nn.py 14.1 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from six.moves import reduce

from .. import core
from ..layers import utils
from . import layers
from ..framework import Variable, OpProtoHolder
from ..param_attr import ParamAttr
from ..initializer import Normal, Constant

__all__ = [
    'Conv2D',
    'Pool2D',
    'FC',
M
minqiyang 已提交
30
    'BatchNorm',
M
minqiyang 已提交
31 32 33
]


X
Xin Pan 已提交
34
class Conv2D(layers.Layer):
M
minqiyang 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 use_cudnn=True,
                 act=None,
                 param_attr=None,
                 bias_attr=None,
                 name=None,
                 dtype=core.VarDesc.VarType.FP32):
        assert param_attr is not False, "param_attr should not be False here."
M
minqiyang 已提交
50 51 52 53 54 55 56 57 58
        super(Conv2D, self).__init__(name=name, dtype=dtype)

        from ..layer_helper import LayerHelper
        self._helper = LayerHelper(
            type(self).__name__,
            param_attr=param_attr,
            bias_attr=bias_attr,
            dtype=dtype,
            name=name)
M
minqiyang 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107

        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
        self._num_channels = num_channels
        if (self._num_channels == self._groups and
                num_filters % self._num_channels == 0 and not self._use_cudnn):
            self._l_type = 'depthwise_conv2d'
        else:
            self._l_type = 'conv2d'

        if groups is None:
            num_filter_channels = num_channels
        else:
            if num_channels % groups != 0:
                raise ValueError("num_channels must be divisible by groups.")
            num_filter_channels = num_channels // groups
        filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
        filter_shape = [num_filters, int(num_filter_channels)] + filter_size

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * num_channels
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

        self._filter_param = self._helper.create_parameter(
            attr=self._helper.param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

        if self._use_cudnn:
            self._helper.create_variable(
                name="kCUDNNFwdAlgoCache",
                persistable=True,
                type=core.VarDesc.VarType.RAW)
            self._helper.create_variable(
                name="kCUDNNBwdDataAlgoCache",
                persistable=True,
                type=core.VarDesc.VarType.RAW)
            self._helper.create_variable(
                name="kCUDNNBwdFilterAlgoCache",
                persistable=True,
                type=core.VarDesc.VarType.RAW)

M
minqiyang 已提交
108 109
        self._bias_param = self._helper.create_parameter(
            attr=self._helper.bias_attr,
M
minqiyang 已提交
110
            shape=[num_filters],
M
minqiyang 已提交
111 112
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
113 114

    def forward(self, input):
M
minqiyang 已提交
115 116 117
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

M
minqiyang 已提交
118 119 120 121 122 123
        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
                'Filter': self._filter_param,
            },
M
minqiyang 已提交
124
            outputs={"Output": pre_bias},
M
minqiyang 已提交
125 126 127 128 129 130 131 132 133
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False,
            })

M
minqiyang 已提交
134 135
        pre_act = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
M
minqiyang 已提交
136

M
minqiyang 已提交
137 138 139 140 141 142 143 144
        self._helper.append_op(
            type='elementwise_add',
            inputs={'X': [pre_bias],
                    'Y': [self._bias_param]},
            outputs={'Out': [pre_act]},
            attrs={'axis': 1})

        return self._helper.append_activation(pre_act)
M
minqiyang 已提交
145 146


X
Xin Pan 已提交
147
class Pool2D(layers.Layer):
M
minqiyang 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
    def __init__(self,
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
                 exclusive=True,
                 name=None,
                 dtype=core.VarDesc.VarType.FP32):
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

        super(Pool2D, self).__init__(name=name, dtype=dtype)

M
minqiyang 已提交
174 175 176
        from ..layer_helper import LayerHelper
        self._helper = LayerHelper(type(self).__name__, dtype=dtype, name=name)

M
minqiyang 已提交
177 178 179 180 181 182 183 184 185 186 187 188
        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
        self._l_type = 'pool2d'

    def forward(self, input):
M
minqiyang 已提交
189 190
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

M
minqiyang 已提交
191 192 193
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
M
minqiyang 已提交
194
            outputs={"Out": pool_out},
M
minqiyang 已提交
195 196 197 198 199 200 201 202 203 204 205
            attrs={
                "pooling_type": self._pool_type,
                "ksize": self._pool_size,
                "global_pooling": self._global_pooling,
                "strides": self._pool_stride,
                "paddings": self._pool_padding,
                "use_cudnn": self._use_cudnn,
                "ceil_mode": self._ceil_mode,
                "use_mkldnn": False,
                "exclusive": self._exclusive,
            })
M
minqiyang 已提交
206
        return pool_out
M
minqiyang 已提交
207 208


X
Xin Pan 已提交
209
class FC(layers.Layer):
M
minqiyang 已提交
210
    def __init__(self,
M
minqiyang 已提交
211
                 size,
M
minqiyang 已提交
212
                 param_attr=None,
M
minqiyang 已提交
213 214
                 bias_attr=None,
                 dtype=core.VarDesc.VarType.FP32,
M
minqiyang 已提交
215
                 num_flatten_dims=1,
M
minqiyang 已提交
216 217 218
                 act=None,
                 is_test=False,
                 name=None):
M
minqiyang 已提交
219
        super(FC, self).__init__()
M
minqiyang 已提交
220

