control_flow.py 66.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
D
dzhwinter 已提交
14
import contextlib
D
dzhwinter 已提交
15

Y
yuyang18 已提交
16
from layer_function_generator import autodoc, templatedoc
Y
Yu Yang 已提交
17
from tensor import assign, fill_constant
18
from .. import core
19
from ..framework import Program, Variable, Operator
20
from ..layer_helper import LayerHelper, unique_name
J
JiayiFeng 已提交
21
from ..initializer import force_init_on_cpu
22
from ops import logical_and, logical_not, logical_or
Y
yuyang18 已提交
23
import numpy
D
dzhwinter 已提交
24

Q
QI JUN 已提交
25
__all__ = [
Y
ying 已提交
26 27 28 29 30 31
    'split_lod_tensor',
    'merge_lod_tensor',
    'BlockGuard',
    'BlockGuardWithCompletion',
    'WhileGuard',
    'While',
32
    'Switch',
Y
ying 已提交
33 34 35 36 37 38 39 40
    'lod_rank_table',
    'max_sequence_len',
    'lod_tensor_to_array',
    'array_to_lod_tensor',
    'increment',
    'array_write',
    'create_array',
    'less_than',
41
    'equal',
Y
ying 已提交
42 43 44 45 46 47 48 49 50 51
    'array_read',
    'shrink_memory',
    'array_length',
    'IfElse',
    'DynamicRNN',
    'ConditionalBlock',
    'StaticRNN',
    'reorder_lod_tensor_by_rank',
    'ParallelDo',
    'Print',
52
    'is_empty',
D
dzhwinter 已提交
53 54
]

Y
Yu Yang 已提交
55

56
def split_lod_tensor(input, mask, level=0):
57 58 59 60
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
61 62
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
63 64 65 66 67

    Args:
        input(tuple|list|None): The input tensor that contains complete
                                lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
68
        level(int): The specific lod level to split.
69 70

    Returns:
Q
qiaolongfei 已提交
71 72 73 74
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
75 76 77 78

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
79
          x = fluid.layers.data(name='x', shape=[1])
80 81
          x.persistable = True

Q
qiaolongfei 已提交
82
          y = fluid.layers.data(name='y', shape=[1])
83 84
          y.persistable = True

Q
qiaolongfei 已提交
85
          out_true, out_false = fluid.layers.split_lod_tensor(
86
                input=x, mask=y, level=level)
87

88
    """
89
    helper = LayerHelper('split_lod_tensor', **locals())
F
fengjiayi 已提交
90 91
    out_true = helper.create_tmp_variable(dtype=input.dtype)
    out_false = helper.create_tmp_variable(dtype=input.dtype)
92 93 94 95 96 97 98 99 100 101 102 103
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


104
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
105 106 107 108 109
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
110 111 112
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
113 114 115 116 117 118 119

    Args:
        in_true(tuple|list|None): The True branch to be merged.
        in_false(tuple|list|None): The False branch to be merged.
        x(tuple|list|None): The input tensor that contains complete
                            lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
120
        level(int): The specific lod level to merge.
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
140
    helper = LayerHelper('merge_lod_tensor', **locals())
F
fengjiayi 已提交
141
    out = helper.create_tmp_variable(dtype=in_true.dtype)
142 143 144 145 146 147 148 149 150 151 152
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


Y
Yan Chunwei 已提交
153 154 155 156 157 158 159
def Print(input,
          first_n=-1,
          message=None,
          summarize=-1,
          print_tensor_name=True,
          print_tensor_type=True,
          print_tensor_shape=True,
Y
yangyaming 已提交
160 161
          print_tensor_lod=True,
          print_phase='both'):
Y
Yan Chunwei 已提交
162 163 164 165 166 167 168 169 170 171
    '''
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
172 173 174 175 176 177 178 179 180
        input (Variable): A Tensor to print.
        summarize (int): Print this number of elements in the tensor, will print
                all if left is negative.
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
        print_tensor_name (bool): Print the tensor name.
        print_tensor_type (bool): Print the tensor type.
        print_tensor_shape (bool): Print the tensor shape.
        print_tensor_lod (bool): Print the tensor lod.
181
        print_phase (str): Which phase to displace, including 'forward',
Y
yangyaming 已提交
182 183
                'backward' and 'both'. If set to 'backward' or 'both', will
                print the gradients of input tensor.
Y
Yan Chunwei 已提交
184 185

    Returns:
Y
yangyaming 已提交
186
        Variable: Output tensor, same data with input tensor.
Y
Yan Chunwei 已提交
187

Y
Yan Chunwei 已提交
188

Y
Yan Chunwei 已提交
189
    Examples:
Y
Yan Chunwei 已提交
190

Y
Yan Chunwei 已提交
191 192
        .. code-block:: python

Y
Yan Chunwei 已提交
193 194 195
           value = some_layer(...)
           Print(value, summarize=10,
               message="The content of some_layer: ")
Y
Yan Chunwei 已提交
196 197
    '''
    helper = LayerHelper('print', **locals())
Y
yangyaming 已提交
198
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
Y
Yan Chunwei 已提交
199 200
    helper.append_op(
        type='print',
Y
yangyaming 已提交
201
        inputs={'In': input},
Y
Yan Chunwei 已提交
202 203 204 205 206 207 208 209
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
            'print_tensor_lod': print_tensor_lod,
Y
yangyaming 已提交
210 211 212
            'print_phase': print_phase.upper()
        },
        outputs={'Out': out})
Y
Yan Chunwei 已提交
213 214 215
    return out


Y
Yu Yang 已提交
216 217
class BlockGuard(object):
    """
218 219 220 221
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
222 223
    """

224 225
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
226
            raise TypeError("BlockGuard takes a program")
227
        self.main_program = main_program
Y
Yu Yang 已提交
228 229

    def __enter__(self):
230
        self.main_program.create_block()
Y
Yu Yang 已提交
231 232

    def __exit__(self, exc_type, exc_val, exc_tb):
233
        self.main_program.rollback()
Y
Yu Yang 已提交
234 235 236 237 238
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
239
class ParallelDo(object):
240
    """
L
Luo Tao 已提交
241 242
    ParallelDo is used to represent multi-thread data parallel processing.

