param_attr.py 10.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
F
fengjiayi 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
F
fengjiayi 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
F
update  
fengjiayi 已提交
14

15 16
from __future__ import print_function

17 18
import six

19 20
from .initializer import Initializer, Xavier, Constant
from .regularizer import WeightDecayRegularizer
Y
Yu Yang 已提交
21

22 23 24 25
__all__ = [
    'ParamAttr',
    'WeightNormParamAttr',
]
Y
Yu Yang 已提交
26

Y
Yu Yang 已提交
27 28

class ParamAttr(object):
C
chengduoZH 已提交
29
    """
Z
Zeng Jinle 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
    Create a object to represent the attribute of parameter. The attributes are:
    name, initializer, learning rate, regularizer, trainable, gradient clip,
    and model average.

    Parameters:
        name (str, optional): The parameter's name. Default None, meaning that the name
                would be created automatically.
        initializer (Initializer, optional): The method to initial this parameter. Default
                None, meaning that the weight parameter is initialized by Xavier initializer,
                and the bias parameter is initialized by 0.
        learning_rate (float): The parameter's learning rate. The learning rate when
                optimize is the global learning rates times the parameter's learning rate times
                the factor of learning rate scheduler. Default 1.0.
        regularizer (WeightDecayRegularizer, optional): Regularization factor. Default None, meaning
                there is no regularization.
        trainable (bool): Whether this parameter is trainable. Default True.
        gradient_clip (BaseGradientClipAttr, optional): The method to clip this parameter's
                gradient. Default None, meaning that there is no gradient clip.
        do_model_average (bool): Whether this parameter should do model average
                when model average is enabled. Default False.
C
chengduoZH 已提交
50 51 52 53

    Examples:
        .. code-block:: python

Z
Zeng Jinle 已提交
54 55
            import paddle.fluid as fluid

C
chengduoZH 已提交
56 57
            w_param_attrs = fluid.ParamAttr(name="fc_weight",
                                            learning_rate=0.5,
T
Tink_Y 已提交
58
                                            regularizer=fluid.regularizer.L2Decay(1.0),
C
chengduoZH 已提交
59
                                            trainable=True)
Z
Zeng Jinle 已提交
60
            print(w_param_attrs.name) # "fc_weight"
61
            x = fluid.data(name='X', shape=[None, 1], dtype='float32')
C
chengduoZH 已提交
62 63 64
            y_predict = fluid.layers.fc(input=x, size=10, param_attr=w_param_attrs)
    """

Y
Yu Yang 已提交
65 66 67 68 69
    def __init__(self,
                 name=None,
                 initializer=None,
                 learning_rate=1.0,
                 regularizer=None,
Y
Yu Yang 已提交
70
                 trainable=True,
W
wanghaoshuang 已提交
71
                 gradient_clip=None,
72
                 do_model_average=True):
Y
Yu Yang 已提交
73 74 75 76 77
        self.name = name
        self.initializer = initializer
        self.learning_rate = learning_rate
        self.regularizer = regularizer
        self.trainable = trainable
F
fengjiayi 已提交
78
        self.gradient_clip = gradient_clip
79
        self.do_model_average = do_model_average
Y
Yu Yang 已提交
80

Y
yuyang18 已提交
81
    def _set_default_initializer(self, initializer):
C
chengduoZH 已提交
82 83 84
        """
        Set the default initializer, the initializer should be Constant,
        Uniform, Normal, Xavier, MSRA.
C
chengduoZH 已提交
85 86 87 88 89 90

        Args:
            initializer(Initializer): the initializer to set.

        Returns:
            None
C
chengduoZH 已提交
91
        """
Y
Yu Yang 已提交
92 93 94 95 96 97 98 99 100 101
        if initializer is None:
            if self.initializer is None:
                raise ValueError("ParamAttr.initializer is not set")
            return

        if self.initializer is not None:
            return

        self.initializer = initializer

Y
yuyang18 已提交
102
    def _set_default_param_initializer(self):
C
chengduoZH 已提交
103 104
        """
        Set the default initializer for the parameter with Xavier.
C
chengduoZH 已提交
105 106 107 108 109 110

        Args:
            None.

        Returns:
            None.
C
chengduoZH 已提交
111
        """
Y
yuyang18 已提交
112
        self._set_default_initializer(Xavier())
Y
Yu Yang 已提交
113

Y
yuyang18 已提交
114
    def _set_default_bias_initializer(self):
C
chengduoZH 已提交
115 116
        """
        Set the default initializer for the bias with Constant(0.0).
C
chengduoZH 已提交
117 118 119 120 121 122

        Args:
            None.

        Returns:
            None.
C
chengduoZH 已提交
123
        """
Y
yuyang18 已提交
124
        self._set_default_initializer(Constant(0.0))
Y
Yu Yang 已提交
125 126

    @staticmethod
Y
yuyang18 已提交
127
    def _to_attr(arg):
C
chengduoZH 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141
        """
        Create ParamAttr[s].

        Args:
            arg: Arguments to initialize ParamAttr[s]. arg's type can be
                str, Initializer, float, WeightDecayRegularizer, BaseGradientClipAttr,
                bool, ParamAttr, or a list of above type.

        Returns:
            ParamAttr[s]: ParamAttr[s] initialized with arg.

