gaussian_random_op.cc 7.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dongzhihong 已提交
14

Q
qijun 已提交
15
#include <random>
Y
Yi Wang 已提交
16
#include "paddle/fluid/framework/op_registry.h"
17
#include "paddle/fluid/operators/fill_constant_op.h"
18 19 20 21
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

D
dongzhihong 已提交
22 23
namespace paddle {
namespace operators {
D
dongzhihong 已提交
24

25
using Tensor = framework::Tensor;
Q
qijun 已提交
26
template <typename T>
Y
Yu Yang 已提交
27
class CPUGaussianRandomKernel : public framework::OpKernel<T> {
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    float mean = context.Attr<float>("mean");
    float std = context.Attr<float>("std");
    auto* tensor = context.Output<framework::Tensor>("Out");

    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
    std::minstd_rand engine;
    if (seed == 0) {
      seed = std::random_device()();
    }
    engine.seed(seed);
    std::normal_distribution<T> dist(mean, std);

    const std::string op_type = "gaussian_random";
    auto shape = GetShape(context, op_type);
    tensor->Resize(shape);
    int64_t size = tensor->numel();
    T* data = tensor->mutable_data<T>(context.GetPlace());

    for (int64_t i = 0; i < size; ++i) {
      data[i] = dist(engine);
    }
  }
};

template <typename T>
class CPUGaussianRandomBatchSizeLikeKernel : public framework::OpKernel<T> {
Q
qijun 已提交
56 57
 public:
  void Compute(const framework::ExecutionContext& context) const override {
Y
Yu Yang 已提交
58 59
    float mean = context.Attr<float>("mean");
    float std = context.Attr<float>("std");
Q
qijun 已提交
60 61 62
    auto* tensor = context.Output<framework::Tensor>("Out");
    T* data = tensor->mutable_data<T>(context.GetPlace());

Y
Yu Yang 已提交
63
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
Q
qijun 已提交
64 65 66 67 68 69
    std::minstd_rand engine;
    if (seed == 0) {
      seed = std::random_device()();
    }
    engine.seed(seed);
    std::normal_distribution<T> dist(mean, std);
70
    int64_t size = tensor->numel();
Q
qijun 已提交
71
    for (int64_t i = 0; i < size; ++i) {
Q
qijun 已提交
72 73 74 75 76
      data[i] = dist(engine);
    }
  }
};

D
dongzhihong 已提交
77
class GaussianRandomOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
78 79
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
80

81
  void InferShape(framework::InferShapeContext* ctx) const override {
82 83
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "GaussianRandom");

T
tangwei12 已提交
84
    auto shape = ctx->Attrs().Get<std::vector<int64_t>>("shape");
Q
qijun 已提交
85
    std::vector<int64_t> temp;
86 87
    temp.reserve(shape.size());
    for (auto dim : shape) {
Q
qijun 已提交
88 89
      temp.push_back(static_cast<int64_t>(dim));
    }
90 91 92 93 94 95 96 97 98 99 100
    if (shape.empty() && ctx->HasInput("ShapeTensor")) {
      auto shape_dims = ctx->GetInputDim("ShapeTensor");
      int num_ele = 1;
      for (int i = 0; i < shape_dims.size(); ++i) {
        num_ele *= shape_dims[i];
      }
      auto vec_dims = std::vector<int>(num_ele, -1);
      ctx->SetOutputDim("Out", framework::make_ddim(vec_dims));

      return;
    }
101
    if (!ctx->HasInput("ShapeTensor") && !ctx->HasInputs("ShapeTensorList")) {
102 103 104 105 106 107 108 109
      PADDLE_ENFORCE_GT(
          shape.size(), 0UL,
          platform::errors::InvalidArgument(
              "Attribute(shape) of GaussianRandomOp must be set "
              "and shape.size() > 0, but reveived shape.size() is %d",
              shape.size()));
    }