L
Luo Tao 已提交
243
    Its vanilla implementation can be shown as the following (:math:`|` means
L
Luo Tao 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
    single thread and :math:`||||` means multiple threads)

    .. code-block:: text

      In the forward pass
        |      Split input onto different devices
        |      Copy parameter onto different devices
        ||||   Compute forward pass in parallel
        |      Merge output from different devices

      In the backward pass
        |      Split output@grad onto different devices
        ||||   Compute backward pass in parallel
        |      accumulate param@grad from different devices to the first device
        |      Merge input@grad from different devices
L
Luo Tao 已提交
259
        |      Copy param@grad to the place of parallel_do_op
L
Luo Tao 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290

    Examples:

    .. code-block:: python

      images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
      label = fluid.layers.data(name='label', shape=[1], dtype='int64')

      # ParallelDo version & Single-thread version
      if thread_num > 1:
          places = fluid.layers.get_places(thread_num)
          pd = fluid.layers.ParallelDo(places)
          with pd.do():
              images = pd.read_input(images)
              label = pd.read_input(label)
              predict = cnn_model(images)
              cost = fluid.layers.cross_entropy(input=predict, label=label)

              avg_cost = fluid.layers.mean(x=cost)
              pd.write_output(avg_cost)

          avg_cost = pd()
          avg_cost = fluid.layers.mean(avg_cost)
      else:
          predict = cnn_model(images)
          cost = fluid.layers.cross_entropy(input=predict, label=label)
          avg_cost = fluid.layers.mean(x=cost)

    .. warning::
    
       It will be soon deprecated, please use ParallelExecutor instead.
Y
Yang Yang 已提交
291 292
    """

Y
Yang Yang 已提交
293
    def __init__(self, places, use_nccl=False, name=None):
Y
Yang Yang 已提交
294 295 296 297 298
        self.helper = LayerHelper("parallel_do", name=name)
        self.inputs = []
        self.places = places
        self.outputs = []
        self.status = StaticRNN.BEFORE_RNN_BLOCK
Y
Yang Yang 已提交
299
        self.use_nccl = use_nccl
Y
Yang Yang 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322

    def do(self):
        return BlockGuardWithCompletion(self)

    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

    def read_input(self, var):
        self.inputs.append(var)
Y
Yang Yang 已提交
323
        return var
Y
Yang Yang 已提交
324 325 326 327 328 329 330 331 332 333

    def write_output(self, var):
        self.outputs.append(var)

    def get_parameters(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        local_inputs = set()
Y
Yang Yang(Tony) 已提交
334
        params = list()
Y
Yang Yang 已提交
335 336 337 338 339 340 341 342
        for var in self.inputs:
            local_inputs.add(var.name)

        for op in current_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)
Y
Yang Yang(Tony) 已提交
343 344 345 346 347

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

Y
Yang Yang 已提交
348
        params = list(set(params))
Y
Yang Yang 已提交
349 350 351 352 353 354 355 356 357 358 359

        return [parent_block.var(name) for name in params]

    def complete_op(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

Y
Yang Yang 已提交
360 361 362 363 364 365 366 367 368 369
        self.outputs = [
            parent_block.create_var(
                name=o.name,
                shape=o.shape,
                dtype=o.dtype,
                lod_level=o.lod_level,
                persistable=o.persistable,
                stop_gradient=o.stop_gradient) for o in self.outputs
        ]

Y
Yang Yang 已提交
370
        inputs = [parent_block.var(i.name) for i in self.inputs]
Y
Yang Yang 已提交
371
        outputs = [parent_block.var(o.name) for o in self.outputs]
Y
Yang Yang 已提交
372 373 374 375 376 377 378 379

        parent_block.append_op(
            type='parallel_do',
            inputs={
                'inputs': inputs,
                'parameters': self.get_parameters(),
                'places': self.places
            },
Y
Yang Yang 已提交
380
            outputs={'outputs': outputs,
Y
Yang Yang 已提交
381
                     'parallel_scopes': [step_scope]},
Y
Yang Yang 已提交
382 383
            attrs={'sub_block': current_block,
                   'use_nccl': self.use_nccl})
Y
Yang Yang 已提交
384 385 386 387 388 389 390


class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
391 392
    """

Y
Yu Yang 已提交
393
    def __init__(self, rnn):
Y
Yang Yang 已提交
394 395 396 397
        if not (isinstance(rnn, StaticRNN) or isinstance(rnn, ParallelDo)):
            raise TypeError(
                "BlockGuardWithCompletion takes a StaticRNN or ParallelDo")
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
398 399 400 401
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
402
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
403 404

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
405 406
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
407
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
Y
Yang Yang 已提交
408 409 410
        self.rnn.complete_op()
        return super(BlockGuardWithCompletion, self).__exit__(exc_type, exc_val,
                                                              exc_tb)
Y
Yu Yang 已提交
411 412 413 414


class StaticRNNMemoryLink(object):
    """
415 416 417 418
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
419 420 421 422 423 424 425 426 427


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
428 429 430 431 432 433 434 435 436
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
437 438 439 440 441 442
    """
    StaticRNN class.

