nn.py 68.3 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from six.moves import reduce

from .. import core
from ..layers import utils
from . import layers
L
lujun 已提交
22
from ..framework import Variable
M
minqiyang 已提交
23
from ..param_attr import ParamAttr
24
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
25
import numpy as np
26

27
__all__ = [
L
lujun 已提交
28 29 30 31
    'Conv2D', 'Conv3D', 'Pool2D', 'FC', 'BatchNorm', 'Embedding', 'GRUUnit',
    'LayerNorm', 'NCE', 'PRelu', 'BilinearTensorProduct', 'Conv2DTranspose',
    'Conv3DTranspose', 'SequenceConv', 'RowConv', 'GroupNorm', 'SpectralNorm',
    'TreeConv'
32
]
M
minqiyang 已提交
33 34


X
Xin Pan 已提交
35
class Conv2D(layers.Layer):
M
minqiyang 已提交
36
    def __init__(self,
X
Xin Pan 已提交
37
                 name_scope,
M
minqiyang 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 use_cudnn=True,
                 act=None,
                 param_attr=None,
                 bias_attr=None,
                 dtype=core.VarDesc.VarType.FP32):
        assert param_attr is not False, "param_attr should not be False here."
51
        super(Conv2D, self).__init__(name_scope)
M
minqiyang 已提交
52 53 54 55
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
56
        self._act = act
M
minqiyang 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
        self._num_channels = num_channels
        if (self._num_channels == self._groups and
                num_filters % self._num_channels == 0 and not self._use_cudnn):
            self._l_type = 'depthwise_conv2d'
        else:
            self._l_type = 'conv2d'

        if groups is None:
            num_filter_channels = num_channels
        else:
            if num_channels % groups != 0:
                raise ValueError("num_channels must be divisible by groups.")
            num_filter_channels = num_channels // groups
        filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
        filter_shape = [num_filters, int(num_filter_channels)] + filter_size

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * num_channels
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

81 82
        self._filter_param = self.create_parameter(
            attr=param_attr,
M
minqiyang 已提交
83 84 85 86 87
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

        if self._use_cudnn:
88
            self.create_variable(
M
minqiyang 已提交
89 90 91
                name="kCUDNNFwdAlgoCache",
                persistable=True,
                type=core.VarDesc.VarType.RAW)
92
            self.create_variable(
M
minqiyang 已提交
93 94 95
                name="kCUDNNBwdDataAlgoCache",
                persistable=True,
                type=core.VarDesc.VarType.RAW)
96
            self.create_variable(
M
minqiyang 已提交
97 98 99 100
                name="kCUDNNBwdFilterAlgoCache",
                persistable=True,
                type=core.VarDesc.VarType.RAW)

101 102
        self._bias_param = self.create_parameter(
            attr=bias_attr,
M
minqiyang 已提交
103
            shape=[num_filters],
M
minqiyang 已提交
104 105
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
106 107

    def forward(self, input):
M
minqiyang 已提交
108 109 110
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

M
minqiyang 已提交
111 112 113 114 115 116
        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
                'Filter': self._filter_param,
            },
M
minqiyang 已提交
117
            outputs={"Output": pre_bias},
M
minqiyang 已提交
118 119 120 121
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
122
                'groups': self._groups if self._groups else 1,
M
minqiyang 已提交
123 124 125 126
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False,
            })

M
minqiyang 已提交
127 128
        pre_act = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
M
minqiyang 已提交
129

M
minqiyang 已提交
130 131 132 133 134 135 136
        self._helper.append_op(
            type='elementwise_add',
            inputs={'X': [pre_bias],
                    'Y': [self._bias_param]},
            outputs={'Out': [pre_act]},
            attrs={'axis': 1})

M
minqiyang 已提交
137
        # Currently, we don't support inplace in imperative mode
138
        return self._helper.append_activation(pre_act, act=self._act)
M
minqiyang 已提交
139 140


L
lujun 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
class Conv3D(layers.Layer):
    def __init__(self,
                 name_scope,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
                 act=None,
                 dtype=core.VarDesc.VarType.FP32):
        assert param_attr is not False, "param_attr should not be False here."
        super(Conv3D, self).__init__(name_scope)
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._dilation = utils.convert_to_list(dilation, 4, 'dilation')
        self._act = act
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
        self._l_type = 'conv3d'
        self._dtype = dtype

        if groups is None:
            num_filter_channels = num_channels
        else:
            if num_channels % groups != 0:
                raise ValueError("num_channels must be divisible by groups.")
            num_filter_channels = num_channels // groups

        filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')

        filter_shape = [num_filters, num_filter_channels] + filter_size

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
                2] * num_channels
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

        self._filter_param = self.create_parameter(
            attr=param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

        self._bias_param = self.create_parameter(
            attr=bias_attr,
            shape=[num_filters],
            dtype=self._dtype,
            is_bias=True)

