nn.py 11.3 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from six.moves import reduce

from .. import core
from ..layers import utils
from . import layers
from ..framework import Variable, OpProtoHolder
from ..param_attr import ParamAttr
from ..initializer import Normal, Constant

26
__all__ = ['Conv2D', 'Pool2D', 'FC', 'EMBEDDING']
M
minqiyang 已提交
27 28


X
Xin Pan 已提交
29
class Conv2D(layers.Layer):
M
minqiyang 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 use_cudnn=True,
                 act=None,
                 param_attr=None,
                 bias_attr=None,
                 name=None,
                 dtype=core.VarDesc.VarType.FP32):
        assert param_attr is not False, "param_attr should not be False here."
M
minqiyang 已提交
45 46
        super(Conv2D, self).__init__(name=name, dtype=dtype)

X
Xin Pan 已提交
47
        # TODO(minqiyang): Move this to the top.
M
minqiyang 已提交
48 49 50 51 52 53 54
        from ..layer_helper import LayerHelper
        self._helper = LayerHelper(
            type(self).__name__,
            param_attr=param_attr,
            bias_attr=bias_attr,
            dtype=dtype,
            name=name)
M
minqiyang 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
        self._num_channels = num_channels
        if (self._num_channels == self._groups and
                num_filters % self._num_channels == 0 and not self._use_cudnn):
            self._l_type = 'depthwise_conv2d'
        else:
            self._l_type = 'conv2d'

        if groups is None:
            num_filter_channels = num_channels
        else:
            if num_channels % groups != 0:
                raise ValueError("num_channels must be divisible by groups.")
            num_filter_channels = num_channels // groups
        filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
        filter_shape = [num_filters, int(num_filter_channels)] + filter_size

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * num_channels
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

        self._filter_param = self._helper.create_parameter(
            attr=self._helper.param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

        if self._use_cudnn:
            self._helper.create_variable(
                name="kCUDNNFwdAlgoCache",
                persistable=True,
                type=core.VarDesc.VarType.RAW)
            self._helper.create_variable(
                name="kCUDNNBwdDataAlgoCache",
                persistable=True,
                type=core.VarDesc.VarType.RAW)
            self._helper.create_variable(
                name="kCUDNNBwdFilterAlgoCache",
                persistable=True,
                type=core.VarDesc.VarType.RAW)

M
minqiyang 已提交
104 105
        self._bias_param = self._helper.create_parameter(
            attr=self._helper.bias_attr,
M
minqiyang 已提交
106
            shape=[num_filters],
M
minqiyang 已提交
107 108
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
109 110

    def forward(self, input):
M
minqiyang 已提交
111 112 113
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

M
minqiyang 已提交
114 115 116 117 118 119
        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
                'Filter': self._filter_param,
            },
M
minqiyang 已提交
120
            outputs={"Output": pre_bias},
M
minqiyang 已提交
121 122 123 124 125 126 127 128 129
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False,
            })

M
minqiyang 已提交
130 131
        pre_act = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
M
minqiyang 已提交
132

M
minqiyang 已提交
133 134 135 136 137 138 139 140
        self._helper.append_op(
            type='elementwise_add',
            inputs={'X': [pre_bias],
                    'Y': [self._bias_param]},
            outputs={'Out': [pre_act]},
            attrs={'axis': 1})

        return self._helper.append_activation(pre_act)
M
minqiyang 已提交
141 142


X
Xin Pan 已提交
143
class Pool2D(layers.Layer):
M
minqiyang 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    def __init__(self,
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
                 exclusive=True,
                 name=None,
                 dtype=core.VarDesc.VarType.FP32):
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

        super(Pool2D, self).__init__(name=name, dtype=dtype)

M
minqiyang 已提交
170 171 172
        from ..layer_helper import LayerHelper
        self._helper = LayerHelper(type(self).__name__, dtype=dtype, name=name)

M
minqiyang 已提交
173 174 175 176 177 178 179 180 181 182 183 184
        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
        self._l_type = 'pool2d'

    def forward(self, input):
M
minqiyang 已提交
185 186
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