    StaticRNN class is used to create a StaticRNN. The RNN will have its
    own parameters like inputs, outputs, memories, status and length.
    """
Y
Yu Yang 已提交
443 444 445 446
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

447 448
    def __init__(self, name=None):
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
449 450 451 452 453 454 455 456
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
Y
Yang Yang 已提交
457
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
458 459 460 461 462

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

463 464 465 466 467 468 469
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
470 471 472 473 474 475 476 477 478
        """
        Args:
            init: boot memory, if not set, a shape, batch_ref must be provided
            shape: shape of the boot memory
            batch_ref: batch size reference variable
            init_value: the init value of boot memory
            init_batch_dim_idx: the index of batch size in init's dimension
            ref_batch_dim_idx: the index of batch size in batch_ref's dimension
        """
Y
Yu Yang 已提交
479 480
        self._assert_in_rnn_block_('memory')
        if init is None:
481
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
482
                raise ValueError(
483
                    "if init is None, memory at least need shape and batch_ref")
Y
Yu Yang 已提交
484
            parent_block = self.parent_block()
Y
Yu Yang 已提交
485 486
            var_name = unique_name.generate("@".join(
                [self.helper.name, "memory_boot"]))
Y
Yu Yang 已提交
487
            boot_var = parent_block.create_var(
488 489
                name=var_name,
                shape=shape,
F
fengjiayi 已提交
490
                dtype=batch_ref.dtype,
491
                persistable=False)
Y
Yu Yang 已提交
492 493

            parent_block.append_op(
494 495
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
496 497 498
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
499
                    'shape': boot_var.shape,
F
fengjiayi 已提交
500
                    'dtype': boot_var.dtype,
501 502
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
503 504 505 506 507
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
Y
Yu Yang 已提交
508
                name=unique_name.generate("@".join([self.helper.name, "mem"])),
F
fengjiayi 已提交
509
                dtype=init.dtype,
Y
Yu Yang 已提交
510 511 512 513 514 515 516 517 518 519
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
520 521
            self.seq_len = x.shape[0]
        elif self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
522 523 524
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
F
fengjiayi 已提交
525
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type)
Y
Yu Yang 已提交
526 527 528 529 530 531 532 533
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

F
fengjiayi 已提交
534
        tmp_o = self.helper.create_tmp_variable(dtype=o.dtype)
Y
Yu Yang 已提交
535 536 537 538
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
F
fengjiayi 已提交
539
            attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
540

Y
Yu Yang 已提交
541
        out_var = self.parent_block().create_var(
Y
Yu Yang 已提交
542 543
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
F
fengjiayi 已提交
544
            dtype=tmp_o.dtype)
Y
Yu Yang 已提交
545 546 547 548 549 550 551 552 553 554 555 556 557

        self.outputs.append(out_var)

    def output(self, *outputs):
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

    def parent_block(self):
558
        prog = self.helper.main_program
Y
Yu Yang 已提交
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

Y
Yang Yang 已提交
574
    def complete_op(self):
575 576
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
Y
Yu Yang 已提交
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
        parent_block = self.parent_block()

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

        parameters = [parent_block.var(name) for name in params]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

        boot_memories = []
        pre_memories = []
        memories = []
        for _, mem in self.memories.iteritems():
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
F
fengjiayi 已提交
616
            new_mem = self.helper.create_tmp_variable(dtype=mem_var.dtype)
Y
Yu Yang 已提交
617 618 619 620 621

            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
F
fengjiayi 已提交
622
                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
                'ex_states': pre_memories,
                'states': memories,
638
                'sub_block': rnn_block
Y
Yu Yang 已提交
639
            })
Y
Yu Yang 已提交
640 641


Y
Yang Yang(Tony) 已提交
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
        self.while_op.complete()
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
X
Xin Pan 已提交
662 663 664 665 666 667 668 669 670 671
    """
    while loop control flow.

    Args:
        cond (Variable): condition used to compare.
        name (str): The name of this layer.

    Examples:
          .. code-block:: python

X
Xin Pan 已提交
672 673 674
            d0 = layers.data("d0", shape=[10], dtype='float32')
            data_array = layers.array_write(x=d0, i=i)
            array_len = layers.fill_constant(shape=[1],dtype='int64', value=3)
X
Xin Pan 已提交
675

X
Xin Pan 已提交
676 677 678 679 680 681 682
            cond = layers.less_than(x=i, y=array_len)
            while_op = layers.While(cond=cond)
            with while_op.block():
                d = layers.array_read(array=data_array, i=i)
                i = layers.increment(x=i, in_place=True)
                layers.array_write(result, i=i, array=d)
                layers.less_than(x=i, y=array_len, cond=cond)
X
Xin Pan 已提交
683 684
    """

Y
Yang Yang(Tony) 已提交
685 686 687 688
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

689 690
    def __init__(self, cond, name=None):
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
691 692 693 694
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
695
        if cond.dtype != core.VarDesc.VarType.BOOL:
Y
Yang Yang(Tony) 已提交
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
            raise TypeError("condition should be a bool variable")
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
            raise TypeError("condition should be a bool scalar")
        self.cond_var = cond

    def block(self):
        return WhileGuard(self)

    def complete(self):
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
            if inner_out_name in parent_block.vars:
                out_vars.append(parent_block.var(inner_out_name))

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
W
Wu Yi 已提交
733 734 735 736
                'X': [
                    parent_block._var_recursive(x_name)
                    for x_name in x_name_list
                ],
Y
Yang Yang(Tony) 已提交
737 738 739 740
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
741
            attrs={'sub_block': while_block})
Y
Yang Yang(Tony) 已提交
742 743


