param_attr.py 10.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
F
fengjiayi 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
F
fengjiayi 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
F
update  
fengjiayi 已提交
14

15 16
from __future__ import print_function

17
import six
18
import warnings
19

20 21
from .initializer import Initializer, Xavier, Constant
from .regularizer import WeightDecayRegularizer
Y
Yu Yang 已提交
22

23 24 25 26
__all__ = [
    'ParamAttr',
    'WeightNormParamAttr',
]
Y
Yu Yang 已提交
27

Y
Yu Yang 已提交
28 29

class ParamAttr(object):
C
chengduoZH 已提交
30
    """
Z
Zeng Jinle 已提交
31 32 33
    Create a object to represent the attribute of parameter. The attributes are:
    name, initializer, learning rate, regularizer, trainable, gradient clip,
    and model average.
34 35 36 37 38 39
    
    Note:
        ``gradient_clip`` of ``ParamAttr`` HAS BEEN DEPRECATED since 2.0. 
        It is recommended to use ``minimize(loss, grad_clip=clip)`` to clip gradient. 
        There are three clipping strategies: :ref:`api_fluid_clip_GradientClipByGlobalNorm` , 
        :ref:`api_fluid_clip_GradientClipByNorm` , :ref:`api_fluid_clip_GradientClipByValue` .
Z
Zeng Jinle 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

    Parameters:
        name (str, optional): The parameter's name. Default None, meaning that the name
                would be created automatically.
        initializer (Initializer, optional): The method to initial this parameter. Default
                None, meaning that the weight parameter is initialized by Xavier initializer,
                and the bias parameter is initialized by 0.
        learning_rate (float): The parameter's learning rate. The learning rate when
                optimize is the global learning rates times the parameter's learning rate times
                the factor of learning rate scheduler. Default 1.0.
        regularizer (WeightDecayRegularizer, optional): Regularization factor. Default None, meaning
                there is no regularization.
        trainable (bool): Whether this parameter is trainable. Default True.
        do_model_average (bool): Whether this parameter should do model average
                when model average is enabled. Default False.
C
chengduoZH 已提交
55 56 57 58

    Examples:
        .. code-block:: python

Z
Zeng Jinle 已提交
59 60
            import paddle.fluid as fluid

C
chengduoZH 已提交
61 62
            w_param_attrs = fluid.ParamAttr(name="fc_weight",
                                            learning_rate=0.5,
T
Tink_Y 已提交
63
                                            regularizer=fluid.regularizer.L2Decay(1.0),
C
chengduoZH 已提交
64
                                            trainable=True)
Z
Zeng Jinle 已提交
65
            print(w_param_attrs.name) # "fc_weight"
66
            x = fluid.data(name='X', shape=[None, 1], dtype='float32')
C
chengduoZH 已提交
67 68 69
            y_predict = fluid.layers.fc(input=x, size=10, param_attr=w_param_attrs)
    """

Y
Yu Yang 已提交
70 71 72 73 74
    def __init__(self,
                 name=None,
                 initializer=None,
                 learning_rate=1.0,
                 regularizer=None,
Y
Yu Yang 已提交
75
                 trainable=True,
76
                 do_model_average=True):
Y
Yu Yang 已提交
77
        self.name = name
H
hong 已提交
78 79 80
        if isinstance(self.name, six.string_types) and self.name == "":
            raise ValueError("name of ParamAttr can not be empty str")

Y
Yu Yang 已提交
81 82 83 84
        self.initializer = initializer
        self.learning_rate = learning_rate
        self.regularizer = regularizer
        self.trainable = trainable
85
        self.do_model_average = do_model_average
Y
Yu Yang 已提交
86

Y
yuyang18 已提交
87
    def _set_default_initializer(self, initializer):
C
chengduoZH 已提交
88 89 90
        """
        Set the default initializer, the initializer should be Constant,
        Uniform, Normal, Xavier, MSRA.
C
chengduoZH 已提交
91 92 93 94 95 96

        Args:
            initializer(Initializer): the initializer to set.

