param_attr.py 12.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
F
fengjiayi 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
F
fengjiayi 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
F
update  
fengjiayi 已提交
14

15 16
from __future__ import print_function

17
import six
18
import warnings
19
import sys
20

21 22
from .initializer import Initializer, Xavier, Constant
from .regularizer import WeightDecayRegularizer
23
from paddle.fluid.data_feeder import check_type
Y
Yu Yang 已提交
24

25 26 27 28
__all__ = [
    'ParamAttr',
    'WeightNormParamAttr',
]
Y
Yu Yang 已提交
29

Y
Yu Yang 已提交
30 31

class ParamAttr(object):
C
chengduoZH 已提交
32
    """
33

34
    Note:
35
        ``gradient_clip`` of ``ParamAttr`` HAS BEEN DEPRECATED since 2.0.
36
        Please use ``need_clip`` in ``ParamAttr`` to speficiy the clip scope.
37
        There are three clipping strategies: :ref:`api_paddle_nn_ClipGradByGlobalNorm` ,
38
        :ref:`api_paddle_nn_ClipGradByNorm` , :ref:`api_paddle_nn_ClipGradByValue` .
Z
Zeng Jinle 已提交
39

40 41 42 43
    Create a object to represent the attribute of parameter. The attributes are:
    name, initializer, learning rate, regularizer, trainable, gradient clip,
    and model average.

Z
Zeng Jinle 已提交
44 45 46 47 48 49
    Parameters:
        name (str, optional): The parameter's name. Default None, meaning that the name
                would be created automatically.
        initializer (Initializer, optional): The method to initial this parameter. Default
                None, meaning that the weight parameter is initialized by Xavier initializer,
                and the bias parameter is initialized by 0.
50
        learning_rate (float, optional): The parameter's learning rate. The learning rate when
Z
Zeng Jinle 已提交
51 52
                optimize is the global learning rates times the parameter's learning rate times
                the factor of learning rate scheduler. Default 1.0.
53 54 55 56
        regularizer (WeightDecayRegularizer, optional): Regularization strategy. There are two method:
                :ref:`api_paddle_regularizer_L1Decay` , :ref:`api_paddle_regularizer_L2Decay` . If
                regularizer is also set in ``optimizer`` (such as :ref:`api_paddle_optimizer_SGD` ),
                that regularizer setting in optimizer will be ignored. Default None, meaning there is
57
                no regularization.
58 59
        trainable (bool, optional): Whether this parameter is trainable. Default True.
        do_model_average (bool, optional): Whether this parameter should do model average
60
                when model average is enabled. Only used in ExponentialMovingAverage. Default True.
61 62 63 64
        need_clip (bool, optional): Whether the parameter gradient need to be cliped in optimizer. Default is True.

    Returns:
       ParamAttr Object.
C
chengduoZH 已提交
65 66

    Examples:
67

C
chengduoZH 已提交
68 69
        .. code-block:: python

70 71 72 73 74 75 76 77
            import paddle

            weight_attr = paddle.ParamAttr(name="weight",
                                           learning_rate=0.5,
                                           regularizer=paddle.regularizer.L2Decay(1.0),
                                           trainable=True)
            print(weight_attr.name) # "weight"
            paddle.nn.Linear(3, 4, weight_attr=weight_attr)
C
chengduoZH 已提交
78 79
    """

Y
Yu Yang 已提交
80 81 82 83 84
    def __init__(self,
                 name=None,
                 initializer=None,
                 learning_rate=1.0,
                 regularizer=None,
Y
Yu Yang 已提交
85
                 trainable=True,
86 87
                 do_model_average=True,
                 need_clip=True):
88 89 90 91 92 93 94 95

        if sys.version_info.major == 2:
            check_type(name, "name", (str, type(None), unicode), "ParamAttr")
        else:
            check_type(name, "name", (str, type(None)), "ParamAttr")
        check_type(learning_rate, "learning_rate", (float, int), "ParamAttr")
        check_type(trainable, "trainable", (bool), "ParamAttr")
        check_type(do_model_average, "do_model_average", (bool), "ParamAttr")
96
        check_type(need_clip, "need_clip", (bool), "ParamAttr")
97 98 99 100
        check_type(initializer, "initializer", (Initializer, type(None)),
                   "ParamAttr")
        check_type(regularizer, "regularizer",
                   (WeightDecayRegularizer, type(None)), "ParamAttr")
101

Y
Yu Yang 已提交
102
        self.name = name
103
        if self.name == "":
H
hong 已提交
104 105
            raise ValueError("name of ParamAttr can not be empty str")

Y
Yu Yang 已提交
106 107 108 109
        self.initializer = initializer
        self.learning_rate = learning_rate
        self.regularizer = regularizer
        self.trainable = trainable
110
        self.do_model_average = do_model_average
111
        self.need_clip = need_clip
Y
Yu Yang 已提交
112

Y
yuyang18 已提交
113
    def _set_default_initializer(self, initializer):
C
chengduoZH 已提交
114 115 116
        """
        Set the default initializer, the initializer should be Constant,
        Uniform, Normal, Xavier, MSRA.
C
chengduoZH 已提交
117 118 119 120 121 122

        Args:
            initializer(Initializer): the initializer to set.