744
def lod_rank_table(x, level=0):
Y
yangyaming 已提交
745 746 747
    """LoD Rank Table Operator. Given an input variable **x** and a level number
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
748
    a length, both of which are int type. Refering to specified level of LoD,
Y
yangyaming 已提交
749 750 751
    the index is the sequence index number and the length representes the
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
752 753 754 755

        .. code-block:: text

            x is a LoDTensor:
756 757
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
758 759
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
760 761 762
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
763

Y
yangyaming 已提交
764 765 766 767 768 769 770 771 772
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
773 774 775 776

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
777 778
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
779 780 781 782 783 784 785 786

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10],
787
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
788
            out = layers.lod_rank_table(x=x, level=0)
789
    """
Y
Yu Yang 已提交
790 791 792
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
Y
Yu Yang 已提交
793
        name=unique_name.generate("lod_rank_table"))
Y
Yu Yang 已提交
794 795 796 797 798 799
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
800 801


Y
yuyang18 已提交
802
@templatedoc()
803
def max_sequence_len(rank_table):
Y
yuyang18 已提交
804 805 806 807 808 809 810 811
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
812 813

    Args:
Y
yuyang18 已提交
814
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
815 816

    Returns:
Y
yuyang18 已提交
817
        ${out_comment}.
F
fengjiayi 已提交
818 819 820 821 822 823 824 825 826 827
    """
    helper = LayerHelper("max_seqence_len", **locals())
    res = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res})
    return res


828
def lod_tensor_to_array(x, table):
F
fengjiayi 已提交
829 830 831 832 833
    """ 
    Convert a LoDTensor to a LoDTensorArray.

    This function split a LoDTesnor to a LoDTensorArray according to its LoD 
    information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in 
F
fengjiayi 已提交
834 835 836
    PaddlePaddle. The generated LoDTensorArray of this function can be further read 
    or written by `read_from_array()` and `write_to_array()` operators. However, 
    this function is generally an internal component of PaddlePaddle `DynamicRNN`. 
F
fengjiayi 已提交
837
    Users should not use it directly.
838 839

    Args:
F
fengjiayi 已提交
840
        x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
841 842
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
F
fengjiayi 已提交
843
                                descending order. It is generally generated 
F
fengjiayi 已提交
844
                                by `layers.lod_rank_table()` API.
845 846

    Returns:
F
fengjiayi 已提交
847
        Variable: The LoDTensorArray that has been converted from the input tensor.
848 849 850 851 852 853 854

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
855
    """
856 857
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
858
        name=unique_name.generate("lod_tensor_to_array"),
859
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
860
        dtype=x.dtype)
861 862 863 864 865 866 867 868
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


869
def array_to_lod_tensor(x, table):
870
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
871 872

    Args:
873
        x (Variable|list): The lod tensor array to be converted to a tensor.
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
889
    """
890
    helper = LayerHelper("array_to_lod_tensor", **locals())
F
fengjiayi 已提交
891
    tmp = helper.create_tmp_variable(dtype=x.dtype)
892 893 894 895 896 897 898 899
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


900
def increment(x, value=1.0, in_place=True):
901 902
    """
    This function performs an operation that increments each value in the
903 904 905 906 907 908 909 910 911
    input :math:`x` by an amount: :math:`value` as mentioned in the input
    parameter. This operation is performed in-place by default.

    Args:
        x (Variable|list): The tensor that has the input values.
        value (float): The amount by which the values should be incremented.
        in_place (bool): If the increment should be performed in-place.

    Returns:
D
dzhwinter 已提交
912
        Variable: The elementwise-incremented object.
913 914 915 916 917 918

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[32, 32], dtype='float32')
          data = fluid.layers.increment(x=data, value=3.0, in_place=True)
919
    """
Y
Yu Yang 已提交
920
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
921
    if not in_place:
F
fengjiayi 已提交
922
        out = helper.create_tmp_variable(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
923 924
    else:
        out = x
Y
Yu Yang 已提交
925 926 927
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
928
        outputs={'Out': [out]},
929
        attrs={'step': float(value)})
Y
Yang Yu 已提交
930
    return out
Y
Yu Yang 已提交
931 932


933
def array_write(x, i, array=None):
934 935 936 937 938
    """
    This function writes the given input variable to the specified position
    indicating by the arrary index to an output LOD_TENSOR_ARRAY. If the
    output LOD_TENSOR_ARRAY is not given(None), a new one will be created and
    returned.
939 940 941

    Args:
        x (Variable|list): The input tensor from which the data will be read.
942 943 944 945 946 947 948 949
        i (Variable|list): The index of the output LOD_TENSOR_ARRAY, pointing to
                           the position to which the input tensor will be
                           written.
        array (Variable|list): The output LOD_TENSOR_ARRAY to which the input
                               tensor will be written. If this parameter is
                               NONE, a new LOD_TENSOR_ARRAY will be created and
                               returned.

950
    Returns:
951
        Variable: The output LOD_TENSOR_ARRAY where the input tensor is written.
952 953

    Examples:
D
dzhwinter 已提交
954
        .. code-block:: python
955 956 957 958

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = layers.array_write(tmp, i=i)
959
    """
Y
Yu Yang 已提交
960 961 962 963 964
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
965
            dtype=x.dtype)
Y
Yu Yang 已提交
966 967 968 969 970 971 972 973
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


974
def create_array(dtype):
975
    """
Q
qiaolongfei 已提交
976
    **Create LoDTensorArray**
977

Q
qiaolongfei 已提交
978 979
    This function creates an array of LOD_TENSOR_ARRAY . It is mainly used to
    implement RNN with array_write, array_read and While.
980 981

    Args:
Q
qiaolongfei 已提交
982
        dtype (int|float): The data type of the elements in the lod_tensor_array.
983 984

    Returns:
985
        Variable: The lod_tensor_array variable storing the elements of data type.
986 987 988 989 990 991 992