M
minqiyang 已提交
187 188 189
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
M
minqiyang 已提交
190
            outputs={"Out": pool_out},
M
minqiyang 已提交
191 192 193 194 195 196 197 198 199 200 201
            attrs={
                "pooling_type": self._pool_type,
                "ksize": self._pool_size,
                "global_pooling": self._global_pooling,
                "strides": self._pool_stride,
                "paddings": self._pool_padding,
                "use_cudnn": self._use_cudnn,
                "ceil_mode": self._ceil_mode,
                "use_mkldnn": False,
                "exclusive": self._exclusive,
            })
M
minqiyang 已提交
202
        return pool_out
M
minqiyang 已提交
203 204


X
Xin Pan 已提交
205
class FC(layers.Layer):
M
minqiyang 已提交
206
    def __init__(self,
M
minqiyang 已提交
207
                 size,
M
minqiyang 已提交
208
                 param_attr=None,
X
Xin Pan 已提交
209
                 bias_attr=None,
M
minqiyang 已提交
210
                 num_flatten_dims=1,
X
Xin Pan 已提交
211 212 213
                 dtype=core.VarDesc.VarType.FP32,
                 act=None,
                 name=None):
M
minqiyang 已提交
214 215
        super(FC, self).__init__()
        self._size = size
M
minqiyang 已提交
216 217
        self._num_flatten_dims = num_flatten_dims
        self._dtype = dtype
M
minqiyang 已提交
218
        from ..layer_helper import LayerHelper
X
Xin Pan 已提交
219
        self._helper = LayerHelper(
X
Xin Pan 已提交
220 221 222 223 224
            'FC',
            param_attr=param_attr,
            bias_attr=bias_attr,
            act=act,
            name=name)
X
Xin Pan 已提交
225 226

    def parameters(self):
X
Xin Pan 已提交
227
        return [self._w, self._b]
M
minqiyang 已提交
228 229 230 231 232

    def _build_once(self, input):
        input_shape = input.shape
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:], 1)
M
minqiyang 已提交
233
        ] + [self._size]
M
minqiyang 已提交
234 235 236 237 238 239 240
        self._w = self._helper.create_parameter(
            attr=self._helper.param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input):
M
minqiyang 已提交
241
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
M
minqiyang 已提交
242 243 244 245
        self._helper.append_op(
            type="mul",
            inputs={"X": input,
                    "Y": self._w},
M
minqiyang 已提交
246
            outputs={"Out": tmp},
M
minqiyang 已提交
247 248 249 250 251
            attrs={
                "x_num_col_dims": self._num_flatten_dims,
                "y_num_col_dims": 1
            })

M
minqiyang 已提交
252
        out = self._helper.create_variable_for_type_inference(self._dtype)
M
minqiyang 已提交
253 254
        self._helper.append_op(
            type="sum",
M
minqiyang 已提交
255 256
            inputs={"X": [tmp]},
            outputs={"Out": out},
M
minqiyang 已提交
257
            attrs={"use_mkldnn": False})
X
Xin Pan 已提交
258 259

        bias_attr = self._helper.bias_attr
X
Xin Pan 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
        if bias_attr:
            # add bias
            size = list(out.shape[1:])
            if not self._built:
                self._b = self._helper.create_parameter(
                    attr=bias_attr, shape=size, dtype=out.dtype, is_bias=True)
            bias_out = self._helper.create_variable_for_type_inference(
                dtype=out.dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [out],
                        'Y': [self._b]},
                outputs={'Out': [bias_out]},
                attrs={'axis': 1})
            out = bias_out
X
Xin Pan 已提交
275
        # add activation
X
Xin Pan 已提交
276
        return self._helper.append_activation(out)
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326


class EMBEDDING(layers.Layer):
    def __init__(self,
                 size,
                 is_sparse=False,
                 is_distributed=False,
                 padding_idx=None,
                 param_attr=None,
                 dtype='float32'):

        super(EMBEDDING, self).__init__()
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed

        self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
            size[0] + padding_idx)

        self._param_attr = param_attr
        self._dtype = dtype
        self._remote_prefetch = self.is_sparse and (not self.is_distributed)
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

        from ..layer_helper import LayerHelper
        self._helper = LayerHelper('embedding', param_attr=param_attr)

    def _build_once(self, input):
        self._w = self._helper.create_parameter(
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='lookup_table',
            inputs={'Ids': input,
                    'W': self._w},
            outputs={'Out': out},
            attrs={
                'is_sparse': self._is_sparse,
                'is_distributed': self._is_distributed,
                'remote_prefetch': self._remote_prefetch,
                'padding_idx': self._padding_idx
            })

        return out