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
                'Filter': self._filter_param,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False
            })

        pre_act = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
            type='elementwise_add',
            inputs={'X': [pre_bias],
                    'Y': [self._bias_param]},
            outputs={'Out': [pre_act]},
            attrs={'axis': 1})

        return self._helper.append_activation(pre_act, act=self._act)


class Conv3DTranspose(layers.Layer):
    def __init__(self,
                 name_scope,
                 num_filters,
                 output_size=None,
                 filter_size=None,
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
                 act=None,
                 name=None):
        super(Conv3DTranspose, self).__init__(name_scope)
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
        self._param_attr = param_attr
        self._filter_size = filter_size
        self._output_size = output_size
        self._groups = 1 if groups is None else groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._bias_attr = bias_attr
        self._act = act

    def _build_once(self, input):
        self._dtype = self._helper.input_dtype(input)
        self._input_channel = input.shape[1]

        if self._filter_size is None:
            if self._output_size is None:
                raise ValueError(
                    "output_size must be set when filter_size is None")
            if isinstance(self._output_size, int):
                self._output_size = [self._output_size, self._output_size]

            d_in = input.shape[2]
            h_in = input.shape[3]
            w_in = input.shape[4]

            filter_size_d = (self._output_size[0] -
                             (d_in - 1) * self._stride[0] + 2 * self._padding[0]
                             - 1) // self._dilation[0] + 1
            filter_size_h = (self._output_size[1] -
                             (h_in - 1) * self._stride[1] + 2 * self._padding[1]
                             - 1) // self._dilation[1] + 1
            filter_size_w = (self._output_size[2] -
                             (w_in - 1) * self._stride[2] + 2 * self._padding[2]
                             - 1) // self._dilation[2] + 1
            self._filter_size = [filter_size_d, filter_size_h, filter_size_w]
        else:
            self._filter_size = utils.convert_to_list(
                self._filter_size, 3, 'conv3d_transpose.filter_size')

        filter_shape = [
            self._input_channel, self._num_filters // self._groups
        ] + self._filter_size
        self._img_filter = self.create_parameter(
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
        if self._bias_attr:
            self._bias_param = self.create_parameter(
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
        self._helper.append_op(
            type="conv3d_transpose",
            inputs={'Input': [input],
                    'Filter': [self._img_filter]},
            outputs={'Output': pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn
            })

        if self._bias_attr:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._bias_param]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        # Currently, we don't support inplace in imperative mode
        return self._helper.append_activation(pre_act, act=self._act)


X
Xin Pan 已提交
335
class Pool2D(layers.Layer):
M
minqiyang 已提交
336
    def __init__(self,
X
Xin Pan 已提交
337
                 name_scope,
M
minqiyang 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
                 exclusive=True,
                 dtype=core.VarDesc.VarType.FP32):
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

X
Xin Pan 已提交
360
        super(Pool2D, self).__init__(name_scope, dtype=dtype)
M
minqiyang 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
        self._l_type = 'pool2d'

    def forward(self, input):
M
minqiyang 已提交
374 375
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

M
minqiyang 已提交
376 377 378
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
M
minqiyang 已提交
379
            outputs={"Out": pool_out},
M
minqiyang 已提交
380 381 382 383 384 385 386 387 388 389 390
            attrs={
                "pooling_type": self._pool_type,
                "ksize": self._pool_size,
                "global_pooling": self._global_pooling,
                "strides": self._pool_stride,
                "paddings": self._pool_padding,
                "use_cudnn": self._use_cudnn,
                "ceil_mode": self._ceil_mode,
                "use_mkldnn": False,
                "exclusive": self._exclusive,
            })
M
minqiyang 已提交
391
        return pool_out
M
minqiyang 已提交
392 393


X
Xin Pan 已提交
394
class FC(layers.Layer):
M
minqiyang 已提交
395
    def __init__(self,
X
Xin Pan 已提交
396
                 name_scope,
M
minqiyang 已提交
397
                 size,
M
minqiyang 已提交
398
                 param_attr=None,
M
minqiyang 已提交
399
                 bias_attr=None,
M
minqiyang 已提交
400
                 num_flatten_dims=1,
X
Xin Pan 已提交
401
                 dtype=core.VarDesc.VarType.FP32,
X
Xin Pan 已提交
402 403
                 act=None):
        super(FC, self).__init__(name_scope)
M
minqiyang 已提交
404

M
minqiyang 已提交
405
        self._size = size
M
minqiyang 已提交
406 407
        self._num_flatten_dims = num_flatten_dims
        self._dtype = dtype
408
        self._param_attr = param_attr
409
        self._bias_attr = bias_attr
410
        self._act = act
M
minqiyang 已提交
411 412 413 414 415

    def _build_once(self, input):
        input_shape = input.shape
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:], 1)
M
minqiyang 已提交
416
        ] + [self._size]
417 418
        self._w = self.create_parameter(
            attr=self._param_attr,
M
minqiyang 已提交
419 420 421
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)
422

