learning_rate_scheduler.py 15.2 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
yuyang18 已提交
14 15 16 17 18 19 20 21
"""
When training a model, it's often useful to decay the
learning rate during training process, this is called
learning_rate_decay. There are many strategies to do
this, this module will provide some classical method.
User can also implement their own learning_rate_decay
strategy according to this module.
"""
Q
Qiao Longfei 已提交
22

23 24
from __future__ import print_function

25 26
import math

27 28 29 30
from . import control_flow
from . import nn
from . import ops
from . import tensor
31
from ..initializer import init_on_cpu
32
from ..framework import default_main_program, Parameter, unique_name, name_scope
M
minqiyang 已提交
33 34
from ..dygraph import base as imperative_base
from ..dygraph import learning_rate_scheduler as imperate_lr
Q
Qiao Longfei 已提交
35

36 37
__all__ = [
    'exponential_decay', 'natural_exp_decay', 'inverse_time_decay',
38 39
    'polynomial_decay', 'piecewise_decay', 'noam_decay', 'cosine_decay',
    'linear_lr_warmup'
40
]
Q
Qiao Longfei 已提交
41 42


43
def _decay_step_counter(begin=0):
Y
Yu Yang 已提交
44
    # the first global step is zero in learning rate decay
45
    global_step = nn.autoincreased_step_counter(
46
        counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
47
    global_step = tensor.cast(global_step, 'float32')
Y
Yu Yang 已提交
48 49 50
    return global_step


51
def noam_decay(d_model, warmup_steps):
Y
yuyang18 已提交
52 53 54 55 56 57 58 59 60 61
    """
    Noam decay method. The numpy implementation of noam decay as follows.

    >>> import numpy as np
    >>> lr_value = np.power(d_model, -0.5) * np.min([
    >>>                         np.power(current_steps, -0.5),
    >>>                         np.power(warmup_steps, -1.5) * current_steps])

    Please reference `attention is all you need
    <https://arxiv.org/pdf/1706.03762.pdf>`_.
62 63 64

    Args:
        d_model(Variable): The dimensionality of input and output of model.
Y
yuyang18 已提交
65

66 67 68 69 70
        warmup_steps(Variable): A super parameter.

    Returns:
        The decayed learning rate.
    """
71
    with default_main_program()._lr_schedule_guard():
M
minqiyang 已提交
72 73 74 75 76
        if imperative_base.enabled():
            decay = imperate_lr.NoamDecay(d_model, warmup_steps)
            return decay
        else:
            global_step = _decay_step_counter(1)
F
fengjiayi 已提交
77

M
minqiyang 已提交
78 79 80
            a = global_step**-0.5
            b = (warmup_steps**-1.5) * global_step
            lr_value = (d_model**-0.5) * nn.elementwise_min(a, b)
81

M
minqiyang 已提交
82
            return lr_value
83 84


Y
Yu Yang 已提交
85
def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False):
F
fengjiayi 已提交
86
    """
87
    Applies exponential decay to the learning rate.
F
fengjiayi 已提交
88

89 90
    When training a model, it is often recommended to lower the learning rate as the
    training progresses. By using this function, the learning rate will be decayed by
F
fengjiayi 已提交
91 92 93 94 95 96
    'decay_rate' every 'decay_steps' steps.

    >>> if staircase == True:
    >>>     decayed_learning_rate = learning_rate * decay_rate ^ floor(global_step / decay_steps)
    >>> else:
    >>>     decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
Q
Qiao Longfei 已提交
97 98

    Args:
F
fengjiayi 已提交
99 100 101 102 103
        learning_rate(Variable|float): The initial learning rate.
        decay_steps(int): See the decay computation above.
        decay_rate(float): The decay rate. See the decay computation above.
        staircase(Boolean): If True, decay the learning rate at discrete intervals.
                            Default: False
Q
Qiao Longfei 已提交
104 105

    Returns:
F
fengjiayi 已提交
106
        Variable: The decayed learning rate
F
fengjiayi 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119

    Examples:
        .. code-block:: python

          base_lr = 0.1
          sgd_optimizer = fluid.optimizer.SGD(
                learning_rate=fluid.layers.exponential_decay(
                    learning_rate=base_lr,
                    decay_steps=10000,
                    decay_rate=0.5,
                    staircase=True))
          sgd_optimizer.minimize(avg_cost)

