conv.py 72.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from __future__ import print_function
15

16
import numpy as np
L
LielinJiang 已提交
17
from ...device import get_cudnn_version
18
from ...static import Variable
Z
zhiboniu 已提交
19
from ...fluid import dygraph_utils
20
from ...fluid.layers.utils import convert_to_list, _is_symmetric_padding
21
from ...fluid.data_feeder import check_variable_and_dtype
22
from ...framework import ParamAttr
23
from ...fluid.layer_helper import LayerHelper
24 25 26
from ...tensor.manipulation import unsqueeze, squeeze
from ...tensor.math import add
from ...fluid.layers import nn
27
from paddle import _C_ops, _legacy_C_ops
F
From00 已提交
28 29
from paddle import get_flags
from paddle import in_dynamic_mode
Z
zhiboniu 已提交
30 31
from paddle.device import is_compiled_with_cuda
from paddle.device import is_compiled_with_npu
H
hong 已提交
32 33
from paddle import in_dynamic_mode
from paddle import get_flags
F
From00 已提交
34 35 36 37
from paddle.device import is_compiled_with_rocm
from paddle.fluid.framework import _global_flags
from paddle.fluid.framework import _in_legacy_dygraph
from paddle.fluid.framework import in_dygraph_mode
38

39 40
__all__ = []

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
    else:
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]


def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_


def _update_padding_nd(padding, channel_last, num_dims):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".
                format(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
                raise ValueError(
                    "Non-zero padding({}) in the batch or channel dimensions "
                    "is not supported.".format(padding))
            padding_algorithm = "EXPLICIT"
82 83
            padding = _exclude_padding_in_batch_and_channel(
                padding, channel_last)
84
            if _is_symmetric_padding(padding, num_dims):
85 86 87 88
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
89 90
            padding = convert_to_list(padding, 2 * num_dims, 'padding')
            if _is_symmetric_padding(padding, num_dims):
91 92 93 94
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
95
            padding = convert_to_list(padding, num_dims, 'padding')
96 97 98 99 100
        else:
            raise ValueError("In valid padding: {}".format(padding))
    # for integer padding
    else:
        padding_algorithm = "EXPLICIT"
101
        padding = convert_to_list(padding, num_dims, 'padding')
102 103
    if not all([p >= 0 for p in padding]):
        raise ValueError(
104 105
            "Invalid padding, all value should be larger than or equal to 0, but received: {}"
            .format(padding))
106 107 108
    return padding, padding_algorithm


L
LielinJiang 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
def _conv_nd(x,
             weight,
             bias=None,
             stride=1,
             padding=0,
             padding_algorithm=None,
             dilation=1,
             groups=1,
             data_format="NCHW",
             channel_dim=1,
             op_type="conv2d",
             use_cudnn=True,
             use_mkldnn=False,
             name=None):

124
    # Due to the poor performance of NHWC, we transpose the input to NCHW.
H
hong 已提交
125
    if in_dygraph_mode() and op_type == "conv2d":
126 127 128
        pre_bias = _C_ops.conv2d(x, weight, stride, padding, padding_algorithm,
                                 groups, dilation, data_format, False, -1,
                                 False)
H
hong 已提交
129
        if bias is not None:
130 131
            channel_dim = channel_dim + len(
                x.shape) if channel_dim < 0 else channel_dim
132 133 134 135
            if isinstance(x, tuple):
                x = x[0]
            if isinstance(bias, tuple):
                bias = bias[0]
C
Chen Weihang 已提交
136
            if len(bias.shape) < len(x.shape):
137
                tmp_bias = _C_ops.reshape(
C
Chen Weihang 已提交
138 139
                    bias, bias.shape +
                    [1 for i in range(len(x.shape) - channel_dim - 1)])
140
                return _C_ops.add(pre_bias, tmp_bias)
C
Chen Weihang 已提交
141
            else:
142
                return _C_ops.add(pre_bias, bias)
H
hong 已提交
143 144
        else:
            return pre_bias
145 146

    if in_dygraph_mode() and op_type == "depthwise_conv2d":
147 148 149 150
        pre_bias = _C_ops.depthwise_conv2d(x, weight, stride, padding,
                                           padding_algorithm, groups, dilation,
                                           data_format, False, -1, False, False,
                                           use_cudnn)
151 152 153
        if bias is not None:
            channel_dim = channel_dim + len(
                x.shape) if channel_dim < 0 else channel_dim
154
            tmp_bias = _C_ops.reshape(
155 156
                bias,
                bias.shape + [1 for i in range(len(x.shape) - channel_dim - 1)])
157
            return _C_ops.add(pre_bias, tmp_bias)
158 159 160 161
        else:
            return pre_bias

    if in_dygraph_mode() and op_type == "conv3d":
162 163 164
        pre_bias = _C_ops.conv3d(x, weight, stride, padding, padding_algorithm,
                                 groups, dilation, data_format, False, -1,
                                 False)
165 166 167
        if bias is not None:
            channel_dim = channel_dim + len(
                x.shape) if channel_dim < 0 else channel_dim
168
            tmp_bias = _C_ops.reshape(
169 170
                bias,
                bias.shape + [1 for i in range(len(x.shape) - channel_dim - 1)])
171
            return _C_ops.add(pre_bias, tmp_bias)
172 173 174
        else:
            return pre_bias

