sequence_pool_op.cc 6.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/sequence_ops/sequence_pool_op.h"
16
#include <memory>
17
#include <string>
18 19 20 21

namespace paddle {
namespace operators {

22
class SequencePoolOp : public framework::OperatorWithKernel {
23 24 25
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

26
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
27
    PADDLE_ENFORCE(ctx->HasInput("X"),
28
                   "Input(X) of SequencePoolOp should not be null.");
Q
Qiao Longfei 已提交
29
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
30
                   "Output(Out) of SequencePoolOp should not be null.");
Q
Qiao Longfei 已提交
31
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
32 33 34 35 36
    if (ctx->Attrs().Get<std::string>("pooltype") == "MAX") {
      PADDLE_ENFORCE(ctx->HasOutput("MaxIndex"),
                     "Output(MaxIndex) of SequencePoolOp should not be null.");
      ctx->SetOutputDim("MaxIndex", ctx->GetInputDim("X"));
    }
37 38 39
  }
};

40
class SequencePoolOpMaker : public framework::OpProtoAndCheckerMaker {
41
 public:
Y
Yu Yang 已提交
42
  void Make() override {
43
    AddInput("X", "(LoDTensor) The variable-length input of SequencePoolOp");
L
Luo Tao 已提交
44
    AddOutput("Out",
45
              "(Tensor) The output of SequencePoolOp does not contain LoD "
L
Luo Tao 已提交
46
              "infomation.");
47
    AddOutput("MaxIndex",
D
dangqingqing 已提交
48 49
              "(Tensor<int>) This tensor is used for the sequence max-pooling "
              "to record the max indexes.")
50
        .AsIntermediate();
51 52 53 54
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
D
dzhwinter 已提交
55 56
    AddAttr<std::string>(
        "pooltype",
L
Luo Tao 已提交
57
        "(string, default 'AVERAGE') the pooling pooltype of SequencePoolOp.")
58 59
        .SetDefault("AVERAGE")
        .InEnum({"AVERAGE", "SUM", "SQRT", "LAST", "FIRST", "MAX"});
60
    AddComment(R"DOC(
61
Sequence Pool Operator.
62

63 64
The SequencePoolOp pools features of all time-steps of each instance.
It supports six pooling types:
65 66 67
1. AVERAGE: $$Out[i] = \frac{\sum_i X_i}{N}$$
2. SUM:     $$Out[i] = \sum_jX_{ij}$$
3. SQRT:    $$Out[i] = \frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}$$
68 69
4. LAST:    Out[i] = last instance in i-th sequence X[i]
5. FIRST:   Out[i] = first instance in i-th sequence X[i]
70
6. MAX:     $$Out[i] = max(X_i)$$
71

72 73 74
The following example explains how this works:
For a mini-batch of 3 variable-length sentences,
containing 2, 3, and 2 time-steps:
Q
Qiao Longfei 已提交
75

76 77 78
Assume X is a [7,M,N] LoDTensor, and X->lod()[0] = [0, 2, 5, 7], 7=2+3+2.
Besides, for the sake of simplicity, we assume M=1 and N=1,
and the value of X = [[1, 3], [2, 4, 6], [5, 1]].
L
Luo Tao 已提交
79

80 81
Thus, Out is a [3,1,1] Tensor without LoD infomation.
And for different pooltype, the value of Out is as follows:
L
Luo Tao 已提交
82

83 84 85
- AVERAGE: [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
- SUM: [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
- SQRT: [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
L
Luo Tao 已提交
86
           6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
87 88 89 90
- MAX: [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
- LAST: [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
- FIRST: [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)

91 92 93 94
    )DOC");
  }
};

95
class SequencePoolGradOp : public framework::OperatorWithKernel {
96 97 98
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

99
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
100 101 102 103 104
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Gradient of Out should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("X"), "The input X should not be null.");
    auto og_dims = ctx->GetInputDim(framework::GradVarName("Out"));
    auto x_dims = ctx->GetInputDim("X");
105 106
    PADDLE_ENFORCE_EQ(og_dims.size(), x_dims.size(),
                      "The rank of output grad must equal to Input(X).");
107
    for (int64_t i = 1; i < og_dims.size(); ++i) {
108 109
      PADDLE_ENFORCE_EQ(og_dims[i], x_dims[i], "The dimension mismatch.");
    }
110 111 112

    ctx->ShareDim("X", /*->*/ framework::GradVarName("X"));
    ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
113
  }
114 115

 protected:
116
  framework::OpKernelType GetExpectedKernelType(
117
      const framework::ExecutionContext& ctx) const override {
118 119 120
    return framework::OpKernelType(
        ctx.Input<Tensor>(framework::GradVarName("Out"))->type(),
        ctx.device_context());
121
  }
122 123
};

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
class SequencePoolGradOpMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op_desc_ptr = new framework::OpDesc();
    op_desc_ptr->SetType("sequence_pool_grad");
    op_desc_ptr->SetInput("X", Input("X"));
    if (boost::get<std::string>(GetAttr("pooltype")) == "MAX") {
      op_desc_ptr->SetInput("MaxIndex", Output("MaxIndex"));
    }
    op_desc_ptr->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    op_desc_ptr->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op_desc_ptr->SetAttrMap(Attrs());
    return std::unique_ptr<framework::OpDesc>(op_desc_ptr);
  }
};

143 144 145
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(
    SequencePoolGradOpNoNeedBufferVarsInference, "X");

146 147 148 149
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
150 151
REGISTER_OPERATOR(sequence_pool, ops::SequencePoolOp, ops::SequencePoolOpMaker,
                  ops::SequencePoolGradOpMaker);
152 153
REGISTER_OPERATOR(sequence_pool_grad, ops::SequencePoolGradOp,
                  ops::SequencePoolGradOpNoNeedBufferVarsInference);
154
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
155 156
    sequence_pool,
    ops::SequencePoolKernel<paddle::platform::CPUDeviceContext, float>);
157
REGISTER_OP_CPU_KERNEL(
158
    sequence_pool_grad,
Q
QI JUN 已提交
159
    ops::SequencePoolGradKernel<paddle::platform::CPUDeviceContext, float>);