M
minqiyang 已提交
221
        self._size = size
M
minqiyang 已提交
222 223
        self._num_flatten_dims = num_flatten_dims
        self._dtype = dtype
M
minqiyang 已提交
224
        from ..layer_helper import LayerHelper
M
minqiyang 已提交
225 226 227 228 229 230
        self._helper = LayerHelper(
            'FC',
            param_attr=param_attr,
            bias_attr=bias_attr,
            act=act,
            name=name)
M
minqiyang 已提交
231 232 233 234 235

    def _build_once(self, input):
        input_shape = input.shape
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:], 1)
M
minqiyang 已提交
236
        ] + [self._size]
M
minqiyang 已提交
237 238 239 240 241
        self._w = self._helper.create_parameter(
            attr=self._helper.param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)
242 243 244 245 246 247 248 249 250 251 252
        print("create param: ", self._w.name, self._w.stop_gradient)

        if self._helper.bias_attr:
            size = list([self._size])
            self._b = self._helper.create_parameter(
                attr=self._helper.bias_attr,
                shape=size,
                dtype=self._dtype,
                is_bias=True)
        else:
            self._b = None
M
minqiyang 已提交
253 254

    def forward(self, input):
M
minqiyang 已提交
255
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
M
minqiyang 已提交
256 257 258 259
        self._helper.append_op(
            type="mul",
            inputs={"X": input,
                    "Y": self._w},
M
minqiyang 已提交
260
            outputs={"Out": tmp},
M
minqiyang 已提交
261 262 263 264 265
            attrs={
                "x_num_col_dims": self._num_flatten_dims,
                "y_num_col_dims": 1
            })

M
minqiyang 已提交
266
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
M
minqiyang 已提交
267 268
        self._helper.append_op(
            type="sum",
M
minqiyang 已提交
269
            inputs={"X": [tmp]},
M
minqiyang 已提交
270
            outputs={"Out": pre_bias},
M
minqiyang 已提交
271
            attrs={"use_mkldnn": False})
M
minqiyang 已提交
272

273 274 275 276 277 278 279 280 281 282 283
        if self._b:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._b]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': self._num_flatten_dims})
        else:
            pre_activation = pre_bias
M
minqiyang 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
        return self._helper.append_activation(pre_activation)


class BatchNorm(layers.Layer):
    def __init__(self,
                 num_channels,
                 act=None,
                 is_test=False,
                 momentum=0.9,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 dtype=core.VarDesc.VarType.FP32,
                 data_layout='NCHW',
                 in_place=False,
                 name=None,
                 moving_mean_name=None,
                 moving_variance_name=None,
                 do_model_average_for_mean_and_var=False,
                 fuse_with_relu=False,
                 use_global_stats=False):
        super(BatchNorm, self).__init__()

        assert bias_attr is not False, "bias_attr should not be False in batch_norm."

        from ..layer_helper import LayerHelper
        self._helper = LayerHelper(
            'batch_norm', param_attr=param_attr, bias_attr=bias_attr, name=name)

        if dtype == core.VarDesc.VarType.FP16:
            self._dtype = core.VarDesc.VarType.FP32
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
        self._scale = self._helper.create_parameter(
            attr=self._helper.param_attr,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))

        # setting stop_gradient=True to reduce computation
        if use_global_stats and self._helper.param_attr.learning_rate == 0.:
            self._scale.stop_gradient = True

        self._bias = self._helper.create_parameter(
            attr=self._helper.bias_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
        # setting stop_gradient=True to reduce computation
        if use_global_stats and self._helper.bias_attr.learning_rate == 0.:
            self._bias.stop_gradient = True

        self._mean = self._helper.create_parameter(
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
        self._mean.stop_gradient = True

        self._variance = self._helper.create_parameter(
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
        self._variance.stop_gradient = True

        self._in_place = in_place
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
        self._fuse_with_relu = fuse_with_relu
        self._use_global_stats = use_global_stats

    def _build_once(self, input):
        pass

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance

        saved_mean = self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
378
            dtype=self._dtype, stop_gradient=True)
M
minqiyang 已提交
379
        saved_variance = self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
380
            dtype=self._dtype, stop_gradient=True)
M
minqiyang 已提交
381
        batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
382
            self._dtype)
M
minqiyang 已提交
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409

        self._helper.append_op(
            type="batch_norm",
            inputs={
                "X": input,
                "Scale": self._scale,
                "Bias": self._bias,
                "Mean": self._mean,
                "Variance": self._variance
            },
            outputs={
                "Y": batch_norm_out,
                "MeanOut": mean_out,
                "VarianceOut": variance_out,
                "SavedMean": saved_mean,
                "SavedVariance": saved_variance
            },
            attrs={
                "momentum": self._momentum,
                "epsilon": self._epsilon,
                "is_test": self._is_test,
                "use_mkldnn": False,
                "fuse_with_relu": self._fuse_with_relu,
                "use_global_stats": self._use_global_stats
            })

        return self._helper.append_activation(batch_norm_out)