    Examples:
        .. code-block:: python

          data = fluid.layers.create_array(dtype='float32')

    """
Y
Yang Yang(Tony) 已提交
993 994 995 996 997 998 999
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


Y
yuyang18 已提交
1000 1001
@templatedoc()
def less_than(x, y, force_cpu=None, cond=None, **ignored):
1002
    """
Y
yuyang18 已提交
1003
    ${comment}
1004

Y
yuyang18 已提交
1005 1006
    >>> import paddle.fluid as fluid
    >>> less = fluid.layers.less_than(x=label, y=limit)
1007 1008

    Args:
Y
yuyang18 已提交
1009 1010 1011
        x(${x_type}): ${x_comment}.
        y(${y_type}): ${y_comment}.
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
1012 1013 1014
        cond(Variable|None): Optional output variable to store the result of *less_than*

    Returns:
Y
yuyang18 已提交
1015
        ${out_comment}.
1016
    """
Y
Yang Yang(Tony) 已提交
1017 1018 1019 1020 1021
    helper = LayerHelper("less_than", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True

Y
yuyang18 已提交
1022 1023 1024 1025 1026 1027
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu
    elif force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

Y
Yang Yang(Tony) 已提交
1028
    helper.append_op(
J
JiayiFeng 已提交
1029 1030 1031 1032
        type='less_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
Y
yuyang18 已提交
1033
        attrs=attrs)
Y
Yang Yang(Tony) 已提交
1034 1035 1036
    return cond


1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
def equal(x, y, cond=None, **ignored):
    """
    **equal**

    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
        x(Variable): First operand of *equal*
        y(Variable): Second operand of *equal*
        cond(Variable|None): Optional output variable to store the result of *equal*

    Returns:
        Variable: The tensor variable storing the output of *equal*.

    Examples:
        .. code-block:: python

          less = fluid.layers.equal(x=label, y=limit)
    """
    helper = LayerHelper("equal", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='equal', inputs={'X': [x],
                              'Y': [y]}, outputs={'Out': [cond]})
    return cond


1067
def array_read(array, i):
1068 1069
    """
    This function performs the operation to read the data in as an
1070
    LOD_TENSOR_ARRAY.
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085

    .. code-block:: text

        Given:

        array = [0.6, 0.1, 0.3, 0.1]
        
        And:
        
        i = 2

        Then:

        output = 0.3

K
kavyasrinet 已提交
1086
    Args:
1087 1088 1089
        array (Variable|list): The input tensor that store data to be read.
        i (Variable|list): The index of the data to be read from input array.

K
kavyasrinet 已提交
1090 1091
    Returns:
        Variable: The tensor type variable that has the data written to it.
1092

K
kavyasrinet 已提交
1093
    Examples:
1094 1095
        .. code-block:: python

K
kavyasrinet 已提交
1096 1097 1098
          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = layers.array_read(tmp, i=i)
1099
    """
Y
Yu Yang 已提交
1100 1101 1102 1103 1104
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
F
fengjiayi 已提交
1105
    out = helper.create_tmp_variable(dtype=array.dtype)
Y
Yu Yang 已提交
1106 1107 1108 1109 1110 1111
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1112 1113


1114
def shrink_memory(x, i, table):
1115
    """
Y
yuyang18 已提交
1116
    This function creates an operator to shrink rnn memory using the RankTable
1117
    as mentioned in the input parameter.
Y
yuyang18 已提交
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
1138
    """
Y
Yang Yu 已提交
1139
    helper = LayerHelper('shrink_memory', **locals())
F
fengjiayi 已提交
1140
    out = helper.create_tmp_variable(dtype=x.dtype)
Y
Yang Yu 已提交
1141
    helper.append_op(
Y
Yang Yu 已提交
1142
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
1143 1144 1145 1146 1147 1148
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
1149 1150


1151
def array_length(array):
1152
    """
Q
qiaolongfei 已提交
1153
    **Get the Length of Input LoDTensorArray**
1154 1155

    This function performs the operation to find the length of the input
1156
    LOD_TENSOR_ARRAY.
K
kavyasrinet 已提交
1157

1158 1159
    Related API: array_read, array_write, While.

K
kavyasrinet 已提交
1160 1161 1162 1163 1164 1165 1166 1167
    Args:
        array (LOD_TENSOR_ARRAY): The input array that will be used
                                  to compute the length.

    Returns:
        Variable: The length of the input LoDTensorArray.

    Examples:
Q
qiaolongfei 已提交
1168
        .. code-block:: python
K
kavyasrinet 已提交
1169 1170 1171 1172 1173

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = fluid.layers.array_write(tmp, i=i)
          arr_len = fluid.layers.array_length(arr)
Q
qiaolongfei 已提交
1174

1175
    """
Y
Yang Yu 已提交
1176 1177 1178 1179 1180 1181
    helper = LayerHelper('array_length', **locals())
    tmp = helper.create_tmp_variable(dtype='int64')
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
1182 1183 1184


class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
1185 1186 1187 1188 1189 1190 1191
    """
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for 
    holding a ConditionalBlock, and helping users entering and exiting the 
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard 
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
    def __init__(self, block):
        if not isinstance(block, ConditionalBlock):
            raise TypeError("block should be conditional block")
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
Y
Yan Chunwei 已提交
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
        is_scalar_condition (bool): whether the branch is controled by a scalar.
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

             cond = layers.less_than(x=label, y=limit)
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