423
        if self._bias_attr:
424
            size = list([self._size])
425
            self._b = self.create_parameter(
426
                attr=self._bias_attr,
427 428 429 430 431
                shape=size,
                dtype=self._dtype,
                is_bias=True)
        else:
            self._b = None
M
minqiyang 已提交
432 433

    def forward(self, input):
M
minqiyang 已提交
434
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
M
minqiyang 已提交
435 436 437 438
        self._helper.append_op(
            type="mul",
            inputs={"X": input,
                    "Y": self._w},
M
minqiyang 已提交
439
            outputs={"Out": tmp},
M
minqiyang 已提交
440 441 442 443 444
            attrs={
                "x_num_col_dims": self._num_flatten_dims,
                "y_num_col_dims": 1
            })

M
minqiyang 已提交
445
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
M
minqiyang 已提交
446 447
        self._helper.append_op(
            type="sum",
M
minqiyang 已提交
448
            inputs={"X": [tmp]},
M
minqiyang 已提交
449
            outputs={"Out": pre_bias},
M
minqiyang 已提交
450
            attrs={"use_mkldnn": False})
M
minqiyang 已提交
451

452 453 454 455 456 457 458 459 460 461 462
        if self._b:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._b]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': self._num_flatten_dims})
        else:
            pre_activation = pre_bias
M
minqiyang 已提交
463
        # Currently, we don't support inplace in imperative mode
464
        return self._helper.append_activation(pre_activation, act=self._act)
M
minqiyang 已提交
465 466 467 468


class BatchNorm(layers.Layer):
    def __init__(self,
X
Xin Pan 已提交
469
                 name_scope,
M
minqiyang 已提交
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
                 num_channels,
                 act=None,
                 is_test=False,
                 momentum=0.9,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 dtype=core.VarDesc.VarType.FP32,
                 data_layout='NCHW',
                 in_place=False,
                 moving_mean_name=None,
                 moving_variance_name=None,
                 do_model_average_for_mean_and_var=False,
                 fuse_with_relu=False,
                 use_global_stats=False):
X
Xin Pan 已提交
485
        super(BatchNorm, self).__init__(name_scope)
486 487 488
        self._param_attr = param_attr
        self._param_attr = bias_attr
        self._act = act
M
minqiyang 已提交
489 490 491 492 493 494 495 496 497 498 499

        assert bias_attr is not False, "bias_attr should not be False in batch_norm."

        if dtype == core.VarDesc.VarType.FP16:
            self._dtype = core.VarDesc.VarType.FP32
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
500 501
        self._scale = self.create_parameter(
            attr=self._param_attr,
M
minqiyang 已提交
502 503 504
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))
505
        if use_global_stats and self._param_attr.learning_rate == 0.:
M
minqiyang 已提交
506
            self._scale._stop_gradient = True
M
minqiyang 已提交
507

508 509
        self._bias = self.create_parameter(
            attr=self._param_attr,
M
minqiyang 已提交
510 511 512
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
513
        if use_global_stats and self._param_attr.learning_rate == 0.:
M
minqiyang 已提交
514
            self._bias._stop_gradient = True
M
minqiyang 已提交
515

516
        self._mean = self.create_parameter(
M
minqiyang 已提交
517 518 519 520 521 522 523
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
M
minqiyang 已提交
524
        self._mean._stop_gradient = True
M
minqiyang 已提交
525

526
        self._variance = self.create_parameter(
M
minqiyang 已提交
527 528 529 530 531 532 533
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
M
minqiyang 已提交
534
        self._variance._stop_gradient = True
M
minqiyang 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553

        self._in_place = in_place
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
        self._fuse_with_relu = fuse_with_relu
        self._use_global_stats = use_global_stats

    def _build_once(self, input):
        pass

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance

        saved_mean = self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
554
            dtype=self._dtype, stop_gradient=True)
M
minqiyang 已提交
555
        saved_variance = self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
556
            dtype=self._dtype, stop_gradient=True)
M
minqiyang 已提交
557
        batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
558
            self._dtype)
M
minqiyang 已提交
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584

        self._helper.append_op(
            type="batch_norm",
            inputs={
                "X": input,
                "Scale": self._scale,
                "Bias": self._bias,
                "Mean": self._mean,
                "Variance": self._variance
            },
            outputs={
                "Y": batch_norm_out,
                "MeanOut": mean_out,
                "VarianceOut": variance_out,
                "SavedMean": saved_mean,
                "SavedVariance": saved_variance
            },
            attrs={
                "momentum": self._momentum,
                "epsilon": self._epsilon,
                "is_test": self._is_test,
                "use_mkldnn": False,
                "fuse_with_relu": self._fuse_with_relu,
                "use_global_stats": self._use_global_stats
            })

M
minqiyang 已提交
585
        # Currently, we don't support inplace in imperative mode
586
        return self._helper.append_activation(batch_norm_out, self._act)
587 588


589 590 591 592 593 594 595 596 597 598 599 600
class Embedding(layers.Layer):
    """
    **Embedding Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    All the input variables are passed in as local variables to the LayerHelper
    constructor.