Z
zhiboniu 已提交
175
    if in_dynamic_mode():
L
LielinJiang 已提交
176 177 178 179 180
        attrs = ('strides', stride, 'paddings', padding, 'dilations', dilation,
                 'groups', groups, 'use_cudnn', use_cudnn, 'use_mkldnn',
                 use_mkldnn, 'fuse_relu_before_depthwise_conv', False,
                 "padding_algorithm", padding_algorithm, "data_format",
                 data_format)
181
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
L
LielinJiang 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
        if bias is not None:
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            out = pre_bias
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format
        }
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 op_type)
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        pre_bias = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [pre_bias]}
205 206 207 208
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
L
LielinJiang 已提交
209 210
        if bias is not None:
            out = helper.create_variable_for_type_inference(dtype)
211 212 213 214 215 216 217 218 219 220
            helper.append_op(type='elementwise_add',
                             inputs={
                                 'X': [pre_bias],
                                 'Y': [bias]
                             },
                             outputs={'Out': [out]},
                             attrs={
                                 'axis': channel_dim,
                                 'use_mkldnn': use_mkldnn
                             })
L
LielinJiang 已提交
221 222 223 224 225
        else:
            out = pre_bias
    return out


W
whs 已提交
226 227 228 229 230 231 232 233 234
def conv1d(x,
           weight,
           bias=None,
           stride=1,
           padding=0,
           dilation=1,
           groups=1,
           data_format='NCL',
           name=None):
235
    r"""
W
whs 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
    The convolution1D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCL format, where N is batch size, C is the number of
    channels, L is the length of the feature.
    Filter is in MCK format, where M is the number of output image channels,
    C is the number of input image channels, K is the size of the kernel.
    If the groups is greater than 1, C will equal the number of input image
    channels divided by the groups. If bias attribution and activation type
    are provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
251
        Out = \sigma (W \ast X + b)
W
whs 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277

    Where:

    * :math:`X`: Input value, a tensor with NCL format.
    * :math:`W`: Kernel value, a tensor with MCK format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

W
whs 已提交
278
            L_{out} = \frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1
W
whs 已提交
279 280 281 282 283 284 285

    Args:
        x (Tensor): The input is 3-D Tensor with shape [N, C, L], the data type 
            of input is float16 or float32 or float64.
        weight (Tensor): The convolution kernel with shape [M, C/g, K], where M is
            the number of output channels, g is the number of groups, K is the kernel's size. 
        bias (Tensor, optional): The bias with shape [M,]. Default: None.
286
        stride (int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
W
whs 已提交
287
            contain one integers, (stride_size). Default: 1.
288
        padding(int|str|tuple|list, optional): The padding size. Padding could be in one of the following forms.
W
whs 已提交
289 290 291 292 293 294
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            4. a list[int] or tuple[int] whose length is 2. It has the form  [pad_before, pad_after].
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
295
        dilation (int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
W
whs 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv1d function. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, feature_length]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
        A tensor representing the conv1d, whose data type is the 
        same with input.

    Raises:
315
        ValueError: If the channel dimension of the input is less than or equal to zero.
W
whs 已提交
316 317
        ValueError: If `data_format` is not "NCL" or "NLC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
318
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
W
whs 已提交
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 3-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 1.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F
          import numpy as np
          x = np.array([[[4, 8, 1, 9],
            [7, 2, 0, 9],
            [6, 9, 2, 6]]]).astype(np.float32)
          w=np.array(
          [[[9, 3, 4],
            [0, 0, 7],
            [2, 5, 6]],
           [[0, 3, 4],
            [2, 9, 7],
            [5, 6, 8]]]).astype(np.float32)
L
LielinJiang 已提交
342
          
W
whs 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
          x_var = paddle.to_tensor(x)
          w_var = paddle.to_tensor(w)
          y_var = F.conv1d(x_var, w_var)
          y_np = y_var.numpy()
          print(y_np)
          
          # [[[133. 238.]
          #   [160. 211.]]]
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ["NCL", "NLC"]:
        raise ValueError("Attr(data_format) should be 'NCL' or 'NLC'. "
                         "Received Attr(data_format): {}.".format(data_format))

L
LielinJiang 已提交
362
    channel_last = (data_format == "NLC")
W
whs 已提交
363 364
    channel_dim = -1 if channel_last else 1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"
365 366 367 368
    if len(x.shape) != 3:
        raise ValueError(
            "Input x should be 3D tensor, but received x with the shape of {}".
            format(x.shape))
W
whs 已提交
369 370 371
    num_channels = x.shape[channel_dim]
    num_filters = weight.shape[0]
    if num_channels < 0:
372
        raise ValueError("The channel dimension of the input({}) "
W
whs 已提交
373 374
                         "should be defined. Received: {}.".format(
                             x.shape, num_channels))
375 376
    if groups <= 0:
        raise ValueError(
377 378
            "The groups of conv1d should be greater than 0. Received groups: {}"
            .format(groups))
W
whs 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
            ", the groups is {}".format(num_channels, x.shape, groups))
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
            ", the groups is {}".format(num_filters, weight.shape, groups))

