gaussian_random_op.cc 6.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dongzhihong 已提交
14

Q
qijun 已提交
15
#include <random>
Y
yaoxuefeng 已提交
16

17
#include "paddle/fluid/framework/generator.h"
18
#include "paddle/fluid/framework/infershape_utils.h"
Y
Yi Wang 已提交
19
#include "paddle/fluid/framework/op_registry.h"
P
pangyoki 已提交
20
#include "paddle/fluid/framework/op_version_registry.h"
21 22 23
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
24
#include "paddle/phi/infermeta/nullary.h"
25

D
dongzhihong 已提交
26 27
namespace paddle {
namespace operators {
D
dongzhihong 已提交
28

29 30 31 32
using Tensor = framework::Tensor;

template <typename T>
class CPUGaussianRandomBatchSizeLikeKernel : public framework::OpKernel<T> {
Q
qijun 已提交
33 34
 public:
  void Compute(const framework::ExecutionContext& context) const override {
Y
Yu Yang 已提交
35 36
    float mean = context.Attr<float>("mean");
    float std = context.Attr<float>("std");
Q
qijun 已提交
37 38 39
    auto* tensor = context.Output<framework::Tensor>("Out");
    T* data = tensor->mutable_data<T>(context.GetPlace());

Y
Yu Yang 已提交
40
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
Q
qijun 已提交
41 42 43 44 45 46
    std::minstd_rand engine;
    if (seed == 0) {
      seed = std::random_device()();
    }
    engine.seed(seed);
    std::normal_distribution<T> dist(mean, std);
47
    int64_t size = tensor->numel();
Q
qijun 已提交
48
    for (int64_t i = 0; i < size; ++i) {
Q
qijun 已提交
49 50 51 52 53
      data[i] = dist(engine);
    }
  }
};

D
dongzhihong 已提交
54
class GaussianRandomOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
55 56
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
57

58
 protected:
59
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
60
      const framework::ExecutionContext& ctx) const override {
61 62
    framework::LibraryType library{framework::LibraryType::kPlain};
    framework::DataLayout layout{framework::DataLayout::kAnyLayout};
63 64
    auto data_type =
        static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype"));
65 66 67

#ifdef PADDLE_WITH_MKLDNN
    if (library == framework::LibraryType::kPlain &&
68
        this->CanMKLDNNBeUsed(ctx, data_type)) {
69 70 71 72 73
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;
    }
#endif

74 75
    return framework::OpKernelType(
        data_type, ctx.device_context(), layout, library);
Y
Yu Yang 已提交
76
  }
77 78

  framework::OpKernelType GetKernelTypeForVar(
79 80
      const std::string& var_name,
      const Tensor& tensor,
81 82 83 84
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "ShapeTensor" || var_name == "ShapeTensorList") {
      return expected_kernel_type;
    }
85 86
    return framework::OpKernelType(
        expected_kernel_type.data_type_, tensor.place(), tensor.layout());
87
  }
D
dongzhihong 已提交
88 89
};

D
dongzhihong 已提交
90
class GaussianRandomOpMaker : public framework::OpProtoAndCheckerMaker {
D
dongzhihong 已提交
91
 public:
Y
Yu Yang 已提交
92
  void Make() override {
K
kexinzhao 已提交
93
    AddOutput("Out", "Output matrix of gaussian random op");
94

T
tangwei12 已提交
95 96
    AddAttr<std::vector<int64_t>>("shape",
                                  "(vector<int64_t>) "
97 98 99 100 101 102 103 104 105 106 107 108
                                  "The dimension of random tensor.")
        .SetDefault({});
    AddInput("ShapeTensor",
             "(Tensor<int>), optional). The shape of the output."
             "It has a higher priority than Attr(shape).")
        .AsDispensable();
    AddInput("ShapeTensorList",
             "(vector<Tensor<int>>, optional). The shape of the output. "
             "It has a higher priority than Attr(shape)."
             "The shape of the element in vector must be [1].")
        .AsDuplicable()
        .AsDispensable();
K
kexinzhao 已提交
109 110 111 112 113 114 115 116
    AddAttr<float>("mean",
                   "(float, default 0.0) "
                   "mean of random tensor.")
        .SetDefault(.0f);
    AddAttr<float>("std",
                   "(float, default 1.0) "
                   "std of random tensor.")
        .SetDefault(1.0f);
Q
qijun 已提交
117
    AddAttr<int>("seed",
K
kexinzhao 已提交
118
                 "(int, default 0) "
Q
qijun 已提交
119
                 "Random seed of generator."
120 121 122
                 "0 means use system wide seed."
                 "Note that if seed is not 0, this operator will always "
                 "generate the same random numbers every time.")
Q
qijun 已提交
123
        .SetDefault(0);
F
fengjiayi 已提交
124
    AddAttr<int>("dtype",
K
kexinzhao 已提交
125 126
                 "(int, default 5(FP32)) "
                 "Output data type.")
127
        .SetDefault(framework::proto::VarType::FP32);
128 129 130
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
K
kexinzhao 已提交
131 132 133 134 135 136
    AddComment(R"DOC(
GaussianRandom Operator.

Used to initialize tensors with gaussian random generator.

)DOC");
D
dongzhihong 已提交
137 138 139 140 141 142
  }
};

}  // namespace operators
}  // namespace paddle

143
namespace ops = paddle::operators;
144

145 146
DECLARE_INFER_SHAPE_FUNCTOR(gaussian_random,
                            GaussianRandomInferShapeFunctor,
147 148 149
                            PD_INFER_META(phi::GaussianRandomInferMeta));

REGISTER_OPERATOR(
150 151 152
    gaussian_random,
    ops::GaussianRandomOp,
    ops::GaussianRandomOpMaker,
153 154 155 156
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>,
    GaussianRandomInferShapeFunctor);

157
REGISTER_OP_CPU_KERNEL(gaussian_random_batch_size_like,
158 159
                       ops::CPUGaussianRandomBatchSizeLikeKernel<float>,
                       ops::CPUGaussianRandomBatchSizeLikeKernel<double>);
160

P
pangyoki 已提交
161 162 163
REGISTER_OP_VERSION(gaussian_random)
    .AddCheckpoint(
        R"ROC(
164
               Upgrade gaussian_random add new inputs [ShapeTensor] and [ShapeTensorList]
P
pangyoki 已提交
165 166 167 168 169 170 171 172
               and modify the attribute of [shape])ROC",
        paddle::framework::compatible::OpVersionDesc()
            .NewInput("ShapeTensor",
                      "The output shape supports Tensor type. ShapeTensor is "
                      "dispensable.")
            .NewInput("ShapeTensorList",
                      "The output shape supports list filled with Tensor. "
                      "ShapeTensorList is dispensable.")
W
whs 已提交
173 174 175 176
            .ModifyAttr("shape",
                        "The arg 'default_value' of attr 'shape' is changed: "
                        "from 'None' to '{}'.",
                        std::vector<int64_t>{}));