        Returns:
            None
C
chengduoZH 已提交
123
        """
Y
Yu Yang 已提交
124 125 126 127 128 129 130 131 132 133
        if initializer is None:
            if self.initializer is None:
                raise ValueError("ParamAttr.initializer is not set")
            return

        if self.initializer is not None:
            return

        self.initializer = initializer

Y
yuyang18 已提交
134
    def _set_default_param_initializer(self):
C
chengduoZH 已提交
135 136
        """
        Set the default initializer for the parameter with Xavier.
C
chengduoZH 已提交
137 138 139 140 141 142

        Args:
            None.

        Returns:
            None.
C
chengduoZH 已提交
143
        """
Y
yuyang18 已提交
144
        self._set_default_initializer(Xavier())
Y
Yu Yang 已提交
145

Y
yuyang18 已提交
146
    def _set_default_bias_initializer(self):
C
chengduoZH 已提交
147 148
        """
        Set the default initializer for the bias with Constant(0.0).
C
chengduoZH 已提交
149 150 151 152 153 154

        Args:
            None.

        Returns:
            None.
C
chengduoZH 已提交
155
        """
Y
yuyang18 已提交
156
        self._set_default_initializer(Constant(0.0))
Y
Yu Yang 已提交
157 158

    @staticmethod
Y
yuyang18 已提交
159
    def _to_attr(arg):
C
chengduoZH 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173
        """
        Create ParamAttr[s].

        Args:
            arg: Arguments to initialize ParamAttr[s]. arg's type can be
                str, Initializer, float, WeightDecayRegularizer, BaseGradientClipAttr,
                bool, ParamAttr, or a list of above type.

        Returns:
            ParamAttr[s]: ParamAttr[s] initialized with arg.

        Raises:
            arg can not initialize a ParamAttr.
        """
Y
Yu Yang 已提交
174 175
        if arg is None:
            return ParamAttr()
176
        elif isinstance(arg, list) or isinstance(arg, tuple):
Y
yuyang18 已提交
177
            return [ParamAttr._to_attr(a) for a in arg]
Y
Yu Yang 已提交
178 179
        elif isinstance(arg, ParamAttr):
            return arg
180
        elif isinstance(arg, six.string_types):
Y
Yu Yang 已提交
181 182 183 184 185 186
            return ParamAttr(name=arg)
        elif isinstance(arg, Initializer):
            return ParamAttr(initializer=arg)
        elif isinstance(arg, WeightDecayRegularizer):
            return ParamAttr(regularizer=arg)
        elif isinstance(arg, bool):
Y
yuyang18 已提交
187
            return ParamAttr._to_attr(None) if arg else False
Y
Yu Yang 已提交
188 189 190
        else:
            raise TypeError("{0} cast to ParamAttr".format(type(arg)))

Y
yuyang18 已提交
191
    def _to_kwargs(self, with_initializer=False):
C
chengduoZH 已提交
192 193 194 195 196 197 198 199 200
        """
        Returns the attributes of this parameter.

        Args:
            with_initializer(bool): Whether to add initializer attr.

        Returns:
            Parameter attributes(map): The attributes of this parameter.
        """
Y
Yu Yang 已提交
201 202
        kwargs = {
            'name': self.name,
G
guosheng 已提交
203 204 205
            'optimize_attr': {
                'learning_rate': self.learning_rate
            },
Y
Yu Yang 已提交
206
            'regularizer': self.regularizer,
Y
Yu Yang 已提交
207
            'trainable': self.trainable,
208 209
            'do_model_average': self.do_model_average,
            'need_clip': self.need_clip
Y
Yu Yang 已提交
210 211 212 213
        }
        if with_initializer:
            kwargs['initializer'] = self.initializer
        return kwargs
G
guosheng 已提交
214 215 216


class WeightNormParamAttr(ParamAttr):
217
    r"""
S
swtkiwi 已提交
218

219 220
    Note:
        Please use 'paddle.nn.utils.weight_norm' in dygraph mode.
221