1233
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
1234 1235 1236 1237
        for each_input in inputs:
            if not isinstance(each_input, Variable):
                raise TypeError("Each input should be variable")
        self.inputs = inputs
1238
        self.is_scalar_condition = is_scalar_condition
1239
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()

        for each_op in inside_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)
        input_set = set([ipt.name for ipt in self.inputs])

        param_list = [
W
Wu Yi 已提交
1264
            parent_block._var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
1265 1266 1267 1268 1269
            if each_name not in input_set
        ]

        out_list = [
            parent_block.var(var_name) for var_name in parent_block.vars
X
xuwei06 已提交
1270
            if var_name in intermediate
Y
Yu Yang 已提交
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
        ]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)
        parent_block.append_op(
            type='conditional_block',
            inputs={
                'X': self.inputs,
                'Params': param_list,
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
1283 1284 1285 1286 1287 1288 1289
            attrs={
                'sub_block': inside_block,
                'is_scalar_condition': self.is_scalar_condition
            })


class Switch(object):
Q
qiaolongfei 已提交
1290
    """
Q
qiaolongfei 已提交
1291 1292
    Switch class works just like a `if-elif-else`. Can be used in learning rate scheduler
    to modify learning rate
Q
qiaolongfei 已提交
1293 1294 1295 1296

    The Semantics:

    1. A `switch` control-flow checks cases one-by-one.
Q
qiaolongfei 已提交
1297

Q
qiaolongfei 已提交
1298
    2. The condition of each case is a boolean value, which is a scalar Variable.
Q
qiaolongfei 已提交
1299 1300 1301 1302

    3. It runs the first matched case, or the default case if there is one.

    4. Once it matches a case, it runs the corresponding branch and only that branch.
Q
qiaolongfei 已提交
1303 1304 1305 1306

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
            lr = fluid.layers.tensor.create_global_var(
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
            one_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=1.0)
            two_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=2.0)

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
1319
                with switch.case(global_step == zero_var):
Q
qiaolongfei 已提交
1320 1321 1322
                    fluid.layers.tensor.assign(input=one_var, output=lr)
                with switch.default():
                    fluid.layers.tensor.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
1323 1324 1325

    """

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        """create a new block for this condition
        """
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
            new_not_cond = logical_and(
                x=pre_not_cond, y=logical_not(x=condition))
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
                [logical_and(
                    x=pre_not_cond, y=condition)],
                is_scalar_condition=True)

        return ConditionalBlockGuard(cond_block)

    def default(self):
Q
qiaolongfei 已提交
1355 1356
        """
        create a default case for this switch
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
        """
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
            is_scalar_condition=True)
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
X
Xin Pan 已提交
1416 1417 1418 1419 1420 1421 1422 1423 1424
    """
    if-else control flow.

    Args:
        cond (Variable): condition used to compare.
        name (str, default None): The name of this layer.

    Examples:
          .. code-block:: python
X
Xin Pan 已提交
1425

X
improve  
Xin Pan 已提交
1426
            limit = fluid.layers.fill_constant_batch_size_like(
X
Xin Pan 已提交
1427
                input=label, dtype='int64', shape=[1], value=5.0)
X
improve  
Xin Pan 已提交
1428 1429
            cond = fluid.layers.less_than(x=label, y=limit)
            ie = fluid.layers.IfElse(cond)
X
Xin Pan 已提交
1430 1431
            with ie.true_block():
                true_image = ie.input(image)
X
improve  
Xin Pan 已提交
1432 1433
                hidden = fluid.layers.fc(input=true_image, size=100, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1434 1435 1436 1437
                ie.output(prob)

            with ie.false_block():
                false_image = ie.input(image)
X
improve  
Xin Pan 已提交
1438 1439 1440
                hidden = fluid.layers.fc(
                    input=false_image, size=200, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1441 1442 1443
                ie.output(prob)
            prob = ie()
    """
Y
Yu Yang 已提交
1444 1445 1446 1447
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

1448
    def __init__(self, cond, name=None):
Y
Yu Yang 已提交
1449 1450
        if not isinstance(cond, Variable):
            raise TypeError("cond must be a Variable")
1451
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
            parent_block = self.parent_block()
            out_true = parent_block.create_var(
Y
Yu Yang 已提交
1465
                name=unique_name.generate('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1466
                dtype=x.dtype)
Y
Yu Yang 已提交
1467 1468

            out_false = parent_block.create_var(
Y
Yu Yang 已提交
1469
                name=unique_name.generate('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1470
                dtype=x.dtype)
Y
Yu Yang 已提交
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

    def parent_block(self):
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
        parent_block = self.parent_block()
        for each_out in outs:
            if not isinstance(each_out, Variable):
                raise TypeError("Each output should be a variable")
            # create outside tensor
            outside_out = parent_block.create_var(
Y
Yu Yang 已提交
1511 1512
                name=unique_name.generate("_".join(
                    [self.helper.name, 'output'])),
F
fengjiayi 已提交
1513
                dtype=each_out.dtype)
Y
Yu Yang 已提交
1514 1515 1516
            out_table.append(outside_out)

            # assign local var to outside
1517
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
        false_len, true_len = map(len, self.output_table)
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
1541
                    level=0))
Y
Yu Yang 已提交
1542
        return rlist
1543 1544 1545


class DynamicRNN(object):
Y
yuyang18 已提交
1546
    """
Y
yuyang18 已提交
1547 1548 1549
    The dynamic RNN can process a batch of sequence data. The length of each
    sample sequence can be different. This API automatically process them in
    batch.
Y
yuyang18 已提交
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577

    The input lod must be set. Please reference `lod_tensor`

    >>> import paddle.fluid as fluid
    >>> data = fluid.layers.data(name='sentence', dtype='int64', lod_level=1)
    >>> embedding = fluid.layers.embedding(input=data, size=[65535, 32],
    >>>                                    is_sparse=True)
    >>>
    >>> drnn = fluid.layers.DynamicRNN()
    >>> with drnn.block():
    >>>     word = drnn.step_input(embedding)
    >>>     prev = drnn.memory(shape=[200])
    >>>     hidden = fluid.layers.fc(input=[word, prev], size=200, act='relu')
    >>>     drnn.update_memory(prev, hidden)  # set prev to hidden
    >>>     drnn.output(hidden)
    >>>
    >>> # last is the last time step of rnn. It is the encoding result.
    >>> last = fluid.layers.sequence_last_step(drnn())

    The dynamic RNN will unfold sequence into timesteps. Users need to define
    how to process each time step during the :code:`with` block.

