gaussian_random_op.cc 6.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dongzhihong 已提交
14

Q
qijun 已提交
15
#include <random>
Y
yaoxuefeng 已提交
16

17
#include "paddle/fluid/framework/generator.h"
18
#include "paddle/fluid/framework/infershape_utils.h"
Y
Yi Wang 已提交
19
#include "paddle/fluid/framework/op_registry.h"
P
pangyoki 已提交
20
#include "paddle/fluid/framework/op_version_registry.h"
21
#include "paddle/fluid/operators/fill_constant_op.h"
22 23 24
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
25
#include "paddle/phi/infermeta/nullary.h"
26

D
dongzhihong 已提交
27 28
namespace paddle {
namespace operators {
D
dongzhihong 已提交
29

30 31 32 33
using Tensor = framework::Tensor;

template <typename T>
class CPUGaussianRandomBatchSizeLikeKernel : public framework::OpKernel<T> {
Q
qijun 已提交
34 35
 public:
  void Compute(const framework::ExecutionContext& context) const override {
Y
Yu Yang 已提交
36 37
    float mean = context.Attr<float>("mean");
    float std = context.Attr<float>("std");
Q
qijun 已提交
38 39 40
    auto* tensor = context.Output<framework::Tensor>("Out");
    T* data = tensor->mutable_data<T>(context.GetPlace());

Y
Yu Yang 已提交
41
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
Q
qijun 已提交
42 43 44 45 46 47
    std::minstd_rand engine;
    if (seed == 0) {
      seed = std::random_device()();
    }
    engine.seed(seed);
    std::normal_distribution<T> dist(mean, std);
48
    int64_t size = tensor->numel();
Q
qijun 已提交
49
    for (int64_t i = 0; i < size; ++i) {
Q
qijun 已提交
50 51 52 53 54
      data[i] = dist(engine);
    }
  }
};

D
dongzhihong 已提交
55
class GaussianRandomOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
56 57
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
58

59
 protected:
60
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
61
      const framework::ExecutionContext& ctx) const override {
62 63
    framework::LibraryType library{framework::LibraryType::kPlain};
    framework::DataLayout layout{framework::DataLayout::kAnyLayout};
64 65
    auto data_type =
        static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype"));
66 67 68

#ifdef PADDLE_WITH_MKLDNN
    if (library == framework::LibraryType::kPlain &&
69
        this->CanMKLDNNBeUsed(ctx, data_type)) {
70 71 72 73 74
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;
    }
#endif

75 76
    return framework::OpKernelType(data_type, ctx.device_context(), layout,
                                   library);
Y
Yu Yang 已提交
77
  }
78 79 80 81 82 83 84 85 86 87

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "ShapeTensor" || var_name == "ShapeTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
D
dongzhihong 已提交
88 89
};

D
dongzhihong 已提交
90
class GaussianRandomOpMaker : public framework::OpProtoAndCheckerMaker {
D
dongzhihong 已提交
91
 public:
Y
Yu Yang 已提交
92
  void Make() override {
K
kexinzhao 已提交
93
    AddOutput("Out", "Output matrix of gaussian random op");
94

T
tangwei12 已提交
95 96
    AddAttr<std::vector<int64_t>>("shape",
                                  "(vector<int64_t>) "
97 98 99 100 101 102 103 104 105 106 107 108
                                  "The dimension of random tensor.")
        .SetDefault({});
    AddInput("ShapeTensor",
             "(Tensor<int>), optional). The shape of the output."
             "It has a higher priority than Attr(shape).")
        .AsDispensable();
    AddInput("ShapeTensorList",
             "(vector<Tensor<int>>, optional). The shape of the output. "
             "It has a higher priority than Attr(shape)."
             "The shape of the element in vector must be [1].")
        .AsDuplicable()
        .AsDispensable();
K
kexinzhao 已提交
109 110 111 112 113 114 115 116
    AddAttr<float>("mean",
                   "(float, default 0.0) "
                   "mean of random tensor.")
        .SetDefault(.0f);
    AddAttr<float>("std",
                   "(float, default 1.0) "
                   "std of random tensor.")
        .SetDefault(1.0f);
Q
qijun 已提交
117
    AddAttr<int>("seed",
K
kexinzhao 已提交
118
                 "(int, default 0) "
Q
qijun 已提交
119
                 "Random seed of generator."
120 121 122
                 "0 means use system wide seed."
                 "Note that if seed is not 0, this operator will always "
                 "generate the same random numbers every time.")
Q
qijun 已提交
123
        .SetDefault(0);
F
fengjiayi 已提交
124
    AddAttr<int>("dtype",
K
kexinzhao 已提交
125 126
                 "(int, default 5(FP32)) "
                 "Output data type.")
127
        .SetDefault(framework::proto::VarType::FP32);
128 129 130
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
K
kexinzhao 已提交
131 132 133 134 135 136
    AddComment(R"DOC(
GaussianRandom Operator.

Used to initialize tensors with gaussian random generator.

)DOC");
D
dongzhihong 已提交
137 138 139 140 141 142
  }
};

}  // namespace operators
}  // namespace paddle

143
namespace ops = paddle::operators;
144 145 146 147 148 149 150 151 152 153

DECLARE_INFER_SHAPE_FUNCTOR(gaussian_random, GaussianRandomInferShapeFunctor,
                            PD_INFER_META(phi::GaussianRandomInferMeta));

REGISTER_OPERATOR(
    gaussian_random, ops::GaussianRandomOp, ops::GaussianRandomOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>,
    GaussianRandomInferShapeFunctor);

154
REGISTER_OP_CPU_KERNEL(gaussian_random_batch_size_like,
155 156
                       ops::CPUGaussianRandomBatchSizeLikeKernel<float>,
                       ops::CPUGaussianRandomBatchSizeLikeKernel<double>);
157

P
pangyoki 已提交
158 159 160 161 162 163 164 165 166 167 168 169
REGISTER_OP_VERSION(gaussian_random)
    .AddCheckpoint(
        R"ROC(
               Upgrade gaussian_random add new inputs [ShapeTensor] and [ShapeTensorList] 
               and modify the attribute of [shape])ROC",
        paddle::framework::compatible::OpVersionDesc()
            .NewInput("ShapeTensor",
                      "The output shape supports Tensor type. ShapeTensor is "
                      "dispensable.")
            .NewInput("ShapeTensorList",
                      "The output shape supports list filled with Tensor. "
                      "ShapeTensorList is dispensable.")
W
whs 已提交
170 171 172 173
            .ModifyAttr("shape",
                        "The arg 'default_value' of attr 'shape' is changed: "
                        "from 'None' to '{}'.",
                        std::vector<int64_t>{}));