sequence_pool_op.cc 7.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/sequence_ops/sequence_pool_op.h"
16
#include <memory>
17
#include <string>
18 19 20 21

namespace paddle {
namespace operators {

22
class SequencePoolOp : public framework::OperatorWithKernel {
23 24 25
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

26
  void InferShape(framework::InferShapeContext* ctx) const override {
27 28
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "SequencePool");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "SequencePool");
29 30 31

    if (!ctx->IsRuntime()) {
      // Check the lod_level for compile-time.
32
      auto in_lod_level = ctx->GetLoDLevel("X");
33 34 35 36 37
      PADDLE_ENFORCE_GT(in_lod_level, 0, platform::errors::InvalidArgument(
                                             "The LoD level of Input(X) should "
                                             "be larger than 0, but received: "
                                             "lod level %u.",
                                             in_lod_level));
38
      ctx->SetLoDLevel("Out", in_lod_level - 1);
39 40
    }

Q
Qiao Longfei 已提交
41
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
42
    if (ctx->Attrs().Get<std::string>("pooltype") == "MAX") {
43 44
      OP_INOUT_CHECK(ctx->HasOutput("MaxIndex"), "Output", "MaxIndex",
                     "SequencePool");
45 46
      ctx->SetOutputDim("MaxIndex", ctx->GetInputDim("X"));
    }
47 48 49
  }
};

50
class SequencePoolOpMaker : public framework::OpProtoAndCheckerMaker {
51
 public:
Y
Yu Yang 已提交
52
  void Make() override {
53
    AddInput("X", "(LoDTensor) The variable-length input of SequencePoolOp");
L
Luo Tao 已提交
54
    AddOutput("Out",
55
              "(Tensor) The output of SequencePoolOp does not contain LoD "
T
tianshuo78520a 已提交
56
              "information.");
57
    AddOutput("MaxIndex",
D
dangqingqing 已提交
58 59
              "(Tensor<int>) This tensor is used for the sequence max-pooling "
              "to record the max indexes.")
60
        .AsIntermediate();
61 62 63
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
64 65
        .SetDefault(false)
        .AsExtra();
D
dzhwinter 已提交
66 67
    AddAttr<std::string>(
        "pooltype",
L
Luo Tao 已提交
68
        "(string, default 'AVERAGE') the pooling pooltype of SequencePoolOp.")
69 70
        .SetDefault("AVERAGE")
        .InEnum({"AVERAGE", "SUM", "SQRT", "LAST", "FIRST", "MAX"});
71 72 73
    AddAttr<float>("pad_value",
                   "(float, default 0.0) The value to pad for empty sequence.")
        .SetDefault(0.0);
74
    AddComment(R"DOC(
75
Sequence Pool Operator.
76

77 78
The SequencePoolOp pools features of all time-steps of each instance.
It supports six pooling types:
79 80 81
1. AVERAGE: $$Out[i] = \frac{\sum_i X_i}{N}$$
2. SUM:     $$Out[i] = \sum_jX_{ij}$$
3. SQRT:    $$Out[i] = \frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}$$
82 83
4. LAST:    Out[i] = last instance in i-th sequence X[i]
5. FIRST:   Out[i] = first instance in i-th sequence X[i]
84
6. MAX:     $$Out[i] = max(X_i)$$
85

86 87
and for the empty sequence Out[i] = attr(pad_value).

88 89 90
The following example explains how this works:
For a mini-batch of 3 variable-length sentences,
containing 2, 3, and 2 time-steps:
Q
Qiao Longfei 已提交
91

92 93 94
Assume X is a [7,M,N] LoDTensor, and X->lod()[0] = [0, 2, 5, 7], 7=2+3+2.
Besides, for the sake of simplicity, we assume M=1 and N=1,
and the value of X = [[1, 3], [2, 4, 6], [5, 1]].
L
Luo Tao 已提交
95

T
tianshuo78520a 已提交
96
Thus, Out is a [3,1,1] Tensor without LoD information.
97
And for different pooltype, the value of Out is as follows:
L
Luo Tao 已提交
98