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)
392

W
whs 已提交
393
    if len(padding) == 2:
394
        padding = [0] * 2 + padding
W
whs 已提交
395
    elif len(padding) == 1:
396
        padding = [0] + padding
W
whs 已提交
397 398
    else:
        raise ValueError(
399 400
            "The size of padding's dimension should be 1 or 2. But got padding={}"
            .format(padding))
401 402 403
    stride = [1] + convert_to_list(stride, 1, 'stride')
    dilation = [1] + convert_to_list(dilation, 1, 'dilation')
    weight = unsqueeze(weight, axis=[-2])
W
whs 已提交
404 405

    l_type = "conv2d"
406 407

    # When "groups==num_channels and num_filters% num_channels == 0" using depthwise_conv2d has better performance
408 409
    if (is_compiled_with_cuda() and num_channels == groups and num_channels != 1
            and num_filters % num_channels == 0):
W
whs 已提交
410 411 412
        l_type = 'depthwise_conv2d'
        use_cudnn = False

413
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
414
    if is_compiled_with_npu():
415 416 417 418 419
        if (num_channels == groups and num_channels == num_filters):
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

420
    squeeze_aixs = -3 if channel_last else -2
421
    x = unsqueeze(x, axis=[squeeze_aixs])
422

423 424 425 426 427 428 429 430
    if in_dygraph_mode():
        out = getattr(_C_ops,
                      l_type)(x, weight, stride, padding, padding_algorithm,
                              groups, dilation, conv2d_data_format, False, -1,
                              False, False, use_cudnn)
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    elif _in_legacy_dygraph():
W
whs 已提交
431 432 433 434
        attrs = ('strides', stride, 'paddings', padding, 'dilations', dilation,
                 'groups', groups, 'use_cudnn', use_cudnn, 'use_mkldnn', False,
                 'fuse_relu_before_depthwise_conv', False, "padding_algorithm",
                 padding_algorithm, "data_format", conv2d_data_format)
435
        out = getattr(_legacy_C_ops, l_type)(x, weight, *attrs)
W
whs 已提交
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": conv2d_data_format
        }
        check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                                 'conv2d')
        helper = LayerHelper(l_type, **locals())
454
        dtype = helper.input_dtype(input_param_name='x')
W
whs 已提交
455 456
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
457 458 459 460
        helper.append_op(type=l_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
W
whs 已提交
461 462
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
463
    out = squeeze(out, axis=[squeeze_aixs])
W
whs 已提交
464 465 466
    return out


467
def conv2d(x,
468 469 470
           weight,
           bias=None,
           stride=1,
471
           padding=0,
472 473 474 475
           dilation=1,
           groups=1,
           data_format="NCHW",
           name=None):
476
    r"""
S
swtkiwi 已提交
477

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
    channels, H is the height of the feature, and W is the width of the feature.
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

495
    ..  math::
496

497
        Out = \sigma (W \ast X + b)
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521

    Where:

    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

522
        ..  math::
523

524 525
            H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
526 527

    Args:
528
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W], the data type 
529
            of input is float16 or float32 or float64.
530
        weight (Tensor): The convolution kernel with shape [M, C/g, kH, kW], where M is
531 532
            the number of output channels, g is the number of groups, kH is the filter's
            height, kW is the filter's width. 
533
        bias (Tensor, optional): The bias with shape [M,].
534 535
        stride (int|list|tuple): The stride size. It means the stride in convolution. 
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width). 
536
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
537 538 539 540 541 542 543
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when 
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0], 
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
544
            when `data_format` is `"NHWC"`, `padding` can be in the form
545 546
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
547 548
        dilation (int|list|tuple): The dilation size. It means the spacing between the kernel
            points. If dilation is a list/tuple, it must contain two integers, (dilation_height, 
549 550
            dilation_width). Otherwise, dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
C
cnn 已提交
551
        groups (int): The groups number of the Conv2D Layer. According to grouped
552 553 554 555 556 557 558 559 560 561 562 563 564
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
565
        A Tensor representing the conv2d result, whose data type is the same with input. 
566 567 568

    Raises:
        ValueError: If `data_format` is not "NCHW" or "NHWC".
569
        ValueError: If the channel dimension of the input is less than or equal to zero.
570
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
571
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
572 573 574 575 576 577 578 579 580 581
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

    Examples:
        .. code-block:: python

582
          import paddle
583 584
          import paddle.nn.functional as F

585 586
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((6, 3, 3, 3), dtype='float32')
587 588 589 590

          y_var = F.conv2d(x_var, w_var)
          y_np = y_var.numpy()