        Returns:
            None
C
chengduoZH 已提交
97
        """
Y
Yu Yang 已提交
98 99 100 101 102 103 104 105 106 107
        if initializer is None:
            if self.initializer is None:
                raise ValueError("ParamAttr.initializer is not set")
            return

        if self.initializer is not None:
            return

        self.initializer = initializer

Y
yuyang18 已提交
108
    def _set_default_param_initializer(self):
C
chengduoZH 已提交
109 110
        """
        Set the default initializer for the parameter with Xavier.
C
chengduoZH 已提交
111 112 113 114 115 116

        Args:
            None.

        Returns:
            None.
C
chengduoZH 已提交
117
        """
Y
yuyang18 已提交
118
        self._set_default_initializer(Xavier())
Y
Yu Yang 已提交
119

Y
yuyang18 已提交
120
    def _set_default_bias_initializer(self):
C
chengduoZH 已提交
121 122
        """
        Set the default initializer for the bias with Constant(0.0).
C
chengduoZH 已提交
123 124 125 126 127 128

        Args:
            None.

        Returns:
            None.
C
chengduoZH 已提交
129
        """
Y
yuyang18 已提交
130
        self._set_default_initializer(Constant(0.0))
Y
Yu Yang 已提交
131 132

    @staticmethod
Y
yuyang18 已提交
133
    def _to_attr(arg):
C
chengduoZH 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147
        """
        Create ParamAttr[s].

        Args:
            arg: Arguments to initialize ParamAttr[s]. arg's type can be
                str, Initializer, float, WeightDecayRegularizer, BaseGradientClipAttr,
                bool, ParamAttr, or a list of above type.

        Returns:
            ParamAttr[s]: ParamAttr[s] initialized with arg.

        Raises:
            arg can not initialize a ParamAttr.
        """
Y
Yu Yang 已提交
148 149
        if arg is None:
            return ParamAttr()
150
        elif isinstance(arg, list) or isinstance(arg, tuple):
Y
yuyang18 已提交
151
            return [ParamAttr._to_attr(a) for a in arg]
Y
Yu Yang 已提交
152 153
        elif isinstance(arg, ParamAttr):
            return arg
154
        elif isinstance(arg, six.string_types):
Y
Yu Yang 已提交
155 156 157 158 159 160
            return ParamAttr(name=arg)
        elif isinstance(arg, Initializer):
            return ParamAttr(initializer=arg)
        elif isinstance(arg, WeightDecayRegularizer):
            return ParamAttr(regularizer=arg)
        elif isinstance(arg, bool):
Y
yuyang18 已提交
161
            return ParamAttr._to_attr(None) if arg else False
Y
Yu Yang 已提交
162 163 164
        else:
            raise TypeError("{0} cast to ParamAttr".format(type(arg)))

Y
yuyang18 已提交
165
    def _to_kwargs(self, with_initializer=False):
C
chengduoZH 已提交
166 167 168 169 170 171 172 173 174
        """
        Returns the attributes of this parameter.

        Args:
            with_initializer(bool): Whether to add initializer attr.

        Returns:
            Parameter attributes(map): The attributes of this parameter.
        """
Y
Yu Yang 已提交
175 176
        kwargs = {
            'name': self.name,
G
guosheng 已提交
177 178 179
            'optimize_attr': {
                'learning_rate': self.learning_rate
            },
Y
Yu Yang 已提交
180
            'regularizer': self.regularizer,
Y
Yu Yang 已提交
181
            'trainable': self.trainable,
182
            'do_model_average': self.do_model_average
Y
Yu Yang 已提交
183 184 185 186
        }
        if with_initializer:
            kwargs['initializer'] = self.initializer
        return kwargs
G
guosheng 已提交
187 188 189 190


class WeightNormParamAttr(ParamAttr):
    """
191
    Parameter of weight Norm. Weight Norm is a reparameterization of the weight vectors
192
    in a neural network that decouples the magnitude of those weight vectors from
C
chengduoZH 已提交
193 194 195 196
    their direction. Weight Norm has been implemented as discussed in this
    paper: `Weight Normalization: A Simple Reparameterization to Accelerate
    Training of Deep Neural Networks
    <https://arxiv.org/pdf/1602.07868.pdf>`_.
197 198 199 200 201 202
      
