elementwise_op.cc 10.1 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
    http://www.apache.org/licenses/LICENSE-2.0
N
nhzlx 已提交
8 9 10 11 12 13 14 15

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
16
#include "paddle/fluid/inference/tensorrt/plugin/elementwise_op_plugin.h"
N
nhzlx 已提交
17 18 19 20 21

namespace paddle {
namespace inference {
namespace tensorrt {

22 23 24 25 26 27 28 29 30 31 32 33 34
static bool CheckDims(const nvinfer1::Dims& dims_x,
                      const nvinfer1::Dims& dims_y) {
  if (dims_x.nbDims != dims_y.nbDims) {
    return false;
  }
  for (int i = 0; i < dims_x.nbDims; i++) {
    if (dims_x.d[i] != dims_y.d[i]) {
      return false;
    }
  }
  return true;
}

N
nhzlx 已提交
35 36 37 38 39 40 41
class ElementwiseWeightOpConverter : public OpConverter {
 public:
  ElementwiseWeightOpConverter() {}
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
    // Here the two nullptr looks strange, that's because the
    // framework::OpDesc's constructor is strange.
42
    nvinfer1::ILayer* layer = nullptr;
N
nhzlx 已提交
43
    framework::OpDesc op_desc(op, nullptr);
44
    VLOG(3) << "Convert a fluid elementwise op to TensorRT IScaleLayer";
N
nhzlx 已提交
45 46 47 48 49 50 51

    PADDLE_ENFORCE_EQ(op_desc.Input("X").size(), 1);
    PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1);  // Y is a weight
    PADDLE_ENFORCE_EQ(op_desc.Output("Out").size(), 1);

    auto* X = engine_->GetITensor(op_desc.Input("X").front());
    nvinfer1::Dims dims_x = X->getDimensions();
52 53 54 55 56 57
    std::vector<int> no_batch_dims;
    int start_index = 0;

    if (engine_->with_dynamic_shape()) start_index = 1;
    for (; start_index < dims_x.nbDims; start_index++)
      no_batch_dims.push_back(dims_x.d[start_index]);
N
nhzlx 已提交
58 59 60 61

    auto* Y_v = scope.FindVar(op_desc.Input("Y").front());
    PADDLE_ENFORCE_NOT_NULL(Y_v);
    auto* Y_t = Y_v->GetMutable<framework::LoDTensor>();
62 63 64
    float* weight_data = nullptr;
    weight_data =
        engine_->GetWeightCPUData(op_desc.Input("Y").front(), Y_t, false);
N
nhzlx 已提交
65

N
nhzlx 已提交
66 67
    auto scale_mode = nvinfer1::ScaleMode::kELEMENTWISE;

68
    std::vector<int> dims_y = framework::vectorize<int>(Y_t->dims());
69
    if (dims_y.size() == no_batch_dims.size() + 1) {
N
nhzlx 已提交
70 71 72
      if (dims_y[0] == 1) dims_y.erase(dims_y.begin());
    }

73
    if (dims_y.size() == 1 && dims_y[0] == no_batch_dims[0]) {
N
nhzlx 已提交
74
      scale_mode = nvinfer1::ScaleMode::kCHANNEL;
75 76
    } else if (dims_y.size() == no_batch_dims.size() &&
               dims_y[0] == no_batch_dims[0]) {
N
nhzlx 已提交
77
      scale_mode = nvinfer1::ScaleMode::kELEMENTWISE;
78 79
      for (size_t i = 1; i < no_batch_dims.size(); i++) {
        if (dims_y[i] != no_batch_dims[i]) {
N
nhzlx 已提交
80 81 82 83 84
          scale_mode = nvinfer1::ScaleMode::kCHANNEL;
          break;
        }
      }
      if (scale_mode == nvinfer1::ScaleMode::kCHANNEL) {
85
        for (size_t i = 1; i < no_batch_dims.size(); i++) {
N
nhzlx 已提交
86 87 88 89 90 91 92 93 94
          if (dims_y[i] != 1)
            PADDLE_THROW(
                "TensorRT unsupported weight shape for Elementwise op!");
        }
      }
    } else {
      PADDLE_THROW("TensorRT unsupported weight Shape for Elementwise op!");
    }