591 592 593 594 595 596 597 598 599 600
          print(y_np.shape)
          # (2, 6, 6, 6)
    """
    # entry checks
    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError("Attr(data_format) should be 'NCHW' or 'NHWC'. "
                         "Received Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NHWC")
    channel_dim = -1 if channel_last else 1
601 602 603 604
    if len(x.shape) != 4:
        raise ValueError(
            "Input x should be 4D tensor, but received x with the shape of {}".
            format(x.shape))
605
    num_channels = x.shape[channel_dim]
606 607
    num_filters = weight.shape[0]
    if num_channels < 0:
608
        raise ValueError("The channel dimension of the input({}) "
609
                         "should be defined. Received: {}.".format(
610
                             x.shape, num_channels))
611 612
    if groups <= 0:
        raise ValueError(
613 614
            "The groups of conv2d should be greater than 0. Received groups: {}"
            .format(groups))
615 616 617 618
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
619
            ", the groups is {}".format(num_channels, x.shape, groups))
620 621 622 623 624 625
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
            ", the groups is {}".format(num_filters, weight.shape, groups))

626 627
    cudnn_version = get_cudnn_version()

628 629
    use_cudnn = True if (is_compiled_with_cuda()
                         and cudnn_version is not None) else False
630

631 632
    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
633 634
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
635 636

    l_type = "conv2d"
637 638
    if (num_channels == groups and num_channels != 1
            and num_filters % num_channels == 0):
639
        l_type = 'depthwise_conv2d'
Z
zhiboniu 已提交
640
        if is_compiled_with_rocm():
641 642 643
            use_cudnn = True
        else:
            use_cudnn = False
H
hong 已提交
644 645
    else:
        if in_dygraph_mode():
646 647 648
            pre_bias = _C_ops.conv2d(x, weight, stride, padding,
                                     padding_algorithm, groups, dilation,
                                     data_format, False, -1, False)
H
hong 已提交
649 650 651 652 653 654 655
            if bias is not None:
                out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
                return out
            else:
                return pre_bias

    use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
656

657
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
658
    if is_compiled_with_npu():
659 660 661 662 663
        if (num_channels == groups and num_channels == num_filters):
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

664 665
    if (is_compiled_with_cuda() and get_flags("FLAGS_conv2d_disable_cudnn")
        ["FLAGS_conv2d_disable_cudnn"]):
666
        use_cudnn = False
667

L
LielinJiang 已提交
668 669 670
    return _conv_nd(x, weight, bias, stride, padding, padding_algorithm,
                    dilation, groups, data_format, channel_dim, l_type,
                    use_cudnn, use_mkldnn, name)
671 672


673
def conv1d_transpose(x,
674 675 676 677 678 679 680 681 682 683
                     weight,
                     bias=None,
                     stride=1,
                     padding=0,
                     output_padding=0,
                     groups=1,
                     dilation=1,
                     output_size=None,
                     data_format="NCL",
                     name=None):
684
    r"""
685 686 687 688 689 690 691 692 693 694 695 696 697 698
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
699
        Out = \sigma (W \ast X + b)
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' or 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 + output_padding \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
735
          and :math:`L^\prime_{out} + stride`.
736 737 738 739 740 741 742 743 744

    Args:
        x(Tensor): 3-D tensor with [N, C, L] or [N, L, C] format,
                         its data type is float32 or float64.
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, K],
            where M is the number of output channels(filters), g is the number of groups,
            K is the size of the kernel.
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
745
            If stride is a list/tuple, it must contain one integer, `(stride_size)`.
746 747 748 749 750 751 752
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
753
             If it is a list/tuple, it must contain one integer. Default: 0.
754 755 756 757 758 759 760
        groups(int, optional): The groups number of the conv1d transpose function. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
761
            If dilation is a list/tuple, it must contain one integer, `(dilation_size)`.
762 763
            Default: dilation = 1.
        output_size(int|tuple|list, optional): The output image size. If output size is a
764
            tuple/list, it must contain one integer, `(feature_length)`. None if use
765
            filter_size(shape of weight), padding, and stride to calculate output_size.
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, input_length]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
        A  tensor representing the result of 1-D transpose convolution, whose
        data type is the same with input. And its shape is (num_batches, channels, length)
        when data_format is `"NCL"` and (num_batches, length, channels) when data_format is
        `"NLC"`.

    Raises:
        ValueError: If `data_format` is a string, but not "NCL" or "NLC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
783
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
            or the element corresponding to the input's channel is not 0.
        ValueError: If `output_size` and filter_size are None at the same time.
        ValueError: If `output_padding` is greater than `stride`.
        ShapeError: If the input is not 3-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 1.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
        .. code-block:: python



          import paddle
          import paddle.nn.functional as F
          import numpy as np
          
          # shape: (1, 2, 4)
          x=np.array([[[4, 0, 9, 7],
                       [8, 0, 9, 2,]]]).astype(np.float32)
          # shape: (2, 1, 2)
W
whs 已提交
806
          w=np.array([[[7, 0]],
807 808 809
                      [[4, 2]]]).astype(np.float32)
          x_var = paddle.to_tensor(x)
          w_var = paddle.to_tensor(w)
810
          y_var = F.conv1d_transpose(x_var, w_var)
W
whs 已提交
811
          print(y_var)
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
          