    Note:
        ``gradient_clip`` of ``WeightNormParamAttr`` HAS BEEN DEPRECATED since 2.0. 
        It is recommended to use ``minimize(loss, grad_clip=clip)`` to clip gradient. 
        There are three clipping strategies: :ref:`api_fluid_clip_GradientClipByGlobalNorm` , 
        :ref:`api_fluid_clip_GradientClipByNorm` , :ref:`api_fluid_clip_GradientClipByValue` .
C
chengduoZH 已提交
203 204

    Args:
205 206
        dim(int): Dimension over which to compute the norm. Dim is a non-negative
            number which is less than the rank of weight Tensor. For Example, dim can
T
tianshuo78520a 已提交
207
            be chosen from 0, 1, 2, 3 for convolution whose weight shape is [cout, cin, kh, kw]
208 209 210 211 212 213 214 215 216
            and rank is 4. Default None, meaning that all elements will be normalized.
        name(str, optional): The parameter's name. Default None, meaning that the name would
            be created automatically. Please refer to :ref:`api_guide_Name` for more details.
        initializer(Initializer): The method to initialize this parameter, such as
            ``initializer = fluid.initializer.ConstantInitializer(1.0)``. Default None,
            meaning that the weight parameter is initialized by Xavier initializer, and
            the bias parameter is initialized by 0.
        learning_rate(float32): The parameter's learning rate when
            optimizer is :math:`global\_lr * parameter\_lr * scheduler\_factor`.
X
Xin Pan 已提交
217
            Default 1.0.
218 219 220 221 222
        regularizer(WeightDecayRegularizer): Regularization factor, such as
            ``regularizer = fluid.regularizer.L2DecayRegularizer(regularization_coeff=0.1)``.
            Default None, meaning that there is no regularization.
        trainable(bool, optional): Whether this parameter is trainable. Default True.
        do_model_average(bool, optional): Whether this parameter should do model average.
X
Xin Pan 已提交
223
            Default False.
C
chengduoZH 已提交
224 225 226

    Examples:
        .. code-block:: python
227 228
            
            import paddle.fluid as fluid
C
chengduoZH 已提交
229 230 231
            data = fluid.layers.data(name="data", shape=[3, 32, 32], dtype="float32")
            fc = fluid.layers.fc(input=data,
                                 size=1000,
232
                                 param_attr=fluid.WeightNormParamAttr(
233 234 235 236 237 238 239
                                          dim=None,
                                          name='weight_norm_param',
                                          initializer=fluid.initializer.ConstantInitializer(1.0),
                                          learning_rate=1.0,
                                          regularizer=fluid.regularizer.L2DecayRegularizer(regularization_coeff=0.1),
                                          trainable=True,
                                          do_model_average=False))
C
chengduoZH 已提交
240

G
guosheng 已提交
241 242 243
    """
    # List to record the parameters reparameterized by weight normalization.
    # If these parameters are treated as Variable rather than Parameter,
244
    # it can be used to discriminate these parameters and help to serialize
G
guosheng 已提交
245 246 247
    # these paramters for inference.
    params_with_weight_norm = []

X
Xin Pan 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
    def __init__(self,
                 dim=None,
                 name=None,
                 initializer=None,
                 learning_rate=1.0,
                 regularizer=None,
                 trainable=True,
                 do_model_average=False):
        super(WeightNormParamAttr, self).__init__(
            name=name,
            initializer=initializer,
            learning_rate=learning_rate,
            regularizer=regularizer,
            trainable=trainable,
            do_model_average=do_model_average)
G
guosheng 已提交
263
        self.dim = dim