 4-D tensor, the same shape as input.

    Examples:
        .. code-block:: python
            import paddle
            import numpy as np

            paddle.disable_static()
            x = np.random.random(size=(2, 3, 4, 5)).astype('float32')
            x = paddle.to_tensor(x)
            m = paddle.nn.Dropout2D(p=0.5)
            y_train = m(x)
            m.eval()  # switch the model to test phase
            y_test = m(x)
            print(x.numpy())
            print(y_train.numpy())
            print(y_test.numpy())
   """

    def __init__(self, p=0.5, data_format='NCHW', name=None):
        super(Dropout2D, self).__init__()

        self.p = p
        self.data_format = data_format
        self.name = name

    def forward(self, input):
        out = F.dropout2d(
            input,
            p=self.p,
            training=self.training,
            data_format=self.data_format,
            name=self.name)
        return out


class Dropout3D(layers.Layer):
    """
    Randomly zero out entire channels (in the batched input 5d tensor with the shape `NCDHW` ,
    a channel is a 3D feature map with the shape `DHW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.
    Dropout3d will help promote independence between feature maps as described in the paper: 
    `Efficient Object Localization Using Convolutional Networks <https://arxiv.org/abs/1411.4280>`_ 

    See ``paddle.nn.functional.dropout3d`` for more details.

583 584
    In dygraph mode, please use ``eval()`` to switch to evaluation mode, where dropout is disabled.

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
    Parameters:
        p (float | int): Probability of setting units to zero. Default: 0.5
        data_format (str, optional): Specify the data format of the input, and the data format of the output
                                     will be consistent with that of the input. An optional string from:
                                    `NCDHW`, `NDHWC`. The default is `NCDHW`. When it is `NCDHW`, the data is
                                     stored in the order of: [batch_size, input_channels, input_depth, input_height, input_width].
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: 5-D tensor.
        - output: 5-D tensor, the same shape as input.

    Examples:
        .. code-block:: python
            import paddle
            import numpy as np

            paddle.disable_static()
            x = np.random.random(size=(2, 3, 4, 5, 6)).astype('float32')
            x = paddle.to_tensor(x)
            m = paddle.nn.Dropout3D(p=0.5)
            y_train = m(x)
            m.eval()  # switch the model to test phase
            y_test = m(x)
            print(x.numpy())
            print(y_train.numpy())
            print(y_test.numpy())
   """

    def __init__(self, p=0.5, data_format='NCDHW', name=None):
        super(Dropout3D, self).__init__()

        self.p = p
        self.data_format = data_format
        self.name = name

    def forward(self, input):
        out = F.dropout3d(
            input,
            p=self.p,
            training=self.training,
            data_format=self.data_format,
            name=self.name)
        return out


631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
class AlphaDropout(layers.Layer):
    """
    Alpha Dropout is a type of Dropout that maintains the self-normalizing property. For an input with
    zero mean and unit standard deviation, the output of Alpha Dropout maintains the original mean and
    standard deviation of the input. Alpha Dropout fits well to SELU activate function by randomly setting
    activations to the negative saturation value.

    For more information, please refer to:
    `Self-Normalizing Neural Networks <https://arxiv.org/abs/1706.02515>`_

    In dygraph mode, please use ``eval()`` to switch to evaluation mode, where dropout is disabled.

    Parameters:
        p (float | int): Probability of setting units to zero. Default: 0.5
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: N-D tensor.
        - output: N-D tensor, the same shape as input.

    Examples:
        .. code-block:: python
            import paddle
            import numpy as np

            paddle.disable_static()
            x = np.array([[-1, 1], [-1, 1]]).astype('float32')
            x = paddle.to_tensor(x)
            m = paddle.nn.AlphaDropout(p=0.5)
            y_train = m(x)
            m.eval()  # switch the model to test phase
            y_test = m(x)
            print(x.numpy())
            print(y_train.numpy())
            # [[-0.10721093, 1.6655989 ], [-0.7791938, -0.7791938]] (randomly)
            print(y_test.numpy())
   """

    def __init__(self, p=0.5, name=None):
        super(AlphaDropout, self).__init__()
        self.p = p
        self.name = name

    def forward(self, input):
        out = F.alpha_dropout(
            input, p=self.p, training=self.training, name=self.name)
        return out


L
littletomatodonkey 已提交
680 681 682 683 684 685 686 687 688 689 690 691
class ReflectionPad1d(layers.Layer):
    """
    This interface is used to construct a callable object of the ``ReflectionPad1d`` class.
    Uses reflection of the input boundaries to pad the input tensor.

