elementwise_op.cc 13.7 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
    http://www.apache.org/licenses/LICENSE-2.0
N
nhzlx 已提交
8 9 10 11 12 13 14 15

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
16
#include "paddle/fluid/inference/tensorrt/plugin/elementwise_op_plugin.h"
N
nhzlx 已提交
17 18 19 20 21

namespace paddle {
namespace inference {
namespace tensorrt {

22 23 24 25 26 27 28 29 30 31 32 33 34
static bool CheckDims(const nvinfer1::Dims& dims_x,
                      const nvinfer1::Dims& dims_y) {
  if (dims_x.nbDims != dims_y.nbDims) {
    return false;
  }
  for (int i = 0; i < dims_x.nbDims; i++) {
    if (dims_x.d[i] != dims_y.d[i]) {
      return false;
    }
  }
  return true;
}

N
nhzlx 已提交
35 36 37 38 39 40 41
class ElementwiseWeightOpConverter : public OpConverter {
 public:
  ElementwiseWeightOpConverter() {}
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
    // Here the two nullptr looks strange, that's because the
    // framework::OpDesc's constructor is strange.
42
    nvinfer1::ILayer* layer = nullptr;
N
nhzlx 已提交
43
    framework::OpDesc op_desc(op, nullptr);
44
    VLOG(3) << "Convert a fluid elementwise op to TensorRT IScaleLayer";
N
nhzlx 已提交
45

S
Shang Zhizhou 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    PADDLE_ENFORCE_EQ(
        op_desc.Input("X").size(), 1,
        platform::errors::InvalidArgument(
            "The input op's Input(\"X\").size() "
            "should equal to 1, but received Input(\"X\").size() = %u.",
            op_desc.Input("X").size()));
    PADDLE_ENFORCE_EQ(
        op_desc.Input("Y").size(), 1,
        platform::errors::InvalidArgument(
            "The input op's Input(\"Y\").size() "
            "should equal to 1, but received Input(\"Y\").size() = %u.",
            op_desc.Input("Y").size()));  // Y is a weight
    PADDLE_ENFORCE_EQ(
        op_desc.Output("Out").size(), 1,
        platform::errors::InvalidArgument(
            "The input op's Output(\"Out\").size() "
            "should equal to 1, but reveceid Output(\"Out\").size() = %u.",
            op_desc.Output("Out").size()));
N
nhzlx 已提交
64 65 66

    auto* X = engine_->GetITensor(op_desc.Input("X").front());
    auto* Y_v = scope.FindVar(op_desc.Input("Y").front());
S
Shang Zhizhou 已提交
67 68 69
    PADDLE_ENFORCE_NOT_NULL(
        Y_v, platform::errors::NotFound("Variable %s not found in scope.",
                                        op_desc.Input("Y").front().c_str()));
N
nhzlx 已提交
70
    auto* Y_t = Y_v->GetMutable<framework::LoDTensor>();
71 72 73
    float* weight_data = nullptr;
    weight_data =
        engine_->GetWeightCPUData(op_desc.Input("Y").front(), Y_t, false);
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
    nvinfer1::Dims dims_x = X->getDimensions();

    auto regist_eltwise_weight = [&](nvinfer1::ScaleMode scale_mode) {
      TensorRTEngine::Weight shift_weights{nvinfer1::DataType::kFLOAT,
                                           static_cast<void*>(weight_data),
                                           static_cast<size_t>(Y_t->numel())};
      TensorRTEngine::Weight scale_weights{nvinfer1::DataType::kFLOAT, nullptr,
                                           0};
      TensorRTEngine::Weight power_weights{nvinfer1::DataType::kFLOAT, nullptr,
                                           0};
      if (op_type_ == "add") {
        nvinfer1::IScaleLayer* scale_layer = TRT_ENGINE_ADD_LAYER(
            engine_, Scale, *X, scale_mode, shift_weights.get(),
            scale_weights.get(), power_weights.get());
        layer = scale_layer;
      } else if (op_type_ == "mul") {
        nvinfer1::IScaleLayer* scale_layer = TRT_ENGINE_ADD_LAYER(
            engine_, Scale, *X, scale_mode, scale_weights.get(),
            shift_weights.get(), power_weights.get());
        layer = scale_layer;
      }