    Args:
X
Xin Pan 已提交
601
        name_scope: See base class.
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
        is_distributed(bool): Whether to run lookup table from remote parameter server.
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
            with zeros whenever lookup encounters it in :attr:`input`. If
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc

    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          dict_size = len(dataset.ids)
          input = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
          embedding = fluid.imperative.Embedding(size=[dict_size, 16])
          fc = embedding(input)
    """

628
    def __init__(self,
X
Xin Pan 已提交
629
                 name_scope,
630 631 632 633 634 635 636
                 size,
                 is_sparse=False,
                 is_distributed=False,
                 padding_idx=None,
                 param_attr=None,
                 dtype='float32'):

X
Xin Pan 已提交
637
        super(Embedding, self).__init__(name_scope)
638 639 640 641
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed
        self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
J
JiabinYang 已提交
642
            size[0] + padding_idx)
643 644 645

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
646
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
647 648 649
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

650
        self._w = self.create_parameter(
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='lookup_table',
            inputs={'Ids': input,
                    'W': self._w},
            outputs={'Out': out},
            attrs={
                'is_sparse': self._is_sparse,
                'is_distributed': self._is_distributed,
                'remote_prefetch': self._remote_prefetch,
                'padding_idx': self._padding_idx
            })

        return out
M
minqiyang 已提交
671 672


673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
class LayerNorm(layers.Layer):
    def __init__(self,
                 name_scope,
                 scale=True,
                 shift=True,
                 begin_norm_axis=1,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 act=None):
        """
        ${comment}

        The formula is as follows:

        ..  math::

            \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

            \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

            h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

        * :math:`a`: the vector representation of the summed inputs to the neurons
        in that layer.

        * :math:`H`: the number of hidden units in a layers

        * :math:`g`: the trainable scale parameter.

        * :math:`b`: the trainable bias parameter.

        Args:
            input(Variable): The input tensor variable.
            scale(bool): Whether to learn the adaptive gain :math:`g` after
                normalization. Default True.
            shift(bool): Whether to learn the adaptive bias :math:`b` after
                normalization. Default True.
            begin_norm_axis(int): The normalization will be performed along
                dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
                Default 1.
            epsilon(float): The small value added to the variance to prevent
                division by zero. Default 1e-05.
            param_attr(ParamAttr|None): The parameter attribute for the learnable
                gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
                omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
                a default :code:`ParamAttr` would be added as scale. The
                :attr:`param_attr` is initialized as 1 if it is added. Default None.
            bias_attr(ParamAttr|None): The parameter attribute for the learnable
                bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
                omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
                a default :code:`ParamAttr` would be added as bias. The
                :attr:`bias_attr` is initialized as 0 if it is added. Default None.
            act(str): Activation to be applied to the output of layer normalizaiton.
                      Default None.
        Returns:
            ${y_comment}

        Examples:

            >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
            >>>                          dtype='float32')
            >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
        """

        super(LayerNorm, self).__init__(name_scope)
        self._scale = scale
        self._shift = shift
        self._begin_norm_axis = begin_norm_axis
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act

    def _build_once(self, input):
        self._dtype = self._helper.input_dtype(input)
        input_shape = input.shape
        param_shape = [
            reduce(lambda x, y: x * y, input_shape[self._begin_norm_axis:])
        ]
        if self._scale:
            self._scale_w = self.create_parameter(
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))
        if self._shift:
            assert self._bias_attr is not False
            self._bias_w = self.create_parameter(
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True)

    def forward(self, input):
        inputs = dict()
        inputs['X'] = input
        if self._scale:
            inputs['Scale'] = self._scale_w
        if self._shift:
            inputs['Bias'] = self._bias_w
        # create output
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        layer_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        self._helper.append_op(
            type="layer_norm",
            inputs=inputs,
            outputs={
                "Y": layer_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={
                "epsilon": self._epsilon,
                "begin_norm_axis": self._begin_norm_axis
            })

        return self._helper.append_activation(layer_norm_out)


M
minqiyang 已提交
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
class GRUUnit(layers.Layer):
    """
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)


    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.