    Parameters:
        padding (Tensor | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
            of input will be padded. The pad has the form (pad_left, pad_right).
        data_format (str): An string from: "NCL", "NLC". Specify the data format of the input data.
           Default is  "NCL"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
692 693

    Returns:
L
littletomatodonkey 已提交
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
        None

    Examples:
        .. code-block:: text

            x = [[[1., 2., 3.],
                  [4., 5., 6.]]]
            padding = [1, 2],
            Out = [[[2. 1. 2. 3. 2. 1.]
                    [5. 4. 5. 6. 5. 4.]]]

    Code Examples:
        .. code-block:: python

            import paddle
            import paddle.nn as nn
            import numpy as np
            paddle.disable_static()

            input_shape = (1, 2, 3)
            pad = [1, 2]
            data = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) + 1
            my_pad = nn.ReflectionPad1d(padding=pad)
            data = paddle.to_tensor(data)
            result = my_pad(data)
            print(result.numpy())
            # [[[2. 1. 2. 3. 2. 1.]
            #   [5. 4. 5. 6. 5. 4.]]]
    """

    def __init__(self, padding, data_format="NCL", name=None):
        super(ReflectionPad1d, self).__init__()
        self._mode = "reflect"
        self._data_format = data_format
        self._pad = padding
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
                     data_format=self._data_format,
                     name=self._name)


class ReplicationPad1d(layers.Layer):
    """
    This interface is used to construct a callable object of the ``ReplicationPad1d`` class.
    Uses input boundaries to pad the input tensor.

    Parameters:
        padding (Tensor | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
            of input will be padded. The pad has the form (pad_left, pad_right).
        data_format (str): An string from: "NCL", "NLC". Specify the data format of the input data.
           Default is  "NCL"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
751 752

    Returns:
L
littletomatodonkey 已提交
753 754 755 756 757 758 759 760 761 762 763 764 765
        None

    Examples:
        .. code-block:: text

            x = [[[1., 2., 3.],
                  [4., 5., 6.]]]
            padding = [1, 2],
            Out = [[[2. 1. 2. 3. 2. 1.]
                    [5. 4. 5. 6. 5. 4.]]]

    Code Examples:
        .. code-block:: python
766

L
littletomatodonkey 已提交
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
            import paddle
            import paddle.nn as nn
            import numpy as np
            paddle.disable_static()

            input_shape = (1, 2, 3)
            pad = [1, 2]
            data = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) + 1
            my_pad = nn.ReplicationPad1d(padding=pad)
            data = paddle.to_tensor(data)
            result = my_pad(data)
            print(result.numpy())
            # [[[1. 1. 2. 3. 3. 3.]
            #   [1. 4. 5. 6. 6. 6.]]]
    """

    def __init__(self, padding, data_format="NCL", name=None):
        super(ReplicationPad1d, self).__init__()
        self._mode = "replicate"
        self._data_format = data_format
        self._pad = padding
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
                     data_format=self._data_format,
                     name=self._name)


class ConstantPad1d(layers.Layer):
    """
    This interface is used to construct a callable object of the ``ConstantPad1d`` class.
    Uses a constant value to pad the input tensor.

    Parameters:
        padding (Tensor | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
            of input will be padded. The pad has the form (pad_left, pad_right).
        value (float32): The value to fill the padded areas. Default is 0.0
        data_format (str): An string from: "NCL", "NLC". Specify the data format of the input data.
           Default is  "NCL"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
811 812

    Returns:
L
littletomatodonkey 已提交
813 814 815 816 817 818 819 820 821 822 823 824 825 826
        None

    Examples:
        .. code-block:: text

            x = [[[1., 2., 3.],
                  [4., 5., 6.]]]
            padding = [1, 2],
            value = 0.0
            Out = [[[0. 1. 2. 3. 0. 0.]
                    [0. 4. 5. 6. 0. 0.]]]

    Code Examples:
        .. code-block:: python
827

L
littletomatodonkey 已提交
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
            import paddle
            import paddle.nn as nn
            import numpy as np
            paddle.disable_static()

            input_shape = (1, 2, 3)
            pad = [1, 2]
            data = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) + 1
            my_pad = nn.ConstantPad1d(padding=pad)
            data = paddle.to_tensor(data)
            result = my_pad(data)
            print(result.numpy())
            # [[[0. 1. 2. 3. 0. 0.]
            #   [0. 4. 5. 6. 0. 0.]]]
    """

    def __init__(self, padding, value=0.0, data_format="NCL", name=None):
        super(ConstantPad1d, self).__init__()
        self._mode = "constant"
        self._data_format = data_format
        self._pad = padding
        self._value = value
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
                     value=self._value,
                     data_format=self._data_format,
                     name=self._name)


class ConstantPad2d(layers.Layer):
    """
    This interface is used to construct a callable object of the ``ConstantPad2d`` class.
    Uses a constant value to pad the input tensor.