      auto output_name = op_desc.Output("Out")[0];
      RreplenishLayerAndOutput(layer, "elementwise_" + op_type_, {output_name},
                               test_mode);
      if (op_desc.HasAttr("enable_int8")) {
#if IS_TRT_VERSION_GE(5000)
        CHECK(op_desc.HasAttr("X_scale"));
102
        float x_scale = BOOST_GET_CONST(float, op_desc.GetAttr("X_scale"));
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
        engine_->SetTensorDynamicRange(X, x_scale);
#endif
      }
    };

    if (engine_->with_dynamic_shape()) {
      if (Y_t->dims().size() == 1) {
        auto scale_mode = nvinfer1::ScaleMode::kCHANNEL;
        PADDLE_ENFORCE_EQ(Y_t->dims()[0], dims_x.d[1],
                          platform::errors::InvalidArgument(
                              "The Bias's size(%d) should be equal to the "
                              "first dim(%d) of the Input.",
                              Y_t->dims()[0], dims_x.d[1]));
        regist_eltwise_weight(scale_mode);
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
119 120 121
            "The size of input bias's dims is %d, but TensorRT dynamic shape "
            "only support size = 1 for Elementwise op!",
            Y_t->dims().size()));
122 123 124 125 126 127 128 129 130
      }
      return;
    }

    std::vector<int> no_batch_dims;
    int start_index = 0;

    for (; start_index < dims_x.nbDims; start_index++)
      no_batch_dims.push_back(dims_x.d[start_index]);
N
nhzlx 已提交
131

N
nhzlx 已提交
132 133
    auto scale_mode = nvinfer1::ScaleMode::kELEMENTWISE;

134
    std::vector<int> dims_y = framework::vectorize<int>(Y_t->dims());
135
    if (dims_y.size() == no_batch_dims.size() + 1) {
N
nhzlx 已提交
136 137 138
      if (dims_y[0] == 1) dims_y.erase(dims_y.begin());
    }

139
    if (dims_y.size() == 1 && dims_y[0] == no_batch_dims[0]) {
N
nhzlx 已提交
140
      scale_mode = nvinfer1::ScaleMode::kCHANNEL;
141 142
    } else if (dims_y.size() == no_batch_dims.size() &&
               dims_y[0] == no_batch_dims[0]) {
N
nhzlx 已提交
143
      scale_mode = nvinfer1::ScaleMode::kELEMENTWISE;
144 145
      for (size_t i = 1; i < no_batch_dims.size(); i++) {
        if (dims_y[i] != no_batch_dims[i]) {
N
nhzlx 已提交
146 147 148 149 150
          scale_mode = nvinfer1::ScaleMode::kCHANNEL;
          break;
        }
      }
      if (scale_mode == nvinfer1::ScaleMode::kCHANNEL) {
151
        for (size_t i = 1; i < no_batch_dims.size(); i++) {
N
nhzlx 已提交
152
          if (dims_y[i] != 1)
153 154 155 156
            PADDLE_THROW(platform::errors::InvalidArgument(
                "The bias's %d dim is %d, but TensorRT dynamic shape only "
                "support it equals to 1 for Elementwise op!",
                i, dims_y[i]));
N
nhzlx 已提交
157 158 159
        }
      }
    } else {
160 161 162 163 164 165 166 167 168 169 170
      if (dims_y.size() >= 1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The size of bias's dims is %d and bias's size is %d. TensorRT "
            "doesn't support this shape for Elementwise op!",
            dims_y.size(), dims_y[0]));
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The size of bias's dims is %d. TensorRT doesn't support "
            "this shape for Elementwise op!",
            dims_y.size()));
      }
N
nhzlx 已提交
171
    }
172
    regist_eltwise_weight(scale_mode);
N
nhzlx 已提交
173
  }
174 175 176