Q
Qiao Longfei 已提交
120
    """
121
    with default_main_program()._lr_schedule_guard():
122 123 124 125 126 127
        if imperative_base.enabled():
            decay = imperate_lr.ExponentialDecay(learning_rate, decay_steps,
                                                 decay_rate, staircase)
            return decay
        else:
            global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
128

129 130 131 132
            div_res = global_step / decay_steps
            if staircase:
                div_res = ops.floor(div_res)
            decayed_lr = learning_rate * (decay_rate**div_res)
133

134
            return decayed_lr
Q
Qiao Longfei 已提交
135 136


Y
Yu Yang 已提交
137
def natural_exp_decay(learning_rate, decay_steps, decay_rate, staircase=False):
Q
Qiao Longfei 已提交
138 139
    """Applies natural exponential decay to the initial learning rate.

Y
Yu Yang 已提交
140 141 142 143 144
    >>> if not staircase:
    >>>     decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))
    >>> else:
    >>>     decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))

Q
Qiao Longfei 已提交
145 146 147 148 149 150 151 152 153 154
    Args:
        learning_rate: A scalar float32 value or a Variable. This
          will be the initial learning rate during training
        decay_steps: A Python `int32` number.
        decay_rate: A Python `float` number.
        staircase: Boolean. If set true, decay the learning rate every decay_steps.

    Returns:
        The decayed learning rate
    """
155
    with default_main_program()._lr_schedule_guard():
156 157 158 159 160 161
        if imperative_base.enabled():
            decay = imperate_lr.NaturalExpDecay(learning_rate, decay_steps,
                                                decay_rate, staircase)
            return decay
        else:
            global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
162

163 164 165 166
            div_res = global_step / decay_steps
            if staircase:
                div_res = ops.floor(div_res)
            decayed_lr = learning_rate * ops.exp(-1 * decay_rate * div_res)
167

168
            return decayed_lr
Q
Qiao Longfei 已提交
169 170


Y
Yu Yang 已提交
171
def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False):
F
fengjiayi 已提交
172 173
    """
    Applies inverse time decay to the initial learning rate.
Q
Qiao Longfei 已提交
174

175 176
    When training a model, it is often recommended to lower the learning rate as the
    training progresses. By using this function, an inverse decay function will be
F
fengjiayi 已提交
177
    applied to the initial learning rate.
Q
Qiao Longfei 已提交
178

F
fengjiayi 已提交
179
    >>> if staircase == True:
Y
Yu Yang 已提交
180 181 182 183
    >>>     decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step / decay_step))
    >>> else:
    >>>     decayed_learning_rate = learning_rate / (1 + decay_rate * global_step / decay_step)

Q
Qiao Longfei 已提交
184
    Args:
F
fengjiayi 已提交
185 186 187 188 189
        learning_rate(Variable|float): The initial learning rate.
        decay_steps(int): See the decay computation above.
        decay_rate(float): The decay rate. See the decay computation above.
        staircase(Boolean): If True, decay the learning rate at discrete intervals.
                            Default: False
Q
Qiao Longfei 已提交
190 191

    Returns:
F
fengjiayi 已提交
192
        Variable: The decayed learning rate
F
fengjiayi 已提交
193 194 195 196 197 198 199 200 201 202 203 204

    Examples:
        .. code-block:: python

          base_lr = 0.1
          sgd_optimizer = fluid.optimizer.SGD(
                learning_rate=fluid.layers.inverse_time_decay(
                    learning_rate=base_lr,
                    decay_steps=10000,
                    decay_rate=0.5,
                    staircase=True))
          sgd_optimizer.minimize(avg_cost)
Q
Qiao Longfei 已提交
205
    """
206
    with default_main_program()._lr_schedule_guard():
207 208 209 210 211 212
        if imperative_base.enabled():
            decay = imperate_lr.InverseTimeDecay(learning_rate, decay_steps,
                                                 decay_rate, staircase)
            return decay
        else:
            global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
213

214 215 216
            div_res = global_step / decay_steps
            if staircase:
                div_res = ops.floor(div_res)
217

218
            decayed_lr = learning_rate / (1 + decay_rate * div_res)
Q
Qiao Longfei 已提交
219

220
            return decayed_lr
221 222 223 224 225 226 227


def polynomial_decay(learning_rate,
                     decay_steps,
                     end_learning_rate=0.0001,
                     power=1.0,
                     cycle=False):
Q
qiaolongfei 已提交
228 229 230
    """
    Applies polynomial decay to the initial learning rate.