          # [[[60. 16. 99. 75.  4.]]]
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ['NCL', 'NLC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCL' or 'NLC' are supported.".format(
                data_format))
    channel_last = (data_format == "NLC")
    channel_dim = -1 if channel_last else 1
828 829 830 831
    if len(x.shape) != 3:
        raise ValueError(
            "Input x should be 3D tensor, but received x with the shape of {}".
            format(x.shape))
832 833 834

    num_channels = x.shape[channel_dim]
    if num_channels < 0:
835
        raise ValueError("The channel dimension of the input({}) "
836 837
                         "should be defined. Received: {}.".format(
                             x.shape, num_channels))
838 839
    if groups <= 0:
        raise ValueError(
840 841
            "The groups of conv1d_transpose should be greater than 0. Received groups: {}"
            .format(groups))
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
            ", the groups is {}".format(num_channels, x.shape, groups))

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)

    if len(padding) == 2:
        padding = padding + [0] * 2
    elif len(padding) == 1:
        padding = padding + [0]
    else:
        raise ValueError(
857
            "The size of padding's dimension should 1 or 2. But got padding={}".
858 859
            format(padding))

860 861
    stride = convert_to_list(stride, 1, 'stride') + [1]
    dilation = convert_to_list(dilation, 1, 'dilation') + [1]
862 863 864 865

    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
866 867 868 869
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
870
            output_size = convert_to_list(output_size, 1, 'output_size') + [1]
L
LielinJiang 已提交
871 872 873 874 875 876 877
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
878 879
        output_padding = convert_to_list(output_padding, 1,
                                         'output_padding') + [0]
L
LielinJiang 已提交
880 881 882 883

    if len(output_padding) > 0 and output_padding[0] > stride[0]:
        raise ValueError(
            "The size of output_padding should not be greater than stride."
884 885
            "But got output_padding={} and stride={}".format(
                output_padding[0], stride[0]))
886 887 888

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
889 890
    if (num_channels == groups and num_channels != 1 and num_filters == 1
            and not use_cudnn):
891 892 893 894 895 896
        op_type = 'depthwise_conv2d_transpose'
        use_cudnn = False

    squeeze_axis = -2 if channel_last else -1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"

897 898
    x = unsqueeze(x, axis=[squeeze_axis])
    weight = unsqueeze(weight, axis=[-1])
899

900 901 902 903 904 905 906 907
    if in_dygraph_mode():
        out = getattr(_C_ops,
                      op_type)(x, weight, stride, padding, output_padding,
                               output_size, padding_algorithm, groups, dilation,
                               conv2d_data_format)
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    elif _in_legacy_dygraph():
L
LielinJiang 已提交
908 909 910 911
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'strides', stride, 'paddings', padding, 'padding_algorithm',
                 padding_algorithm, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, 'data_format', conv2d_data_format)
912
        out = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
913 914 915 916 917
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
L
LielinJiang 已提交
918
            'output_padding': output_padding,
919 920 921 922 923 924 925 926 927 928 929 930
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': conv2d_data_format
        }
        check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                                 'conv2d_transpose')
        helper = LayerHelper(op_type, **locals())
931
        dtype = helper.input_dtype(input_param_name='x')
932 933
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
934 935 936 937
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
938 939 940
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)

941
    out = squeeze(out, axis=[squeeze_axis])
942 943 944
    return out


945
def conv2d_transpose(x,
946 947 948
                     weight,
                     bias=None,
                     stride=1,
L
LielinJiang 已提交
949 950 951
                     padding=0,
                     output_padding=0,
                     dilation=1,
952
                     groups=1,
L
LielinJiang 已提交
953
                     output_size=None,
954
                     data_format='NCHW',
955
                     name=None):
956
    r"""
S
swtkiwi 已提交
957

958 959 960 961 962 963 964 965 966 967 968
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
969
    See more detail in :ref:`api_nn_conv_ConvTranspose2d` .
970 971 972

    For each input :math:`X`, the equation is:

973
    ..  math::
974

975
        Out = \sigma (W \ast X + b)
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999

    Where:

    * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

1000
        ..  math::
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]

    Note:
          The conv2d_transpose can be seen as the backward of the conv2d. For conv2d, 
          when stride > 1, conv2d maps multiple input shape to the same output shape, 
          so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; 
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must 
1014
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`.
1015 1016