 protected:
  std::string op_type_;
N
nhzlx 已提交
177 178 179 180 181 182 183
};

class ElementwiseTensorOpConverter : public OpConverter {
 public:
  ElementwiseTensorOpConverter() {}
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
184
    auto op_pair = ops.find(op_type_);
185 186 187 188 189
    PADDLE_ENFORCE_NE(op_pair, ops.end(),
                      platform::errors::InvalidArgument(
                          "Elementwise op's type(%s) is not supported. Please "
                          "check if the op_type is correct.",
                          op_type_));
190

N
nhzlx 已提交
191 192 193
    // Here the two nullptr looks strange, that's because the
    // framework::OpDesc's constructor is strange.
    framework::OpDesc op_desc(op, nullptr);
194
    nvinfer1::ILayer* layer = nullptr;
N
nhzlx 已提交
195

S
Shang Zhizhou 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
    PADDLE_ENFORCE_EQ(
        op_desc.Input("X").size(), 1,
        platform::errors::InvalidArgument(
            "The input op's Input(\"X\").size() "
            "should equal to 1, but received Input(\"X\").size() = %u.",
            op_desc.Input("X").size()));
    PADDLE_ENFORCE_EQ(
        op_desc.Input("Y").size(), 1,
        platform::errors::InvalidArgument(
            "The input op's Input(\"Y\").size() "
            "should equal to 1, but received Input(\"Y\").size() = %u.",
            op_desc.Input("Y").size()));  // Y is a weight
    PADDLE_ENFORCE_EQ(
        op_desc.Output("Out").size(), 1,
        platform::errors::InvalidArgument(
            "The input op's Output(\"Out\").size() "
            "should equal to 1, but received Output(\"Out\").size() = %u.",
            op_desc.Output("Out").size()));
N
nhzlx 已提交
214 215 216

    auto* X = engine_->GetITensor(op_desc.Input("X").front());
    auto* Y = engine_->GetITensor(op_desc.Input("Y").front());
217 218 219
    std::vector<nvinfer1::ITensor*> itensors;
    itensors.push_back(X);
    itensors.push_back(Y);
N
nhzlx 已提交
220 221 222
    nvinfer1::Dims dims_x = X->getDimensions();
    nvinfer1::Dims dims_y = Y->getDimensions();

223
    int axis = BOOST_GET_CONST(int, op_desc.GetAttr("axis"));
224
    auto output_name = op_desc.Output("Out")[0];
225 226 227 228 229 230 231

    auto common_func = [&](nvinfer1::ILayer* layer) {
      RreplenishLayerAndOutput(layer, "elementwise", {output_name}, test_mode);
      if (op_desc.HasAttr("enable_int8")) {
#if IS_TRT_VERSION_GE(5000)
        CHECK(op_desc.HasAttr("X_scale"));
        CHECK(op_desc.HasAttr("Y_scale"));
232 233
        float x_scale = BOOST_GET_CONST(float, op_desc.GetAttr("X_scale"));
        float y_scale = BOOST_GET_CONST(float, op_desc.GetAttr("Y_scale"));
234 235 236 237 238 239
        engine_->SetTensorDynamicRange(X, x_scale);
        engine_->SetTensorDynamicRange(Y, y_scale);
#endif
      }
    };

240 241 242
    if (CheckDims(dims_x, dims_y)) {
      // The two input tensor should have the same dims
      VLOG(3) << "Convert a fluid elementwise op to TensorRT IElementWiseLayer";
243 244
      nvinfer1::IElementWiseLayer* elet_layer =
          TRT_ENGINE_ADD_LAYER(engine_, ElementWise, *X, *Y, op_pair->second);
N
nhzlx 已提交
245