    Parameters:
        padding (Tensor | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
            of input will be padded. The pad has the form (pad_left, pad_right, pad_top, pad_bottom).
        value (float32): The value to fill the padded areas. Default is 0.0
        data_format (str): An string from: "NCHW", "NHWC". Specify the data format of the input data.
           Default is  "NCHW"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
874 875

    Returns:
L
littletomatodonkey 已提交
876 877 878 879 880 881 882 883 884 885 886 887 888 889
        None

    Examples:
        .. code-block:: text

            x = [[[[1., 2., 3.],
                   [4., 5., 6.]]]]
            padding = [1, 1, 0, 0]
            value = 0.0
            Out = [[[[0. 1. 2. 3. 0.]
                     [0. 4. 5. 6. 0.]]]]

    Code Examples:
        .. code-block:: python
890

L
littletomatodonkey 已提交
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
            import paddle
            import paddle.nn as nn
            import numpy as np
            paddle.disable_static()

            input_shape = (1, 1, 2, 3)
            pad = [1, 0, 1, 2]
            data = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) + 1
            my_pad = nn.ConstantPad2d(padding=pad)
            data = paddle.to_tensor(data)
            result = my_pad(data)
            print(result.numpy())
            # [[[[0. 0. 0. 0.]
            #    [0. 1. 2. 3.]
            #    [0. 4. 5. 6.]
            #    [0. 0. 0. 0.]
            #    [0. 0. 0. 0.]]]]
    """

    def __init__(self, padding, value=0.0, data_format="NCHW", name=None):
        super(ConstantPad2d, self).__init__()
        self._mode = "constant"
        self._data_format = data_format
        self._pad = padding
        self._value = value
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
                     value=self._value,
                     data_format=self._data_format,
                     name=self._name)


class ZeroPad2d(layers.Layer):
    """
    This interface is used to construct a callable object of the ``ZeroPad2d`` class.
    Uses 0 to pad the input tensor.

    Parameters:
        padding (Variable | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
            of input will be padded. The pad has the form (pad_left, pad_right, pad_top, pad_bottom).
        data_format (str): An string from: "NCHW", "NHWC". Specify the data format of the input data.
           Default is  "NCHW"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
939 940

    Returns:
L
littletomatodonkey 已提交
941 942 943 944 945 946 947 948 949 950 951 952 953
        None

    Examples:
        .. code-block:: text

            x = [[[[1., 2., 3.],
                   [4., 5., 6.]]]]
            padding = [1, 1, 0, 0]
            Out = [[[[0. 1. 2. 3. 0.]
                     [0. 4. 5. 6. 0.]]]]

    Code Examples:
        .. code-block:: python
954

L
littletomatodonkey 已提交
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
            import paddle
            import paddle.nn as nn
            import numpy as np
            paddle.disable_static()

            input_shape = (1, 1, 2, 3)
            pad = [1, 0, 1, 2]
            data = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) + 1
            my_pad = nn.ZeroPad2d(padding=pad)
            data = paddle.to_tensor(data)
            result = my_pad(data)
            print(result.numpy())
            # [[[[0. 0. 0. 0.]
            #    [0. 1. 2. 3.]
            #    [0. 4. 5. 6.]
            #    [0. 0. 0. 0.]
            #    [0. 0. 0. 0.]]]]
    """

    def __init__(self, padding, data_format="NCHW", name=None):
        super(ZeroPad2d, self).__init__()
        self._mode = "constant"
        self._data_format = data_format
        self._pad = padding
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
                     data_format=self._data_format,
                     name=self._name)


class ReplicationPad2d(layers.Layer):
    """
    This interface is used to construct a callable object of the ``ReplicationPad2d`` class.
    Uses input boundaries to pad the input tensor.

    Parameters:
        padding (Tensor | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
            of input will be padded. The pad has the form (pad_left, pad_right, pad_top, pad_bottom).
        data_format (str): An string from: "NCHW", "NHWC". Specify the data format of the input data.
           Default is  "NCHW"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
1001 1002

    Returns:
L
littletomatodonkey 已提交
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
        None

    Examples:
        .. code-block:: text

            x = [[[[1., 2., 3.],
                   [4., 5., 6.]]]]
            padding = [1, 1, 0, 0]
            Out = [[[[1. 1. 2. 3. 3.]
                     [4. 4. 5. 6. 6.]]]]