Q
Qiao Longfei 已提交
110
    ctx->SetOutputDim("Out", framework::make_ddim(temp));
D
dongzhihong 已提交
111
  }
Y
Yu Yang 已提交
112

113
 protected:
114
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
115
      const framework::ExecutionContext& ctx) const override {
116 117 118 119 120 121 122 123 124 125 126
    framework::LibraryType library{framework::LibraryType::kPlain};
    framework::DataLayout layout{framework::DataLayout::kAnyLayout};

#ifdef PADDLE_WITH_MKLDNN
    if (library == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;
    }
#endif

Y
Yu Yang 已提交
127
    return framework::OpKernelType(
128
        static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype")),
129
        ctx.device_context(), layout, library);
Y
Yu Yang 已提交
130
  }
131 132 133 134 135 136 137 138 139 140

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "ShapeTensor" || var_name == "ShapeTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
D
dongzhihong 已提交
141 142
};

D
dongzhihong 已提交
143
class GaussianRandomOpMaker : public framework::OpProtoAndCheckerMaker {
D
dongzhihong 已提交
144
 public:
Y
Yu Yang 已提交
145
  void Make() override {
K
kexinzhao 已提交
146
    AddOutput("Out", "Output matrix of gaussian random op");
147

T
tangwei12 已提交
148 149
    AddAttr<std::vector<int64_t>>("shape",
                                  "(vector<int64_t>) "
150 151 152 153 154 155 156 157 158 159 160 161
                                  "The dimension of random tensor.")
        .SetDefault({});
    AddInput("ShapeTensor",
             "(Tensor<int>), optional). The shape of the output."
             "It has a higher priority than Attr(shape).")
        .AsDispensable();
    AddInput("ShapeTensorList",
             "(vector<Tensor<int>>, optional). The shape of the output. "
             "It has a higher priority than Attr(shape)."
             "The shape of the element in vector must be [1].")
        .AsDuplicable()
        .AsDispensable();
K
kexinzhao 已提交
162 163 164 165 166 167 168 169
    AddAttr<float>("mean",
                   "(float, default 0.0) "
                   "mean of random tensor.")
        .SetDefault(.0f);
    AddAttr<float>("std",
                   "(float, default 1.0) "
                   "std of random tensor.")
        .SetDefault(1.0f);
Q
qijun 已提交
170
    AddAttr<int>("seed",
K
kexinzhao 已提交
171
                 "(int, default 0) "
Q
qijun 已提交
172
                 "Random seed of generator."
173 174 175
                 "0 means use system wide seed."
                 "Note that if seed is not 0, this operator will always "
                 "generate the same random numbers every time.")
Q
qijun 已提交
176
        .SetDefault(0);
F
fengjiayi 已提交
177
    AddAttr<int>("dtype",
K
kexinzhao 已提交
178 179
                 "(int, default 5(FP32)) "
                 "Output data type.")
180
        .SetDefault(framework::proto::VarType::FP32);
181 182 183
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
K
kexinzhao 已提交
184 185 186 187 188 189
    AddComment(R"DOC(
GaussianRandom Operator.

Used to initialize tensors with gaussian random generator.

)DOC");
D
dongzhihong 已提交
190 191 192 193 194 195
  }
};

}  // namespace operators
}  // namespace paddle

196
namespace ops = paddle::operators;
F
fengjiayi 已提交
197 198
REGISTER_OP_WITHOUT_GRADIENT(gaussian_random, ops::GaussianRandomOp,
                             ops::GaussianRandomOpMaker);
199 200 201
REGISTER_OP_CPU_KERNEL(gaussian_random, ops::CPUGaussianRandomKernel<float>,
                       ops::CPUGaussianRandomKernel<double>);
REGISTER_OP_CPU_KERNEL(gaussian_random_batch_size_like,
202 203
                       ops::CPUGaussianRandomBatchSizeLikeKernel<float>,
                       ops::CPUGaussianRandomBatchSizeLikeKernel<double>);