    The `memory` is used staging data cross time step. The initial value of
    memory can be zero or another variable.

    The dynamic RNN can mark multiple variables as its output. Use `drnn()` to
    get the output sequence.
    """
1578 1579 1580 1581
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

1582 1583
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
1584 1585 1586 1587
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
1588 1589
        self.zero_idx = fill_constant(
            shape=[1], value=0, dtype='int64', force_cpu=True)
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
        self.cond = self.helper.create_tmp_variable(dtype='bool')
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

    def step_input(self, x):
Y
yuyang18 已提交
1600 1601 1602 1603 1604 1605 1606 1607 1608
        """
        Mark a sequence as a dynamic RNN input.
        Args:
            x(Variable): The input sequence.

        Returns:
            The current timestep in the input sequence.

        """
1609 1610 1611
        self._assert_in_rnn_block_("step_input")
        if not isinstance(x, Variable):
            raise TypeError(
1612
                "step_input() can only take a Variable as its input.")
1613 1614 1615
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
1616
                name=unique_name.generate('lod_rank_table'),
1617 1618 1619 1620 1621 1622 1623
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
                outputs={"Out": self.lod_rank_table})
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
1624 1625
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
                dtype='int64')
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
            self.max_seq_len.stop_gradient = False
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len})
            self.cond.stop_gradient = True
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx,
                        'Y': self.max_seq_len},
J
JiayiFeng 已提交
1636 1637
                outputs={'Out': self.cond},
                attrs={'force_cpu': True})
1638 1639

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
1640
            name=unique_name.generate('dynamic_rnn_input_array'),
1641 1642 1643 1644 1645 1646 1647 1648
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x,
                    'RankTable': self.lod_rank_table},
            outputs={'Out': input_array})
1649
        return array_read(array=input_array, i=self.step_idx)
1650

Y
yangyaming 已提交
1651
    def static_input(self, x):
Y
yuyang18 已提交
1652 1653 1654 1655 1656 1657 1658 1659 1660
        """
        Mark a variable as a RNN input. The input will not be scattered into
        time steps.
        Args:
            x(Variable): The input variable.

        Returns:
            The input variable that can access in RNN.
        """
Y
yangyaming 已提交
1661 1662 1663 1664 1665 1666 1667 1668 1669
        self._assert_in_rnn_block_("static_input")
        if not isinstance(x, Variable):
            raise TypeError(
                "static_input() can only take a Variable as its input")
        if self.lod_rank_table is None:
            raise RuntimeError(
                "static_input() must be called after step_input().")
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1670
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
1671 1672 1673 1674 1675 1676 1677 1678 1679
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=x.dtype)
        parent_block.append_op(
            type='reorder_lod_tensor_by_rank',
            inputs={'X': [x],
                    'RankTable': [self.lod_rank_table]},
            outputs={'Out': [x_reordered]})
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

1680 1681
    @contextlib.contextmanager
    def block(self):
Y
yuyang18 已提交
1682 1683 1684 1685
        """
        The block for user to define operators in RNN. See the class docstring
        for more details.
        """
1686 1687
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
1688 1689
        self.step_idx = fill_constant(
            shape=[1], dtype='int64', value=0, force_cpu=True)
1690 1691 1692 1693
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
1694
            increment(x=self.step_idx, value=1.0, in_place=True)
1695 1696

            for new_mem, mem_array in self.mem_link:
1697 1698
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

J
JiayiFeng 已提交
1699 1700 1701 1702 1703
            less_than(
                x=self.step_idx,
                y=self.max_seq_len,
                force_cpu=True,
                cond=self.cond)
1704 1705 1706 1707 1708

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
                array_to_lod_tensor(
1709
                    x=each_array, table=self.lod_rank_table))
1710 1711

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
1712 1713 1714
        """
        Get the output of RNN. This API should only be invoked after RNN.block()
        """
1715
        if self.status != DynamicRNN.AFTER_RNN:
1716 1717
            raise ValueError(("Output of the dynamic RNN can only be visited "
                              "outside the rnn block."))
1718 1719 1720 1721 1722
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

1723 1724 1725 1726 1727 1728
    def memory(self,
               init=None,
               shape=None,
               value=0.0,
               need_reorder=False,
               dtype='float32'):
Y
yuyang18 已提交
1729
        """
Y
yuyang18 已提交
1730
        Create a memory variable for dynamic rnn.
Y
yuyang18 已提交
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792

        If the :code:`init` is not None, :code:`memory` will be initialized by
        this variable. The :code:`need_reorder` is used to reorder the memory as
        the input variable. It should be set to true when the initialized memory
        depends on the input sample.

        For example,

        >>> import paddle.fluid as fluid
        >>> sentence = fluid.layers.data(
        >>>                 name='sentence', dtype='float32', shape=[32])
        >>> boot_memory = fluid.layers.data(
        >>>                 name='boot', dtype='float32', shape=[10])
        >>>
        >>> drnn = fluid.layers.DynamicRNN()
        >>> with drnn.block():
        >>>     word = drnn.step_input(sentence)
        >>>     memory = drnn.memory(init=boot_memory, need_reorder=True)
        >>>     hidden = fluid.layers.fc(
        >>>                 input=[word, memory], size=10, act='tanh')
        >>>     drnn.update_memory(ex_mem=memory, new_mem=hidden)
        >>>     drnn.output(hidden)
        >>> rnn_output = drnn()


        Otherwise, if :code:`shape`, :code:`value`, :code:`dtype` are set, the
        :code:`memory` will be initialized by this :code:`value`.