    Args:
        input (Variable): The fc transformed input value of current step.
M
minqiyang 已提交
843
        name_scope (str): See base class.
M
minqiyang 已提交
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
        hidden (Variable): The hidden value of gru unit from previous step.
        size (integer): The input dimension value.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'

    Returns:
        tuple: The hidden value, reset-hidden value and gate values.
    """

    def __init__(self,
M
minqiyang 已提交
877
                 name_scope,
M
minqiyang 已提交
878 879 880 881 882 883 884
                 size,
                 param_attr=None,
                 bias_attr=None,
                 activation='tanh',
                 gate_activation='sigmoid',
                 origin_mode=False,
                 dtype='float32'):
M
minqiyang 已提交
885
        super(GRUUnit, self).__init__(name_scope)
M
minqiyang 已提交
886 887 888 889 890 891 892 893 894

        activation_dict = dict(
            identity=0,
            sigmoid=1,
            tanh=2,
            relu=3, )
        activation = activation_dict[activation]
        gate_activation = activation_dict[gate_activation]

M
minqiyang 已提交
895
        self._dtype = dtype
M
minqiyang 已提交
896 897
        size = size // 3
        # create weight
M
minqiyang 已提交
898 899
        self._weight = self.create_parameter(
            attr=param_attr, shape=[size, 3 * size], dtype=dtype)
M
minqiyang 已提交
900 901

        # create bias
M
minqiyang 已提交
902 903 904
        bias_size = [1, 3 * size]
        self._bias = self.create_parameter(
            attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
M
minqiyang 已提交
905

M
minqiyang 已提交
906 907 908 909 910 911 912 913 914 915
    def forward(self, input, hidden):
        inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': self._weight}
        if self._bias:
            inputs['Bias'] = self._bias

        gate = self._helper.create_variable_for_type_inference(self._dtype)
        reset_hidden_pre = self._helper.create_variable_for_type_inference(
            self._dtype)
        updated_hidden = self._helper.create_variable_for_type_inference(
            self._dtype)
M
minqiyang 已提交
916 917 918 919 920 921 922 923 924 925 926 927 928 929
        self._helper.append_op(
            type='gru_unit',
            inputs=inputs,
            outputs={
                'Gate': gate,
                'ResetHiddenPrev': reset_hidden_pre,
                'Hidden': updated_hidden,
            },
            attrs={
                'activation': 2,  # tanh
                'gate_activation': 1,  # sigmoid
            })

        return updated_hidden, reset_hidden_pre, gate
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594


class NCE(layers.Layer):
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
            sample is 1.0.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        num_neg_samples (int): ${num_neg_samples_comment}
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
        custom_dist (float[]): A float[] with size=num_total_classes.
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.

    Returns:
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)

    """

    def __init__(self,
                 name_scope,
                 num_total_classes,
                 param_attr=None,
                 bias_attr=None,
                 num_neg_samples=None,
                 sampler="uniform",
                 custom_dist=None,
                 seed=0,
                 is_sparse=False):
        super(NCE, self).__init__(name_scope)
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._num_total_classes = num_total_classes

        self._inputs = dict()

        if sampler == "uniform":
            sampler = 0
        elif sampler == "log_uniform":
            sampler = 1
        elif sampler == "custom_dist":
            assert custom_dist is not None
            # assert isinstance(custom_dist, Variable)

            custom_dist_len = len(custom_dist)
            alias_probs_ = [0] * custom_dist_len
            alias_ = [0] * custom_dist_len
            bigs = []
            littles = []
            for i in range(custom_dist_len):
                normal_prob = custom_dist[i] * custom_dist_len
                if normal_prob - 1.0 > 0:
                    bigs.append((i, normal_prob))
                elif 1.0 - normal_prob > 0:
                    littles.append((i, normal_prob))
                else:
                    alias_probs_[i] = normal_prob
                    alias_[i] = -1

            while len(bigs) and len(littles):
                big = bigs.pop(0)
                little = littles.pop(0)

                big_idx = big[0]
                big_prob = big[1]

                alias_probs_[little[0]] = little[1]
                alias_[little[0]] = big_idx
                big_left = big[1] + little[1] - 1
                if big_left - 1.0 > 0:
                    bigs.append((big_idx, big_left))
                elif 1.0 - big_left > 0:
                    littles.append((big_idx, big_left))
                else:
                    alias_probs_[big_idx] = big_left
                    alias_[big_idx] = -1

            if len(bigs):
                big = bigs.pop(0)
                alias_probs_[big[0]] = 1.0
                alias_[big[0]] = -1
            if len(littles):
                little = littles.pop(0)
                alias_probs_[little[0]] = 1.0
                alias_[little[0]] = -1

            def _init_by_numpy_array(numpy_array):
                ret = self.create_parameter(
                    attr=ParamAttr(),
                    shape=numpy_array.shape,
                    dtype=numpy_array.dtype,
                    default_initializer=NumpyArrayInitializer(numpy_array))
                ret.stop_gradient = True
                return ret

            self._inputs['CustomDistProbs'] = _init_by_numpy_array(
                np.array(custom_dist).astype('float32'))
            self._inputs['CustomDistAlias'] = _init_by_numpy_array(
                np.array(alias_).astype('int32'))
            self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
                np.array(alias_probs_).astype('float32'))
            sampler = 2
        else:
            raise Exception("Unsupported sampler type.")