    Code Examples:
        .. code-block:: python
1016

L
littletomatodonkey 已提交
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
            import paddle
            import paddle.nn as nn
            import numpy as np
            paddle.disable_static()

            input_shape = (1, 1, 2, 3)
            pad = [1, 0, 1, 2]
            data = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) + 1
            my_pad = nn.ReplicationPad2d(padding=pad)
            data = paddle.to_tensor(data)
            result = my_pad(data)
            print(result.numpy())
            # [[[[1. 1. 2. 3.]
            #    [1. 1. 2. 3.]
            #    [4. 4. 5. 6.]
            #    [4. 4. 5. 6.]
            #    [4. 4. 5. 6.]]]]
    """

    def __init__(self, padding, data_format="NCHW", name=None):
        super(ReplicationPad2d, self).__init__()
        self._mode = "replicate"
        self._data_format = data_format
        self._pad = padding
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
                     data_format=self._data_format,
                     name=self._name)


class ReflectionPad2d(layers.Layer):
    """
    This interface is used to construct a callable object of the ``ReflectionPad2d`` class.
    Uses reflection of the input boundaries to pad the input tensor.

    Parameters:
        padding (Variable | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
            of input will be padded. The pad has the form (pad_left, pad_right, pad_top, pad_bottom).
        data_format (str): An string from: "NCHW", "NHWC". Specify the data format of the input data.
           Default is  "NCHW"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
1063 1064

    Returns:
L
littletomatodonkey 已提交
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
        None

    Examples:
        .. code-block:: text

            x = [[[[1., 2., 3.],
                   [4., 5., 6.]]]]
            padding = [1, 1, 0, 0]
            Out = [[[[2. 1. 2. 3. 2.]
                     [5. 4. 5. 6. 5.]]]]

    Code Examples:
        .. code-block:: python
1078

L
littletomatodonkey 已提交
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
            import paddle
            import paddle.nn as nn
            import numpy as np
            paddle.disable_static()

            input_shape = (1, 1, 4, 3)
            pad = [1, 0, 1, 2]
            data = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) + 1
            my_pad = nn.ReflectionPad2d(padding=pad)
            data = paddle.to_tensor(data)
            result = my_pad(data)
            print(result.numpy())
            # [[[[ 5.  4.  5.  6.]
            #    [ 2.  1.  2.  3.]
            #    [ 5.  4.  5.  6.]
            #    [ 8.  7.  8.  9.]
            #    [11. 10. 11. 12.]
            #    [ 8.  7.  8.  9.]
            #    [ 5.  4.  5.  6.]]]]
    """

    def __init__(self, padding, data_format="NCHW", name=None):
        super(ReflectionPad2d, self).__init__()
        self._mode = "reflect"
        self._data_format = data_format
        self._pad = padding
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
                     data_format=self._data_format,
                     name=self._name)


class ConstantPad3d(layers.Layer):
    """
    This interface is used to construct a callable object of the ``ConstantPad3d`` class.
    Uses a constant value to pad the input tensor.

    Parameters:
        padding (Tensor | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
            of input will be padded. The pad has the form (pad_left, pad_right, pad_top, pad_bottom, pad_front, pad_back).
        value (float32): The value to fill the padded areas. Default is 0.0
        data_format (str): An string from: "NCDHW", "NDHWC". Specify the data format of the input data.
           Default is  "NCDHW"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
1128 1129

    Returns:
L
littletomatodonkey 已提交
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
        None

    Examples:
        .. code-block:: text

            x = [[[[[1., 2., 3.],
                    [4., 5., 6.]]]]]
            padding = [1, 2, 0, 0, 0, 0]
            value = 0.0
            Out = [[[[[0. 1. 2. 3. 0. 0.]
                      [0. 4. 5. 6. 0. 0.]]]]]

    Code Examples:
        .. code-block:: python
1144

L
littletomatodonkey 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
            import paddle
            import paddle.nn as nn
            import numpy as np
            paddle.disable_static()

            input_shape = (1, 1, 1, 2, 3)
            pad = [1, 0, 1, 2, 0, 0]
            data = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) + 1
            my_pad = nn.ConstantPad3d(padding=pad)
            data = paddle.to_tensor(data)
            result = my_pad(data)
            print(result.numpy())
            # [[[[[0. 0. 0. 0.]
            #     [0. 1. 2. 3.]
            #     [0. 4. 5. 6.]
            #     [0. 0. 0. 0.]
            #     [0. 0. 0. 0.]]]]]
    """

    def __init__(self, padding, value=0.0, data_format="NCDHW", name=None):
        super(ConstantPad3d, self).__init__()
        self._mode = "constant"
        self._data_format = data_format
        self._pad = padding
        self._value = value
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
                     value=self._value,
                     data_format=self._data_format,
                     name=self._name)


class ReplicationPad3d(layers.Layer):
    """
    This interface is used to construct a callable object of the ``ReplicationPad3d`` class.
    Uses input boundaries to pad the input tensor.