246
      layer = elet_layer;
247 248 249
    } else {
      VLOG(3) << "Convert a fluid elementwise op to TensorRT "
                 "ElementWisePluginLayer";
250 251 252 253
      if (engine_->with_dynamic_shape()) {
#if IS_TRT_VERSION_GE(6000)
        plugin::ElementwisePluginDynamic* plugin =
            new plugin::ElementwisePluginDynamic(op_type_, axis);
254
        layer = engine_->AddDynamicPlugin(itensors.data(), 2, plugin);
255 256 257 258
#else
        PADDLE_THROW(platform::errors::Fatal(
            "You are running the TRT Dynamic Shape mode, need to confirm that "
            "your TRT version is no less than 6.0"));
259
#endif
260 261 262 263 264 265 266 267 268 269 270
      } else {
        plugin::ElementWisePlugin* plugin =
            new plugin::ElementWisePlugin(op_type_, dims_x, dims_y, axis);
        plugin->AddInput(X);
        plugin->AddInput(Y);
        nvinfer1::IPluginLayer* plugin_layer = engine_->AddPlugin(
            plugin->GetInputs().data(), 2,
            reinterpret_cast<plugin::PluginTensorRT*>(plugin));

        layer = plugin_layer;
      }
N
nhzlx 已提交
271
    }
272
    common_func(layer);
N
nhzlx 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
  }

 protected:
  static const std::unordered_map<std::string, nvinfer1::ElementWiseOperation>
      ops;
  std::string op_type_;
};

const std::unordered_map<std::string, nvinfer1::ElementWiseOperation>
    ElementwiseTensorOpConverter::ops = {
        {"add", nvinfer1::ElementWiseOperation::kSUM},
        {"mul", nvinfer1::ElementWiseOperation::kPROD},
        {"sub", nvinfer1::ElementWiseOperation::kSUB},
        {"div", nvinfer1::ElementWiseOperation::kDIV},
        {"min", nvinfer1::ElementWiseOperation::kMIN},
        {"pow", nvinfer1::ElementWiseOperation::kPOW},
        {"max", nvinfer1::ElementWiseOperation::kMAX},
};

292 293 294 295 296 297 298 299 300 301
class ElementwiseWeightAddOpConverter : public ElementwiseWeightOpConverter {
 public:
  ElementwiseWeightAddOpConverter() { op_type_ = "add"; }
};

class ElementwiseWeightMulOpConverter : public ElementwiseWeightOpConverter {
 public:
  ElementwiseWeightMulOpConverter() { op_type_ = "mul"; }
};

N
nhzlx 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
class ElementwiseTensorAddOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorAddOpConverter() { op_type_ = "add"; }
};

class ElementwiseTensorMulOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorMulOpConverter() { op_type_ = "mul"; }
};

class ElementwiseTensorSubOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorSubOpConverter() { op_type_ = "sub"; }
};

class ElementwiseTensorDivOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorDivOpConverter() { op_type_ = "div"; }
};

class ElementwiseTensorMinOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorMinOpConverter() { op_type_ = "min"; }
};

class ElementwiseTensorMaxOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorMaxOpConverter() { op_type_ = "max"; }
};

class ElementwiseTensorPowOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorPowOpConverter() { op_type_ = "pow"; }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

341 342 343 344
REGISTER_TRT_OP_CONVERTER(elementwise_add_weight,
                          ElementwiseWeightAddOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_mul_weight,
                          ElementwiseWeightMulOpConverter);
N
nhzlx 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359

REGISTER_TRT_OP_CONVERTER(elementwise_add_tensor,
                          ElementwiseTensorAddOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_sub_tensor,
                          ElementwiseTensorSubOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_div_tensor,
                          ElementwiseTensorDivOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_mul_tensor,
                          ElementwiseTensorMulOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_max_tensor,
                          ElementwiseTensorMaxOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_min_tensor,
                          ElementwiseTensorMinOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_pow_tensor,
                          ElementwiseTensorPowOpConverter);