        Raises:
            arg can not initialize a ParamAttr.
        """
Y
Yu Yang 已提交
142 143
        if arg is None:
            return ParamAttr()
144
        elif isinstance(arg, list) or isinstance(arg, tuple):
Y
yuyang18 已提交
145
            return [ParamAttr._to_attr(a) for a in arg]
Y
Yu Yang 已提交
146 147
        elif isinstance(arg, ParamAttr):
            return arg
148
        elif isinstance(arg, six.string_types):
Y
Yu Yang 已提交
149 150 151 152 153 154
            return ParamAttr(name=arg)
        elif isinstance(arg, Initializer):
            return ParamAttr(initializer=arg)
        elif isinstance(arg, WeightDecayRegularizer):
            return ParamAttr(regularizer=arg)
        elif isinstance(arg, bool):
Y
yuyang18 已提交
155
            return ParamAttr._to_attr(None) if arg else False
Y
Yu Yang 已提交
156 157 158
        else:
            raise TypeError("{0} cast to ParamAttr".format(type(arg)))

Y
yuyang18 已提交
159
    def _to_kwargs(self, with_initializer=False):
C
chengduoZH 已提交
160 161 162 163 164 165 166 167 168
        """
        Returns the attributes of this parameter.

        Args:
            with_initializer(bool): Whether to add initializer attr.

        Returns:
            Parameter attributes(map): The attributes of this parameter.
        """
Y
Yu Yang 已提交
169 170
        kwargs = {
            'name': self.name,
G
guosheng 已提交
171 172 173
            'optimize_attr': {
                'learning_rate': self.learning_rate
            },
Y
Yu Yang 已提交
174
            'regularizer': self.regularizer,
Y
Yu Yang 已提交
175
            'trainable': self.trainable,
W
wanghaoshuang 已提交
176
            'gradient_clip_attr': self.gradient_clip,
177
            'do_model_average': self.do_model_average
Y
Yu Yang 已提交
178 179 180 181
        }
        if with_initializer:
            kwargs['initializer'] = self.initializer
        return kwargs
G
guosheng 已提交
182 183 184 185


class WeightNormParamAttr(ParamAttr):
    """
186
    Parameter of weight Norm. Weight Norm is a reparameterization of the weight vectors
187
    in a neural network that decouples the magnitude of those weight vectors from
C
chengduoZH 已提交
188 189 190 191 192 193
    their direction. Weight Norm has been implemented as discussed in this
    paper: `Weight Normalization: A Simple Reparameterization to Accelerate
    Training of Deep Neural Networks
    <https://arxiv.org/pdf/1602.07868.pdf>`_.

    Args:
194 195 196 197 198 199 200 201 202 203 204 205
        dim(int): Dimension over which to compute the norm. Dim is a non-negative
            number which is less than the rank of weight Tensor. For Example, dim can
            be choosed from 0, 1, 2, 3 for convolution whose weight shape is [cout, cin, kh, kw]
            and rank is 4. Default None, meaning that all elements will be normalized.
        name(str, optional): The parameter's name. Default None, meaning that the name would
            be created automatically. Please refer to :ref:`api_guide_Name` for more details.
        initializer(Initializer): The method to initialize this parameter, such as
            ``initializer = fluid.initializer.ConstantInitializer(1.0)``. Default None,
            meaning that the weight parameter is initialized by Xavier initializer, and
            the bias parameter is initialized by 0.
        learning_rate(float32): The parameter's learning rate when
            optimizer is :math:`global\_lr * parameter\_lr * scheduler\_factor`.
X
Xin Pan 已提交
206
            Default 1.0.
207 208 209 210 211 212 213 214
        regularizer(WeightDecayRegularizer): Regularization factor, such as
            ``regularizer = fluid.regularizer.L2DecayRegularizer(regularization_coeff=0.1)``.
            Default None, meaning that there is no regularization.
        trainable(bool, optional): Whether this parameter is trainable. Default True.
        gradient_clip: The method to clip this parameter's gradient, such as
            ``gradient_clip = fluid.clip.GradientClipByNorm(clip_norm=2.0))`` .
            Default None, meaning that there is no gradient clip.
        do_model_average(bool, optional): Whether this parameter should do model average.
X
Xin Pan 已提交
215
            Default False.
C
chengduoZH 已提交
216 217 218

    Examples:
        .. code-block:: python
219 220
            
            import paddle.fluid as fluid
C
chengduoZH 已提交
221 222 223
            data = fluid.layers.data(name="data", shape=[3, 32, 32], dtype="float32")
            fc = fluid.layers.fc(input=data,
                                 size=1000,
224
                                 param_attr=fluid.WeightNormParamAttr(
225 226 227 228 229 230 231 232
                                          dim=None,
                                          name='weight_norm_param',
                                          initializer=fluid.initializer.ConstantInitializer(1.0),
                                          learning_rate=1.0,
                                          regularizer=fluid.regularizer.L2DecayRegularizer(regularization_coeff=0.1),
                                          trainable=True,
                                          gradient_clip=fluid.clip.GradientClipByNorm(clip_norm=2.0),
                                          do_model_average=False))
C
chengduoZH 已提交
233

G
guosheng 已提交
234 235 236
    """
    # List to record the parameters reparameterized by weight normalization.
    # If these parameters are treated as Variable rather than Parameter,
237
    # it can be used to discriminate these parameters and help to serialize
G
guosheng 已提交
238 239 240
    # these paramters for inference.
    params_with_weight_norm = []

X
Xin Pan 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
    def __init__(self,
                 dim=None,
                 name=None,
                 initializer=None,
                 learning_rate=1.0,
                 regularizer=None,
                 trainable=True,
                 gradient_clip=None,
                 do_model_average=False):
        super(WeightNormParamAttr, self).__init__(
            name=name,
            initializer=initializer,
            learning_rate=learning_rate,
            regularizer=regularizer,
            trainable=trainable,
            gradient_clip=gradient_clip,
            do_model_average=do_model_average)
G
guosheng 已提交
258
        self.dim = dim