    Parameters:
        padding (Tensor | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
            of input will be padded. The pad has the form (pad_left, pad_right, pad_top, pad_bottom, pad_front, pad_back).
        data_format (str): An string from: "NCDHW", "NDHWC". Specify the data format of the input data.
           Default is  "NCDHW"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
1193 1194

    Returns:
L
littletomatodonkey 已提交
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
        None

    Examples:
        .. code-block:: text

            x = [[[[[1., 2., 3.],
                    [4., 5., 6.]]]]]
            padding = [1, 2, 0, 0, 0, 0]
            Out = [[[[[1. 1. 2. 3. 3. 3.]
                      [4. 4. 5. 6. 6. 6.]]]]]

    Code Examples:
        .. code-block:: python
1208

L
littletomatodonkey 已提交
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
            import paddle
            import paddle.nn as nn
            import numpy as np
            paddle.disable_static()

            input_shape = (1, 1, 1, 2, 3)
            pad = [1, 0, 1, 2, 0, 0]
            data = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) + 1
            my_pad = nn.ReplicationPad3d(padding=pad)
            data = paddle.to_tensor(data)
            result = my_pad(data)
            print(result.numpy())
            # [[[[[1. 1. 2. 3.]
            #     [1. 1. 2. 3.]
            #     [4. 4. 5. 6.]
            #     [4. 4. 5. 6.]
            #     [4. 4. 5. 6.]]]]]
    """

    def __init__(self, padding, data_format="NCDHW", name=None):
        super(ReplicationPad3d, self).__init__()
        self._mode = "replicate"
        self._data_format = data_format
        self._pad = padding
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
                     data_format=self._data_format,
                     name=self._name)


class CosineSimilarity(layers.Layer):
    """
1245
    This interface is used to compute cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
1246 1247

    Parameters:
1248
        axis (int): Dimension of vectors to compute cosine similarity. Default is 1.
L
littletomatodonkey 已提交
1249
        eps(float): Small value to avoid division by zero. Default is 1e-8.
1250
    Returns:
L
littletomatodonkey 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
        None

    Examples:
        .. code-block:: text

            Case 0:
                x1 = [[0.8024077  0.9927354  0.27238318 0.8344984 ]
                     [0.48949873 0.5797396  0.65444374 0.66510963]
                     [0.1031398  0.9614342  0.08365563 0.6796464 ]
                     [0.10760343 0.7461209  0.7726148  0.5801006 ]]
                x2 = [[0.62913156 0.1536727  0.9847992  0.04591406]
                     [0.9098952  0.15715368 0.8671125  0.3156102 ]
                     [0.4427798  0.54136837 0.5276275  0.32394758]
                     [0.3769419  0.8535014  0.48041078 0.9256797 ]]
1265
                axis = 1
L
littletomatodonkey 已提交
1266 1267 1268 1269 1270
                eps = 1e-8
                Out: [0.5275037  0.8368967  0.75037485 0.9245899]

    Code Examples:
        .. code-block:: python
1271

L
littletomatodonkey 已提交
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
            import paddle
            import paddle.nn as nn
            import numpy as np
            paddle.disable_static()

            np.random.seed(0)
            x1 = np.random.rand(2,3)
            x2 = np.random.rand(2,3)
            x1 = paddle.to_tensor(x1)
            x2 = paddle.to_tensor(x2)

1283
            cos_sim_func = nn.CosineSimilarity(axis=0)
L
littletomatodonkey 已提交
1284 1285 1286 1287 1288
            result = cos_sim_func(x1, x2)
            print(result.numpy())
            # [0.99806249 0.9817672  0.94987036]
    """

1289
    def __init__(self, axis=1, eps=1e-8):
L
littletomatodonkey 已提交
1290
        super(CosineSimilarity, self).__init__()
1291
        self._axis = axis
L
littletomatodonkey 已提交
1292 1293 1294
        self._eps = eps

    def forward(self, x1, x2):
1295
        return F.cosine_similarity(x1, x2, axis=self._axis, eps=self._eps)