        if num_neg_samples is None:
            num_neg_samples = 10
        else:
            num_neg_samples = int(num_neg_samples)
        self._num_neg_samples = num_neg_samples
        remote_prefetch = is_sparse
        print(
            "With sparse mode, if your models has only small parameter prefetch may cause speed down"
        )
        self._attrs = {
            'num_total_classes': int(num_total_classes),
            'num_neg_samples': num_neg_samples,
            'seed': seed,
            'sampler': sampler,
            'is_sparse': is_sparse,
            'remote_prefetch': remote_prefetch
        }

    def _build_once(self, input, label, sample_weight=None):
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        dim = input.shape[1]
        num_true_class = label.shape[1]
        self._w = self.create_parameter(
            attr=self._param_attr,
            shape=[self._num_total_classes, dim],
            is_bias=False,
            dtype=input.dtype)
        if self._bias_attr:
            self._b = self.create_parameter(
                attr=self._bias_attr,
                shape=[self._num_total_classes, 1],
                is_bias=True,
                dtype=input.dtype)
            self._inputs['Bias'] = self._b
        self._inputs['Weight'] = self._w

    def forward(self, input, label, sample_weight=None):
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        self._inputs['Input'] = input
        self._inputs['Label'] = label
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []

        cost = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_logits = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_labels = self._helper.create_variable_for_type_inference(
            dtype=label.dtype)

        self._helper.append_op(
            type='nce',
            inputs=self._inputs,
            outputs={
                'Cost': cost,
                'SampleLogits': sample_logits,
                'SampleLabels': sample_labels
            },
            attrs=self._attrs)
        return cost / (self._num_neg_samples + 1)


class PRelu(layers.Layer):
    """
    Equation:

    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)

    Args:
        x (Variable): The input tensor.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
          weight (alpha).
        mode (string): The mode for weight sharing. It supports all, channel
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
        name(str|None): A name for this layer(optional). If set None, the layer
          will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """

    def __init__(self, name_scope, mode, param_attr=None):

        super(PRelu, self).__init__(name_scope)
        self._mode = mode
        self._param_attr = param_attr
        if self._mode not in ['all', 'channel', 'element']:
            raise ValueError('mode should be one of all, channel, element.')
        self._alpha_shape = [1]

    def _build_once(self, input):
        if self._mode == 'channel':
            self._alpha_shape = [1, input.shape[1], 1, 1]
        elif self._mode == 'element':
            self._alpha_shape = input.shape
        self._dtype = self._helper.input_dtype(input)
        self._alpha = self.create_parameter(
            attr=self._param_attr,
            shape=self._alpha_shape,
            dtype='float32',
            is_bias=False,
            default_initializer=Constant(1.0))

    def forward(self, input):

        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="prelu",
            inputs={"X": input,
                    'Alpha': self._alpha},
            attrs={"mode": self._mode},
            outputs={"Out": out})
        return out


class BilinearTensorProduct(layers.Layer):
    """
    **Add Bilinear Tensor Product Layer**

    This layer performs bilinear tensor product on two inputs.
    For example:

    .. math::
      out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
     - :math:`x`: the first input contains M elements, shape is [batch_size, M].
     - :math:`y`: the second input contains N elements, shape is [batch_size, N].
     - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
     - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
       x (Variable): 2-D input tensor with shape [batch_size, M]
       y (Variable): 2-D input tensor with shape [batch_size, N]
       size (int): The dimension of this layer.
       act (str, default None): Activation to be applied to the output of this layer.
       name (str, default None): The name of this layer.
       param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
           parameters/weights of this layer.
       bias_attr (ParamAttr, default None): The parameter attribute for the bias
           of this layer. If it is set to False, no bias will be added to the output units.
           If it is set to None, the bias is initialized zero. Default: None.

    Returns:
       Variable: A 2-D Tensor of shape [batch_size, size].

    Examples:
       .. code-block:: python

         tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
    """

    def __init__(self,
                 name_scope,
                 size,
                 name=None,
                 act=None,
                 param_attr=None,
                 bias_attr=None):
        super(BilinearTensorProduct, self).__init__(name_scope)
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
        self._size = size
        self._name = name
        self._inputs = dict()

    def _build_once(self, x, y):
        self._dtype = self._helper.input_dtype(x)

        param_shape = [self._size, x.shape[1], y.shape[1]]

        self._w = self.create_parameter(
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)

        if self._bias_attr:
            bias_size = [1, self._size]
            bias = self.create_parameter(
                attr=self._bias_attr,
                shape=bias_size,
                dtype=self._dtype,
                is_bias=True)
            self._inputs["Bias"] = bias

    def forward(self, x, y):
        self._inputs = {"X": x, "Y": y, "Weight": self._w}
        if self._name is not None:
            out = self._helper.create_variable(
                name=".".join([self.full_name(), self._name]),
                dtype=self._dtype,
                persistable=False)
        else:
            out = self._helper.create_variable(
                dtype=self._dtype, persistable=False)
        self._helper.append_op(
            type="bilinear_tensor_product",
            inputs=self._inputs,
            outputs={"Out": out})

        # add activation
        return self._helper.append_activation(out)


class Conv2DTranspose(layers.Layer):
    """
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

    Args:
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: True.