    Args:
L
LielinJiang 已提交
1017
        x(Tensor): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
1018
            whose data type is float32 or float64.
L
LielinJiang 已提交
1019
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, kH, kW],
1020 1021
            where M is the number of output channels(filters), g is the number of groups,
            kH is the height of the kernel, and kW is the width of the kernel.
L
LielinJiang 已提交
1022 1023
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
1024
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width). 
L
LielinJiang 已提交
1025
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
1026 1027 1028 1029 1030
        padding(str|int|list|tuple, optional): The padding size. It means the number of zero-paddings 
            on both sides for each dimension. If `padding` is a string, either 'VALID' or 
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or 
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1031
            and when `data_format` is `"NCHW"`, `padding` can be in the form 
1032
            `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1033
            when `data_format` is `"NHWC"`, `padding` can be in the form 
1034 1035
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1036 1037
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1038
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
1039 1040 1041 1042 1043
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
1044
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points. 
1045
            If dilation is a list/tuple, it must contain two integers, (dilation_height, dilation_width). 
1046
            Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
L
LielinJiang 已提交
1047
        output_size(int|tuple|list, optional): The output image size. If output size is a
1048
            tuple/list, it must contain two integers, (image_height, image_width). None if use
1049
            filter_size(shape of weight), padding, and stride to calculate output_size.
1050 1051 1052 1053 1054 1055 1056 1057 1058
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
1059
        A Tensor representing the conv2d_transpose, whose
1060
        data type is the same with input and shape is (num_batches, channels, out_h, 
L
LielinJiang 已提交
1061 1062
        out_w) or (num_batches, out_h, out_w, channels). The tensor variable storing 
        transposed convolution result.
1063 1064 1065 1066

    Raises:
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
1067
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
1068
            or the element corresponding to the input's channel is not 0.
L
LielinJiang 已提交
1069
        ValueError: If `output_size` and kernel_size are None at the same time.
1070 1071 1072 1073 1074 1075 1076 1077 1078
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
1079 1080
          import paddle
          import paddle.nn.functional as F
1081

1082 1083
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
1084

1085
          y_var = F.conv2d_transpose(x_var, w_var)
L
LielinJiang 已提交
1086
          y_np = y_var.numpy()
1087

1088
          print(y_np.shape)
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
          # (2, 6, 10, 10)
    """

    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCHW' or 'NHWC' are supported.".format(
                data_format))
    channel_last = (data_format == "NHWC")
    channel_dim = -1 if channel_last else 1
1099 1100 1101 1102
    if len(x.shape) != 4:
        raise ValueError(
            "Input x should be 4D tensor, but received x with the shape of {}".
            format(x.shape))
L
LielinJiang 已提交
1103
    num_channels = x.shape[channel_dim]
1104
    if num_channels < 0:
1105
        raise ValueError("The channel dimension of the input({}) "
1106
                         "should be defined. Received: {}.".format(
L
LielinJiang 已提交
1107
                             x.shape, num_channels))
1108 1109
    if groups <= 0:
        raise ValueError(
1110 1111
            "The groups of conv2d_transpose should be greater than 0. Received groups: {}"
            .format(groups))
1112 1113 1114 1115
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
L
LielinJiang 已提交
1116 1117 1118 1119
            ", the groups is {}".format(num_channels, x.shape, groups))

    cudnn_version = get_cudnn_version()

1120 1121
    use_cudnn = True if (is_compiled_with_cuda()
                         and cudnn_version is not None) else False
1122 1123 1124

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
1125 1126
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
L
LielinJiang 已提交
1127

1128 1129 1130
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1131 1132 1133 1134
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
1135
            output_size = convert_to_list(output_size, 2, 'output_size')
L
LielinJiang 已提交
1136 1137 1138 1139 1140 1141 1142
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
1143
        output_padding = convert_to_list(output_padding, 2, 'output_padding')
1144 1145 1146

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
L
LielinJiang 已提交
1147
    if (num_channels == groups and num_channels != 1 and num_filters == 1):
1148
        op_type = 'depthwise_conv2d_transpose'
L
LielinJiang 已提交
1149
        use_cudnn = False
1150

F
From00 已提交
1151
    if in_dygraph_mode():
1152 1153 1154
        op = _C_ops.conv2d_transpose if op_type == 'conv2d_transpose' else _C_ops.depthwise_conv2d_transpose
        pre_bias = op(x, weight, stride, padding, output_padding, output_size,
                      padding_algorithm, groups, dilation, data_format)
F
From00 已提交
1155 1156 1157 1158 1159 1160
        if bias is not None:
            return nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            return pre_bias

    if _in_legacy_dygraph():
L
LielinJiang 已提交
1161 1162 1163 1164
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'strides', stride, 'paddings', padding, 'padding_algorithm',
                 padding_algorithm, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, 'data_format', data_format)
1165
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
1166
        if bias is not None:
L
LielinJiang 已提交
1167
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1168
        else:
L
LielinJiang 已提交
1169
            out = pre_bias
1170
    else:
L
LielinJiang 已提交
1171
        inputs = {'Input': [x], 'Filter': [weight]}
1172
        attrs = {
L
LielinJiang 已提交
1173
            'output_padding': output_padding,
1174 1175 1176 1177 1178 1179 1180 1181 1182
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': data_format
        }
L
LielinJiang 已提交
1183
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
1184 1185
                                 'conv2d_transpose')
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1186
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1187
        outputs = {"Output": [pre_bias]}
1188 1189 1190 1191
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
L
LielinJiang 已提交
1192

1193
        if bias is not None:
L
LielinJiang 已提交
1194
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1195
        else:
L
LielinJiang 已提交
1196 1197
            out = pre_bias