99 100 101
- AVERAGE: [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
- SUM: [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
- SQRT: [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
L
Luo Tao 已提交
102
           6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
103 104 105 106
- MAX: [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
- LAST: [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
- FIRST: [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)

107 108 109 110
    )DOC");
  }
};

111
class SequencePoolGradOp : public framework::OperatorWithKernel {
112 113 114
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

115
  void InferShape(framework::InferShapeContext* ctx) const override {
116 117 118 119
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "SequencePoolGrad");
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "SequencePoolGrad");

Q
Qiao Longfei 已提交
120 121
    auto og_dims = ctx->GetInputDim(framework::GradVarName("Out"));
    auto x_dims = ctx->GetInputDim("X");
122
    PADDLE_ENFORCE_EQ(og_dims.size(), x_dims.size(),
123 124 125 126
                      platform::errors::InvalidArgument(
                          "The rank of output grad must equal to Input(X). But "
                          "received: input rank %u, input shape [%s].",
                          og_dims.size(), og_dims));
127
    for (int64_t i = 1; i < og_dims.size(); ++i) {
128 129 130 131 132 133 134 135
      PADDLE_ENFORCE_EQ(
          og_dims[i], x_dims[i],
          platform::errors::InvalidArgument(
              "The dimension mismatch between Input(OUT@GRAD) and "
              "Input(X). Received Input(OUT@GRAD): input rank %u, "
              "input shape [%s]; received Input(X): input rank %u, "
              "input shape [%s].",
              og_dims.size(), og_dims, x_dims.size(), x_dims));
136
    }
137 138 139

    ctx->ShareDim("X", /*->*/ framework::GradVarName("X"));
    ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
140
  }
141 142

 protected:
143
  framework::OpKernelType GetExpectedKernelType(
144
      const framework::ExecutionContext& ctx) const override {
145 146 147
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
148
  }
149 150
};

H
hong 已提交
151 152
template <typename T>
class SequencePoolGradOpMaker : public framework::SingleGradOpMaker<T> {
153
 public:
H
hong 已提交
154
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
155 156

 protected:
157
  void Apply(GradOpPtr<T> op_desc_ptr) const override {
158
    op_desc_ptr->SetType("sequence_pool_grad");
H
hong 已提交
159
    op_desc_ptr->SetInput("X", this->Input("X"));
160
    if (BOOST_GET_CONST(std::string, this->GetAttr("pooltype")) == "MAX") {
H
hong 已提交
161
      op_desc_ptr->SetInput("MaxIndex", this->Output("MaxIndex"));
162
    }
H
hong 已提交
163 164 165 166
    op_desc_ptr->SetInput(framework::GradVarName("Out"),
                          this->OutputGrad("Out"));
    op_desc_ptr->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op_desc_ptr->SetAttrMap(this->Attrs());
167 168 169
  }
};

170
DECLARE_NO_NEED_BUFFER_VARS_INFERER(SequencePoolGradOpNoNeedBufferVarsInferer,
171
                                    "X");
172

173 174 175 176
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
177
REGISTER_OPERATOR(sequence_pool, ops::SequencePoolOp, ops::SequencePoolOpMaker,
H
hong 已提交
178 179
                  ops::SequencePoolGradOpMaker<paddle::framework::OpDesc>,
                  ops::SequencePoolGradOpMaker<paddle::imperative::OpBase>);
180
REGISTER_OPERATOR(sequence_pool_grad, ops::SequencePoolGradOp,
181
                  ops::SequencePoolGradOpNoNeedBufferVarsInferer);
182
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
183
    sequence_pool,
184 185 186
    ops::SequencePoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequencePoolKernel<paddle::platform::CPUDeviceContext, double>);

187
REGISTER_OP_CPU_KERNEL(
188
    sequence_pool_grad,
189 190
    ops::SequencePoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequencePoolGradKernel<paddle::platform::CPUDeviceContext, double>);