    Returns:
        Variable: The tensor variable storing the convolution transpose result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
    """

    def __init__(self,
                 name_scope,
                 num_filters,
                 output_size=None,
                 filter_size=None,
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
                 act=None):
        super(Conv2DTranspose, self).__init__(name_scope)
        assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._groups = groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._filter_size = filter_size
        self._output_size = output_size
        self._op_type = 'conv2d_transpose'

    def _build_once(self, input):
        input_channel = input.shape[1]
        if (input_channel == self._groups and
                self._num_filters == input_channel and not self._use_cudnn):
            self._op_type = 'depthwise_conv2d_transpose'

        if not isinstance(input, Variable):
            raise TypeError("Input of conv2d_transpose must be Variable")

        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._stride = utils.convert_to_list(self._stride, 2, 'stride')
        self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation')

        if not isinstance(self._use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

        if self._filter_size is None:
            if self._output_size is None:
                raise ValueError(
                    "output_size must be set when filter_size is None")
            if isinstance(self._output_size, int):
                self._output_size = [self._output_size, self._output_size]

            h_in = input.shape[2]
            w_in = input.shape[3]

            filter_size_h = (self._output_size[0] -
                             (h_in - 1) * self._stride[0] + 2 * self._padding[0]
                             - 1) // self._dilation[0] + 1
            filter_size_w = (self._output_size[1] -
                             (w_in - 1) * self._stride[1] + 2 * self._padding[1]
                             - 1) // self._dilation[1] + 1
            self._filter_size = [filter_size_h, filter_size_w]
        else:
            self._filter_size = utils.convert_to_list(
                self._output_size, 2, 'conv2d_transpose.filter_size')

        if self._output_size is None:
            self._output_size = []
        elif isinstance(self._output_size, list) or isinstance(
                self._output_size, int):
            self._output_size = utils.convert_to_list(self._output_size, 2,
                                                      'output_size')
        else:
            raise ValueError("output_size should be list or int")
        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._groups = 1 if self._groups is None else self._groups
        filter_shape = [input_channel, self._num_filters // self._groups
                        ] + self._filter_size

        self._img_filter = self.create_parameter(
            dtype=input.dtype, shape=filter_shape, attr=self._param_attr)

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        self._helper.append_op(
            type=self._op_type,
            inputs={'Input': [input],
                    'Filter': [self._img_filter]},
            outputs={'Output': pre_bias},
            attrs={
                'output_size': self._output_size,
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups,
                'use_cudnn': self._use_cudnn
            })

        pre_act = self._helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
        out = self._helper.append_activation(pre_act)
        return out


class SequenceConv(layers.Layer):
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.

    Returns:
        Variable: output of sequence_conv
    """

    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size=3,
                 filter_stride=1,
                 padding=None,
                 bias_attr=None,
                 param_attr=None,
                 act=None):
        super(SequenceConv, self).__init__(name_scope)
        self._num_filters = num_filters
        self._filter_size = filter_size
        self._filter_stride = filter_stride
        self._padding = padding
        self._bias_attr = bias_attr
        self._param_attr = param_attr

    def _build_once(self, input):

        self._dtype = self._helper.input_dtype(input)
        print(self._filter_size)
        filter_shape = [self._filter_size * input.shape[1], self._num_filters]
        self._filter_param = self.create_parameter(
            attr=self.param_attr, shape=filter_shape, dtype=self._dtype)

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='sequence_conv',
            inputs={
                'X': [input],
                'Filter': [self._filter_param],
            },
            outputs={"Out": pre_bias},
            attrs={
                'contextStride': self._filter_stride,
                'contextStart': -int(self._filter_size // 2),
                'contextLength': self._filter_size
            })
        pre_act = self._helper.append_bias_op(pre_bias)
        return self._helper.append_activation(pre_act)
L
lujun 已提交
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825


class RowConv(layers.Layer):
    def __init__(self,
                 name_scope,
                 future_context_size,
                 param_attr=None,
                 act=None):
        super(RowConv, self).__init__(name_scope)
        self._act = act
        self._param_attr = param_attr
        self._future_context_size = future_context_size

    def _buils_once(self, input):
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._future_context_size + 1, input.shape[1]]
        self._f = self.create_parameter(
            attr=self._param_attr, shape=filter_shape, dtype=self._dtype)