1198 1199 1200
    return out


1201
def conv3d(x,
1202 1203 1204
           weight,
           bias=None,
           stride=1,
1205
           padding=0,
1206 1207 1208 1209
           dilation=1,
           groups=1,
           data_format="NCDHW",
           name=None):
1210
    r"""
S
swtkiwi 已提交
1211

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

1223
    ..  math::
1224

1225
        Out = \sigma (W \ast X + b)
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1249
        ..  math::
1250 1251 1252 1253 1254 1255

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
1256
        x (Tensor): The input is 5-D Tensor with shape [N, C, D, H, W], the data 
1257
            type of input is float16 or float32 or float64.
1258
        weight (Tensor): The convolution kernel, a Tensor with shape [M, C/g, kD, kH, kW],
1259 1260
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
1261
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
1262
        stride (int|list|tuple, optional): The stride size. It means the stride in convolution. If stride is a 
1263
            list/tuple, it must contain three integers, (stride_depth, stride_height, stride_width). 
1264
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
1265
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings 
1266 1267 1268 1269
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1270
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1271
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1272
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1273 1274
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
1275
        dilation (int|list|tuple, optional): The dilation size. It means the spacing between the kernel points. 
1276
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
1277 1278
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
1279
        groups (int, optional): The groups number of the Conv3D Layer. According to grouped
1280 1281 1282 1283 1284
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
1285 1286 1287 1288
            will be consistent with that of the input. An optional string from: `"NCDHW"`, `"NDHWC"`.
            The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str|None, optional): For detailed information, please refer 
1289 1290 1291 1292
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
1293
        A Tensor representing the conv3d, whose data type is 
1294 1295
        the same with input. If act is None, the tensor storing the 
        convolution result, and if act is not None, the tensor storing 
1296 1297 1298 1299 1300
        convolution and non-linearity activation result.

    Examples:
        .. code-block:: python

1301 1302
            import paddle
            import paddle.nn.functional as F
1303

1304 1305
            x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
            w_var = paddle.randn((6, 3, 3, 3, 3), dtype='float32')
1306

1307 1308
            y_var = F.conv3d(x_var, w_var)
            y_np = y_var.numpy()
1309

1310
            print(y_np.shape)
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
            # (2, 6, 6, 6, 6)
    """
    # entry check
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NDHWC")
    channel_dim = -1 if channel_last else 1
1321 1322 1323 1324
    if len(x.shape) != 5:
        raise ValueError(
            "Input x should be 5D tensor, but received x with the shape of {}".
            format(x.shape))
1325
    num_channels = x.shape[channel_dim]
1326 1327 1328
    num_filters = weight.shape[0]
    if num_channels < 0:
        raise ValueError(
1329
            "The channel dimension of the input({}) should be defined. "
1330
            "Received: {}.".format(x.shape, num_channels))
1331 1332
    if groups <= 0:
        raise ValueError(
1333 1334
            "The groups of conv3d should be greater than 0. Received groups: {}"
            .format(groups))
1335 1336 1337
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
1338 1339
            "Received: number of channels({}), groups({}).".format(
                num_channels, groups))
1340 1341 1342
    if num_filters % groups != 0:
        raise ValueError(
            "The number of filters must be divisible by Attr(groups). "
1343 1344
            "Received: number of filters({}), groups({}).".format(
                num_filters, groups))
1345

1346
    cudnn_version = get_cudnn_version()
1347 1348
    use_cudnn = True if (is_compiled_with_cuda()
                         and cudnn_version is not None) else False
1349

1350
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1351 1352
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1353 1354
    op_type = "conv3d"

L
LielinJiang 已提交
1355 1356 1357
    return _conv_nd(x, weight, bias, stride, padding, padding_algorithm,
                    dilation, groups, data_format, channel_dim, op_type,
                    use_cudnn, False, name)
1358 1359


1360
def conv3d_transpose(x,
1361 1362 1363
                     weight,
                     bias=None,
                     stride=1,
L
LielinJiang 已提交
1364 1365
                     padding=0,
                     output_padding=0,
1366
                     groups=1,
L
LielinJiang 已提交
1367 1368
                     dilation=1,
                     output_size=None,
1369
                     data_format='NCDHW',
1370
                     name=None):
1371
    r"""
L
LielinJiang 已提交
1372
    The convolution3d transpose layer calculates the output based on the input,
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
1383
    See more detail in :ref:`api_nn_conv_ConvTranspose3d` .
1384 1385 1386

    For each input :math:`X`, the equation is:

1387
    ..  math::
1388

1389
        Out = \sigma (W \ast X + b)
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413

    In the above equation:

    * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a Tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1414
        ..  math::
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]

    Note:
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
1432
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`.
1433 1434