95 96 97
    TensorRTEngine::Weight shift_weights{nvinfer1::DataType::kFLOAT,
                                         static_cast<void*>(weight_data),
                                         static_cast<size_t>(Y_t->numel())};
N
nhzlx 已提交
98 99 100 101
    TensorRTEngine::Weight scale_weights{nvinfer1::DataType::kFLOAT, nullptr,
                                         0};
    TensorRTEngine::Weight power_weights{nvinfer1::DataType::kFLOAT, nullptr,
                                         0};
102 103 104 105 106 107 108 109 110 111 112
    if (op_type_ == "add") {
      nvinfer1::IScaleLayer* scale_layer = TRT_ENGINE_ADD_LAYER(
          engine_, Scale, *X, scale_mode, shift_weights.get(),
          scale_weights.get(), power_weights.get());
      layer = scale_layer;
    } else if (op_type_ == "mul") {
      nvinfer1::IScaleLayer* scale_layer = TRT_ENGINE_ADD_LAYER(
          engine_, Scale, *X, scale_mode, scale_weights.get(),
          shift_weights.get(), power_weights.get());
      layer = scale_layer;
    }
N
nhzlx 已提交
113 114

    auto output_name = op_desc.Output("Out")[0];
115 116
    RreplenishLayerAndOutput(layer, "elementwise_" + op_type_, {output_name},
                             test_mode);
117
    if (op_desc.HasAttr("enable_int8")) {
118
#if IS_TRT_VERSION_GE(5000)
119 120 121
      CHECK(op_desc.HasAttr("X_scale"));
      float x_scale = boost::get<float>(op_desc.GetAttr("X_scale"));
      engine_->SetTensorDynamicRange(X, x_scale);
122
#endif
N
nhzlx 已提交
123 124
    }
  }
125 126 127

 protected:
  std::string op_type_;
N
nhzlx 已提交
128 129 130 131 132 133 134
};

class ElementwiseTensorOpConverter : public OpConverter {
 public:
  ElementwiseTensorOpConverter() {}
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
135 136 137
    auto op_pair = ops.find(op_type_);
    PADDLE_ENFORCE(op_pair != ops.end(), "Wrong elementwise op type!");

N
nhzlx 已提交
138 139 140
    // Here the two nullptr looks strange, that's because the
    // framework::OpDesc's constructor is strange.
    framework::OpDesc op_desc(op, nullptr);
141
    nvinfer1::ILayer* layer = nullptr;
N
nhzlx 已提交
142 143 144 145 146 147 148 149 150 151

    PADDLE_ENFORCE_EQ(op_desc.Input("X").size(), 1);
    PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1);  // Y is a weight
    PADDLE_ENFORCE_EQ(op_desc.Output("Out").size(), 1);

    auto* X = engine_->GetITensor(op_desc.Input("X").front());
    auto* Y = engine_->GetITensor(op_desc.Input("Y").front());
    nvinfer1::Dims dims_x = X->getDimensions();
    nvinfer1::Dims dims_y = Y->getDimensions();

152 153 154 155 156
    int axis = boost::get<int>(op_desc.GetAttr("axis"));
    auto output_name = op_desc.Output("Out")[0];
    if (CheckDims(dims_x, dims_y)) {
      // The two input tensor should have the same dims
      VLOG(3) << "Convert a fluid elementwise op to TensorRT IElementWiseLayer";
157
      nvinfer1::IElementWiseLayer* elet_layer = TRT_ENGINE_ADD_LAYER(
158 159
          engine_, ElementWise, *const_cast<nvinfer1::ITensor*>(X),
          *const_cast<nvinfer1::ITensor*>(Y), op_pair->second);
N
nhzlx 已提交
160