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='row_conv',
            inputs={'X': [input],
                    'Filter': [self._f]},
            outputs={'Out': [out]})
        return self._helper.append_activation(out, act=self._act)


class GroupNorm(layers.Layer):
    """
        **Group Normalization Layer**

        Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

        Args:
            name_scope (str): See base class.
            groups(int): The number of groups that divided from channels.
            epsilon(float): The small value added to the variance to prevent
                division by zero.
            param_attr(ParamAttr|None): The parameter attribute for the learnable
                scale :math:`g`. If it is set to False, no scale will be added to the output units.
                If it is set to None, the bias is initialized one. Default: None.
            bias_attr(ParamAttr|None): The parameter attribute for the learnable
                bias :math:`b`. If it is set to False, no bias will be added to the output units.
                If it is set to None, the bias is initialized zero. Default: None.
            act(str): Activation to be applied to the output of group normalizaiton.
            data_layout(string|NCHW): Only NCHW is supported.
            dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc

        Returns:
            Variable: A tensor variable which is the result after applying group normalization on the input.


    """

    def __init__(self,
                 name_scope,
                 groups,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
                 data_layout='NCHW'):
        super(GroupNorm, self).__init__(name_scope)
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
        self._groups = groups
        self._act = act
        if data_layout != 'NCHW':
            raise ValueError("unsupported data layout:" + data_layout)

    def _buils_once(self, input):
        self._dtype = self._helper.input_dtype(input)
        param_shape = [input.shape[1]]
        if self._bias_attr:
            self._bias = self.create_parameter(
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True)

        if self._param_attr:
            self._scale = self.create_parameter(
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))

    def forward(self, input):
        inputs = {'X': input}
        if self._bias:
            inputs['Bias'] = self._bias
        if self._scale:
            inputs['Scale'] = self._scale

        # create output
        mean_out = self._helper.create_variable(
            dtype=self._dtype, stop_gradient=True)
        self.create_variable(
            name="mean_out", persistable=True, type=self._dtype)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        group_norm_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
            type="group_norm",
            inputs=inputs,
            outputs={
                "Y": group_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": self._epsilon,
                   "groups": self._groups})

        return self._helper.append_activation(group_norm_out, self._act)


class SpectralNorm(layers.Layer):
    def __init__(self, name_scope, dim=0, power_iters=1, eps=1e-12, name=None):
        super(SpectralNorm, self).__init__(name_scope)
        self._power_iters = power_iters
        self._eps = eps
        self._dim = dim

    def _build_once(self, weight):
        self._dtype = self._helper.input_dtype(weight)
        input_shape = weight.shape
        h = input_shape[self._dim]
        w = np.prod(input_shape) // h

        self.u = self.create_parameter(
            attr=ParamAttr(),
            shape=[h],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
        self.u.stop_gradient = True

        self.v = self.create_parameter(
            attr=ParamAttr(),
            shape=[w],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
        self.v.stop_gradient = True

    def forward(self, weight):
        inputs = {'Weight': weight, 'U': self.u, 'V': self.v}
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="spectral_norm",
            inputs=inputs,
            outputs={"Out": out, },
            attrs={
                "dim": self._dim,
                "power_iters": self._power_iters,
                "eps": self._eps,
            })

        return out


class TreeConv(layers.Layer):
    def __init__(self,
                 name_scope,
                 output_size,
                 num_filters=1,
                 max_depth=2,
                 act='tanh',
                 param_attr=None,
                 bias_attr=None,
                 name=None):
        super(TreeConv, self).__init__(name_scope)
        self._name = name
        self._output_size = output_size
        self._act = act
        self._max_depth = max_depth
        self._num_filters = num_filters
        self._bias_attr = bias_attr
        self._param_attr = param_attr

    def _build_once(self, nodes_vector, edge_set):
        assert isinstance(nodes_vector, Variable)
        assert isinstance(edge_set, Variable)
        self._dtype = self._helper.input_dtype(nodes_vector)

        feature_size = nodes_vector.shape[2]
        w_shape = [feature_size, 3, self._output_size, self._num_filters]
        if self._bias_attr:
            self._bias_param = self.create_parameter(
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)
        self.W = self.create_parameter(
            attr=self._param_attr,
            shape=w_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, nodes_vector, edge_set):
        if self._name:
            out = self.create_variable(
                name=self._name, dtype=self._dtype, persistable=False)
        else:
            out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)

        self._helper.append_op(
            type='tree_conv',
            inputs={
                'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': self.W
            },
            outputs={'Out': out, },
            attrs={'max_depth': self._max_depth})
        if self._bias_attr:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [out],
                        'Y': [self._bias_param]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': 1})
        else:
            pre_activation = out
        return self._helper.append_activation(pre_activation, act=self._act)