    Args:
L
LielinJiang 已提交
1435
        x(Tensor): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type 
1436
            of input is float32 or float64.
L
LielinJiang 已提交
1437
        weight (Tensor): The convolution kernel, a Tensor with shape [C, M/g, kD, kH, kW],
1438 1439
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
L
LielinJiang 已提交
1440 1441
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
1442
            If stride is a list/tuple, it must contain three integers, (stride_depth, stride_height, 
L
LielinJiang 已提交
1443 1444
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            Default: stride = 1.
1445 1446 1447 1448
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings 
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
1449
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1450
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1451
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1452
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1453 1454
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1455 1456
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1457
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1458 1459 1460 1461 1462
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
1463
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points. 
1464
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height, 
1465 1466
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
L
LielinJiang 已提交
1467
        output_size(int|list|tuple, optional): The output image size. If output size is a
1468
            list/tuple, it must contain three integers, (image_depth, image_height, image_width).
1469
            None if use filter_size(shape of weight), padding, and stride to calculate output_size.
1470 1471 1472 1473
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
1474 1475 1476 1477 1478
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
1479
        A Tensor representing the conv3d_transpose, whose data
1480 1481 1482 1483 1484 1485 1486 1487
        type is the same with input and shape is (num_batches, channels, out_d, out_h, 
        out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor 
        variable storing the transposed convolution result, and if act is not None, the tensor 
        variable storing transposed convolution and non-linearity activation result.

    Raises:
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
1488
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
1489
            or the element corresponding to the input's channel is not 0.
L
LielinJiang 已提交
1490
        ValueError: If `output_size` and kernel_size are None at the same time.
1491 1492 1493 1494 1495 1496 1497 1498
        ShapeError: If the input is not 5-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
       .. code-block:: python
L
LielinJiang 已提交
1499 1500
          
          import paddle
1501 1502
          import paddle.nn.functional as F

1503 1504
          x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3, 3), dtype='float32')
1505

1506
          y_var = F.conv3d_transpose(x_var, w_var)
L
LielinJiang 已提交
1507
          y_np = y_var.numpy()
1508

1509
          print(y_np.shape)
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
          # (2, 6, 10, 10, 10)
    """
    # entry checks
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NDHWC")
    channel_dim = -1 if channel_last else 1
1520 1521 1522 1523
    if len(x.shape) != 5:
        raise ValueError(
            "Input x should be 5D tensor, but received x with the shape of {}".
            format(x.shape))
L
LielinJiang 已提交
1524
    num_channels = x.shape[channel_dim]
1525 1526 1527
    num_filters = weight.shape[1]
    if num_channels < 0:
        raise ValueError(
1528
            "The channel dimension of the input({}) should be defined. "
L
LielinJiang 已提交
1529
            "Received: {}.".format(x.shape, num_channels))
1530 1531
    if groups <= 0:
        raise ValueError(
1532 1533
            "The groups of conv3d_transpose should be greater than 0. Received groups: {}"
            .format(groups))
1534 1535 1536
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
1537 1538
            "Received: number of channels({}), groups({}).".format(
                num_channels, groups))
1539 1540

    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1541 1542
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1543 1544 1545
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1546 1547 1548 1549
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
1550
            output_size = convert_to_list(output_size, 3, 'output_size')
L
LielinJiang 已提交
1551 1552 1553 1554 1555 1556 1557
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
1558
        output_padding = convert_to_list(output_padding, 3, 'output_padding')
L
LielinJiang 已提交
1559 1560 1561 1562

    cudnn_version = get_cudnn_version()

    #TODO(LielinJiang): whether to use cudnn according to the version of cudnn
1563 1564
    use_cudnn = True if (is_compiled_with_cuda()
                         and cudnn_version is not None) else False
1565 1566 1567 1568

    op_type = 'conv3d_transpose'
    data_format_ = "NHWC" if channel_last else "NCHW"

F
From00 已提交
1569
    if in_dygraph_mode():
1570 1571 1572 1573
        pre_bias = _C_ops.conv3d_transpose(x, weight, stride, padding,
                                           output_padding, output_size,
                                           padding_algorithm, groups, dilation,
                                           data_format_)
F
From00 已提交
1574 1575 1576 1577 1578 1579
        if bias is not None:
            return nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            return pre_bias

    if _in_legacy_dygraph():
L
LielinJiang 已提交
1580 1581 1582 1583
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'paddings', padding, "padding_algorithm", padding_algorithm,
                 'strides', stride, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, "data_format", data_format_)
1584
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
1585
        if bias is not None:
L
LielinJiang 已提交
1586
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1587
        else:
L
LielinJiang 已提交
1588
            out = pre_bias
1589
    else:
L
LielinJiang 已提交
1590
        inputs = {'Input': [x], 'Filter': [weight]}
1591
        attrs = {
L
LielinJiang 已提交
1592
            'output_padding': output_padding,
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
            'output_size': output_size,
            'paddings': padding,
            "padding_algorithm": padding_algorithm,
            'strides': stride,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            "data_format": data_format_
        }
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1603 1604
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'conv3d')
1605

L
LielinJiang 已提交
1606
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1607 1608
        outputs = {"Output": [pre_bias]}

1609 1610 1611 1612
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
1613
        if bias is not None:
L
LielinJiang 已提交
1614
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1615
        else:
L
LielinJiang 已提交
1616
            out = pre_bias
1617 1618

    return out