222
    Note:
223
        ``gradient_clip`` of ``ParamAttr`` HAS BEEN DEPRECATED since 2.0.
224
        Please use ``need_clip`` in ``ParamAttr`` to speficiy the clip scope.
225
        There are three clipping strategies: :ref:`api_paddle_nn_ClipGradByGlobalNorm` ,
226
        :ref:`api_paddle_nn_ClipGradByNorm` , :ref:`api_paddle_nn_ClipGradByValue` .
227

228
    Parameter of weight Norm. Weight Norm is a reparameterization of the weight vectors
229
    in a neural network that decouples the magnitude of those weight vectors from
C
chengduoZH 已提交
230 231 232 233 234 235
    their direction. Weight Norm has been implemented as discussed in this
    paper: `Weight Normalization: A Simple Reparameterization to Accelerate
    Training of Deep Neural Networks
    <https://arxiv.org/pdf/1602.07868.pdf>`_.

    Args:
236
        dim(int, optional): Dimension over which to compute the norm. Dim is a non-negative
237
            number which is less than the rank of weight Tensor. For Example, dim can
T
tianshuo78520a 已提交
238
            be chosen from 0, 1, 2, 3 for convolution whose weight shape is [cout, cin, kh, kw]
239 240 241
            and rank is 4. Default None, meaning that all elements will be normalized.
        name(str, optional): The parameter's name. Default None, meaning that the name would
            be created automatically. Please refer to :ref:`api_guide_Name` for more details.
242 243
        initializer(Initializer, optional): The method to initialize this parameter, such as
            ``initializer = paddle.nn.initializer.Constant(1.0)``. Default None,
244 245
            meaning that the weight parameter is initialized by Xavier initializer, and
            the bias parameter is initialized by 0.
246
        learning_rate(float32, optional): The parameter's learning rate when
247
            optimizer is :math:`global\_lr * parameter\_lr * scheduler\_factor`.
X
Xin Pan 已提交
248
            Default 1.0.
249
        regularizer (WeightDecayRegularizer, optional): Regularization strategy. There are
250 251
            two method: :ref:`api_paddle_regularizer_L1Decay` ,
            :ref:`api_paddle_regularizer_L2Decay`.
252 253 254
            If regularizer isralso set in ``optimizer``
            (such as :ref:`api_paddle_optimizer_SGD` ), that regularizer setting in
            optimizer will be ignored. Default None, meaning there is no regularization.
255 256
        trainable(bool, optional): Whether this parameter is trainable. Default True.
        do_model_average(bool, optional): Whether this parameter should do model average.
X
Xin Pan 已提交
257
            Default False.
258
        need_clip (bool, optional): Whether the parameter gradient need to be cliped in optimizer. Default is True.
C
chengduoZH 已提交
259 260

    Examples:
261

C
chengduoZH 已提交
262
        .. code-block:: python
263

264 265 266 267 268 269
            import paddle

            paddle.enable_static()

            data = paddle.static.data(name="data", shape=[3, 32, 32], dtype="float32")

270
            fc = paddle.static.nn.fc(x=data,
271
                                     size=1000,
272 273 274 275 276 277 278 279 280
                                     weight_attr=paddle.static.WeightNormParamAttr(
                                         dim=None,
                                         name='weight_norm_param',
                                         initializer=paddle.nn.initializer.Constant(1.0),
                                         learning_rate=1.0,
                                         regularizer=paddle.regularizer.L2Decay(0.1),
                                         trainable=True,
                                         do_model_average=False,
                                         need_clip=True))
C
chengduoZH 已提交
281

G
guosheng 已提交
282 283 284
    """
    # List to record the parameters reparameterized by weight normalization.
    # If these parameters are treated as Variable rather than Parameter,
285
    # it can be used to discriminate these parameters and help to serialize
G
guosheng 已提交
286 287 288
    # these paramters for inference.
    params_with_weight_norm = []

X
Xin Pan 已提交
289 290 291 292 293 294 295
    def __init__(self,
                 dim=None,
                 name=None,
                 initializer=None,
                 learning_rate=1.0,
                 regularizer=None,
                 trainable=True,
296 297
                 do_model_average=False,
                 need_clip=True):
298 299 300 301 302 303 304 305
        super(WeightNormParamAttr,
              self).__init__(name=name,
                             initializer=initializer,
                             learning_rate=learning_rate,
                             regularizer=regularizer,
                             trainable=trainable,
                             do_model_average=do_model_average,
                             need_clip=need_clip)
G
guosheng 已提交
306
        self.dim = dim