Q
qiaolongfei 已提交
231
    .. code-block:: python
Q
qiaolongfei 已提交
232 233 234 235 236 237 238

     if cycle:
       decay_steps = decay_steps * ceil(global_step / decay_steps)
     else:
       global_step = min(global_step, decay_steps)
       decayed_learning_rate = (learning_rate - end_learning_rate) *
            (1 - global_step / decay_steps) ^ power + end_learning_rate
239 240

    Args:
Q
qiaolongfei 已提交
241
        learning_rate(Variable|float32): A scalar float32 value or a Variable. This
Q
update  
qiaolongfei 已提交
242
          will be the initial learning rate during training.
Q
qiaolongfei 已提交
243
        decay_steps(int32): A Python `int32` number.
Q
update  
qiaolongfei 已提交
244 245 246
        end_learning_rate(float): A Python `float` number.
        power(float): A Python `float` number.
        cycle(bool): If set true, decay the learning rate every decay_steps.
247 248

    Returns:
Q
update  
qiaolongfei 已提交
249
        Variable: The decayed learning rate
250
    """
251
    with default_main_program()._lr_schedule_guard():
252 253 254 255
        if imperative_base.enabled():
            decay = imperate_lr.PolynomialDecay(learning_rate, decay_steps,
                                                end_learning_rate, power, cycle)
            return decay
256
        else:
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
            global_step = _decay_step_counter()

            if cycle:
                div_res = ops.ceil(global_step / decay_steps)
                zero_var = tensor.fill_constant(
                    shape=[1], dtype='float32', value=0.0)
                one_var = tensor.fill_constant(
                    shape=[1], dtype='float32', value=1.0)

                with control_flow.Switch() as switch:
                    with switch.case(global_step == zero_var):
                        tensor.assign(input=one_var, output=div_res)
                decay_steps = decay_steps * div_res
            else:
                decay_steps_var = tensor.fill_constant(
                    shape=[1], dtype='float32', value=float(decay_steps))
                global_step = nn.elementwise_min(
                    x=global_step, y=decay_steps_var)
275

276 277 278
            decayed_lr = (learning_rate - end_learning_rate) * \
                ((1 - global_step / decay_steps) ** power) + end_learning_rate
            return decayed_lr
279 280


Y
Yu Yang 已提交
281
def piecewise_decay(boundaries, values):
282 283
    """Applies piecewise decay to the initial learning rate.

X
Xin Pan 已提交
284 285 286 287 288 289 290 291 292 293 294 295
      The algorithm can be described as the code below.

      .. code-block:: python

        boundaries = [10000, 20000]
        values = [1.0, 0.5, 0.1]
        if step < 10000:
            learning_rate = 1.0
        elif 10000 <= step < 20000:
            learning_rate = 0.5
        else:
            learning_rate = 0.1
X
Xin Pan 已提交
296 297 298 299 300 301 302 303
    Args:
        boundaries: A list of steps numbers.
        values: A list of learning rate values that will be picked during
            different step boundaries.

    Returns:
        The decayed learning rate.

X
Xin Pan 已提交
304

305
    """
306 307 308 309
    with default_main_program()._lr_schedule_guard():
        if len(values) - len(boundaries) != 1:
            raise ValueError("len(values) - len(boundaries) should be 1")

310
        if imperative_base.enabled():
M
minqiyang 已提交
311
            decay = imperate_lr.PiecewiseDecay(boundaries, values, 0)
312 313 314
            return decay
        else:
            global_step = _decay_step_counter()
315

316 317 318 319 320 321
            lr = tensor.create_global_var(
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
322