161
      layer = elet_layer;
162 163 164 165 166
    } else {
      VLOG(3) << "Convert a fluid elementwise op to TensorRT "
                 "ElementWisePluginLayer";

      plugin::ElementWisePlugin* plugin =
N
nhzlx 已提交
167
          new plugin::ElementWisePlugin(op_type_, dims_x, dims_y, axis);
168 169
      plugin->AddInput(X);
      plugin->AddInput(Y);
170
      nvinfer1::IPluginLayer* plugin_layer = engine_->AddPlugin(
171 172 173
          const_cast<nvinfer1::ITensor* const*>(plugin->GetInputs().data()), 2,
          reinterpret_cast<plugin::PluginTensorRT*>(plugin));

174
      layer = plugin_layer;
175
    }
176
    RreplenishLayerAndOutput(layer, "elementwise", {output_name}, test_mode);
177
    if (op_desc.HasAttr("enable_int8")) {
178
#if IS_TRT_VERSION_GE(5000)
179 180 181 182 183 184
      CHECK(op_desc.HasAttr("X_scale"));
      CHECK(op_desc.HasAttr("Y_scale"));
      float x_scale = boost::get<float>(op_desc.GetAttr("X_scale"));
      float y_scale = boost::get<float>(op_desc.GetAttr("Y_scale"));
      engine_->SetTensorDynamicRange(X, x_scale);
      engine_->SetTensorDynamicRange(Y, y_scale);
185
#endif
N
nhzlx 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
    }
  }

 protected:
  static const std::unordered_map<std::string, nvinfer1::ElementWiseOperation>
      ops;
  std::string op_type_;
};

const std::unordered_map<std::string, nvinfer1::ElementWiseOperation>
    ElementwiseTensorOpConverter::ops = {
        {"add", nvinfer1::ElementWiseOperation::kSUM},
        {"mul", nvinfer1::ElementWiseOperation::kPROD},
        {"sub", nvinfer1::ElementWiseOperation::kSUB},
        {"div", nvinfer1::ElementWiseOperation::kDIV},
        {"min", nvinfer1::ElementWiseOperation::kMIN},
        {"pow", nvinfer1::ElementWiseOperation::kPOW},
        {"max", nvinfer1::ElementWiseOperation::kMAX},
};

206 207 208 209 210 211 212 213 214 215
class ElementwiseWeightAddOpConverter : public ElementwiseWeightOpConverter {
 public:
  ElementwiseWeightAddOpConverter() { op_type_ = "add"; }
};

class ElementwiseWeightMulOpConverter : public ElementwiseWeightOpConverter {
 public:
  ElementwiseWeightMulOpConverter() { op_type_ = "mul"; }
};

N
nhzlx 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
class ElementwiseTensorAddOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorAddOpConverter() { op_type_ = "add"; }
};

class ElementwiseTensorMulOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorMulOpConverter() { op_type_ = "mul"; }
};

class ElementwiseTensorSubOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorSubOpConverter() { op_type_ = "sub"; }
};

class ElementwiseTensorDivOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorDivOpConverter() { op_type_ = "div"; }
};

class ElementwiseTensorMinOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorMinOpConverter() { op_type_ = "min"; }
};

class ElementwiseTensorMaxOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorMaxOpConverter() { op_type_ = "max"; }
};

class ElementwiseTensorPowOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorPowOpConverter() { op_type_ = "pow"; }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

255 256 257 258
REGISTER_TRT_OP_CONVERTER(elementwise_add_weight,
                          ElementwiseWeightAddOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_mul_weight,
                          ElementwiseWeightMulOpConverter);
N
nhzlx 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273

REGISTER_TRT_OP_CONVERTER(elementwise_add_tensor,
                          ElementwiseTensorAddOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_sub_tensor,
                          ElementwiseTensorSubOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_div_tensor,
                          ElementwiseTensorDivOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_mul_tensor,
                          ElementwiseTensorMulOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_max_tensor,
                          ElementwiseTensorMaxOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_min_tensor,
                          ElementwiseTensorMinOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_pow_tensor,
                          ElementwiseTensorPowOpConverter);