        For example,

        >>> import paddle.fluid as fluid
        >>> sentence = fluid.layers.data(
        >>>                 name='sentence', dtype='float32', shape=[32])
        >>>
        >>> drnn = fluid.layers.DynamicRNN()
        >>> with drnn.block():
        >>>     word = drnn.step_input(sentence)
        >>>     memory = drnn.memory(shape=[10], dtype='float32', value=0)
        >>>     hidden = fluid.layers.fc(
        >>>             input=[word, memory], size=10, act='tanh')
        >>>     drnn.update_memory(ex_mem=memory, new_mem=hidden)
        >>>     drnn.output(hidden)
        >>> rnn_output = drnn()


        Args:
            init(Variable|None): The initialized variable.

            shape(list|tuple): The memory shape. NOTE the shape does not contain
            batch_size.

            value(float): the initalized value.

            need_reorder(bool): True if the initialized memory depends on the
            input sample.

            dtype(str|numpy.dtype): The data type of the initialized memory.

        Returns:
            the memory variable.

        """
1793 1794 1795 1796 1797 1798
        self._assert_in_rnn_block_('memory')
        if init is not None:
            if not isinstance(init, Variable):
                raise TypeError(
                    "The input arg `init` of memory() must be a Variable")
            parent_block = self._parent_block_()
1799 1800 1801 1802 1803 1804 1805 1806
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
                        'memory(init=init, need_reordered=True, ...).')
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1807
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    dtype=init.dtype)
                parent_block.append_op(
                    type='reorder_lod_tensor_by_rank',
                    inputs={
                        'X': [init_tensor],
                        'RankTable': [self.lod_rank_table]
                    },
                    outputs={'Out': [init_reordered]})
                init_tensor = init_reordered
1818
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
1819
                name=unique_name.generate('dynamic_rnn_mem_array'),
1820 1821 1822 1823
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
            parent_block.append_op(
                type='write_to_array',
1824
                inputs={'X': init_tensor,
1825 1826
                        'I': self.zero_idx},
                outputs={'Out': mem_array})
1827
            retv = array_read(array=mem_array, i=self.step_idx)
1828
            retv = shrink_memory(
1829
                x=retv, i=self.step_idx, table=self.lod_rank_table)
1830 1831 1832 1833 1834 1835 1836 1837 1838
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
Y
Yu Yang 已提交
1839
                name=unique_name.generate('mem_init'), dtype=dtype)
1840
            arr, dtype = self.input_array[0]
Y
Yu Yang 已提交
1841 1842
            in0 = parent_block.create_var(
                name=unique_name.generate('in0'), dtype=dtype)
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr],
                        'I': [self.zero_idx]},
                outputs={'Out': [in0]})
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype
                })
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
        """
        Update the memory from ex_mem to new_mem. NOTE that the shape and data
        type of :code:`ex_mem` and :code:`new_mem` must be same.
        Args:
            ex_mem(Variable): the memory variable.
            new_mem(Variable): the plain variable generated in RNN block.

        Returns:
            None
        """
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
        self._assert_in_rnn_block_('update_memory')
        if not isinstance(ex_mem, Variable):
            raise TypeError("The input arg `ex_mem` of update_memory() must "
                            "be a Variable")
        if not isinstance(new_mem, Variable):
            raise TypeError("The input arg `new_mem` of update_memory() must "
                            "be a Variable")

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
1887 1888 1889 1890 1891 1892 1893 1894 1895
        """
        mark the RNN output variables.

        Args:
            outputs: The output variables.

        Returns:
            None
        """
1896 1897 1898 1899
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
            outside_array = parent_block.create_var(
Y
Yu Yang 已提交
1900
                name=unique_name.generate("_".join(
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
            raise ValueError("{0} can only be invoked inside rnn block.".format(
                method))
Y
Yang Yu 已提交
1919 1920


1921
@autodoc()
Y
Yang Yu 已提交
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
def reorder_lod_tensor_by_rank(x, rank_table):
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())
    helper.is_instance('x', Variable)
    helper.is_instance('rank_table', Variable)

    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x],
                'RankTable': [rank_table]},
        outputs={'Out': [out]})
    return out
1934 1935 1936 1937


def is_empty(x, cond=None, **ignored):
    """
F
fengjiayi 已提交
1938
    Test whether a Variable is empty.
1939 1940

    Args:
F
fengjiayi 已提交
1941 1942
        x (Variable): The Variable to be tested.
        cond (Variable|None): Output parameter. Returns the test result 
F
fengjiayi 已提交
1943
                              of given 'x'. Default: None
1944 1945

    Returns:
F
fengjiayi 已提交
1946
        Variable: A bool scalar. True if 'x' is an empty Variable.
1947 1948 1949

    Raises:
        TypeError: If input cond is not a variable, or cond's dtype is
F
fengjiayi 已提交
1950
                   not bool.
1951 1952 1953 1954

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
1955 1956 1957
          res = fluid.layers.is_empty(x=input)
          # or:
          fluid.layers.is_empty(x=input, cond=res)
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
    """
    helper = LayerHelper("is_empty", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True
    elif not isinstance(cond, Variable):
        raise TypeError("cond takes a variable")
    elif cond.dtype != 'bool':
        raise TypeError("The data type of cond must be bool")

    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]})
    return cond