323 324 325 326 327 328 329 330 331 332 333 334
            with control_flow.Switch() as switch:
                for i in range(len(boundaries)):
                    boundary_val = tensor.fill_constant(
                        shape=[1],
                        dtype='float32',
                        value=float(boundaries[i]),
                        force_cpu=True)
                    value_var = tensor.fill_constant(
                        shape=[1], dtype='float32', value=float(values[i]))
                    with switch.case(global_step < boundary_val):
                        tensor.assign(value_var, lr)
                last_value_var = tensor.fill_constant(
335 336
                    shape=[1],
                    dtype='float32',
337 338 339
                    value=float(values[len(values) - 1]))
                with switch.default():
                    tensor.assign(last_value_var, lr)
340

341
            return lr
W
Wu Yi 已提交
342 343


S
shippingwang 已提交
344 345 346 347
def cosine_decay(learning_rate, step_each_epoch, epochs):
    """
    Applies cosine decay to the learning rate.

S
shippingwang 已提交
348
    when training a model, it is often recommended to lower the learning rate as the
S
shippingwang 已提交
349 350
    training progresses. By using this function, the learning rate will be decayed by
    following cosine decay strategy.
S
shippingwang 已提交
351

352 353 354
    .. math::

	decayed\_lr = learning\_rate * 0.5 * (math.cos * (epoch * \\frac{math.pi}{epochs} ) + 1)
S
shippingwang 已提交
355 356 357 358 359 360
    
    Args:
        learning_rate(Variable|float): The initial learning rate.
        step_each_epoch(int): the number of steps in an epoch.
        epochs(int): the number of epochs.

361 362
    Returns:
	Variable: The decayed learning rate.
S
shippingwang 已提交
363

364 365
    Examples:
	.. code-block:: python
S
shippingwang 已提交
366

367 368 369
  	    base_lr = 0.1
	    lr = fluid.layers.cosine_decay(
	    learning_rate = base_lr, step_each_epoch=10000, epochs=120)
S
shippingwang 已提交
370
    """
371

S
shippingwang 已提交
372
    with default_main_program()._lr_schedule_guard():
M
minqiyang 已提交
373 374 375 376 377 378
        if imperative_base.enabled():
            decay = imperate_lr.CosineDecay(learning_rate, step_each_epoch,
                                            epochs)
            return decay
        else:
            global_step = _decay_step_counter()
S
shippingwang 已提交
379

M
minqiyang 已提交
380 381 382 383
            cur_epoch = ops.floor(global_step / step_each_epoch)
            decayed_lr = learning_rate * 0.5 * (
                ops.cos(cur_epoch * math.pi / epochs) + 1)
            return decayed_lr
S
shippingwang 已提交
384 385


386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
def linear_lr_warmup(learning_rate, warmup_steps, start_lr, end_lr):
    """
    Applies linear learning rate warmup before the normal learning rate
    scheduling.

    .. code-block:: python

     if global_step < warmup_steps:
         linear_step = end_lr - start_lr
         lr = start_lr + linear_step * (global_step / warmup_steps)

    Args:
        learning_rate (float | Variable): A float value or Variable.
        warmup_steps (int): The warmup steps.
        start_lr (float): The start learning of warmup.
        end_lr (float): The end learning of warmup.

    Returns:
        The decayed learning rate in warmup period.

    Examples:
        .. code-block:: python

            boundaries = [100, 200]
            lr_steps = [0.1, 0.01, 0.001]
            warmup_steps = 50 
            start_lr = 1. / 3. 
            end_lr = 0.1
            decayed_lr = fluid.layers.linear_lr_warmup(
                fluid.layers.piecewise_decay(boundaries, lr_steps),
                warmup_steps, start_lr, end_lr)

    """
    assert (isinstance(end_lr, float))
    assert (isinstance(start_lr, float))
    linear_step = end_lr - start_lr
    with default_main_program()._lr_schedule_guard():
        lr = tensor.create_global_var(
            shape=[1],
            value=0.0,
            dtype='float32',
            persistable=True,
            name="learning_rate_warmup")

        global_step = _decay_step_counter()

        with control_flow.Switch() as switch:
            with switch.case(global_step < warmup_steps):
                decayed_lr = start_lr + linear_step * (global_step /
                                                       float(warmup_steps))
                tensor.assign(decayed_lr, lr)
            with switch.default():
                tensor.assign(learning_rate, lr)
    return lr