sequence_pool_op.cc 6.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/sequence_ops/sequence_pool_op.h"
16
#include <memory>
17
#include <string>
18 19 20 21

namespace paddle {
namespace operators {

22
class SequencePoolOp : public framework::OperatorWithKernel {
23 24 25
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

26
  void InferShape(framework::InferShapeContext* ctx) const override {
27 28 29 30
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      "Input(X) of SequencePoolOp should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      "Output(Out) of SequencePoolOp should not be null.");
31 32 33 34

    if (!ctx->IsRuntime()) {
      // Check the lod_level for compile-time.
      PADDLE_ENFORCE_GT(
35 36
          ctx->GetLoDLevel("X"), 0,
          "The LoD level Input(X) of sequence_pool should be larger than 0.");
37 38
    }

Q
Qiao Longfei 已提交
39
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
40
    if (ctx->Attrs().Get<std::string>("pooltype") == "MAX") {
41 42 43
      PADDLE_ENFORCE_EQ(
          ctx->HasOutput("MaxIndex"), true,
          "Output(MaxIndex) of SequencePoolOp should not be null.");
44 45
      ctx->SetOutputDim("MaxIndex", ctx->GetInputDim("X"));
    }
46 47 48
  }
};

49
class SequencePoolOpMaker : public framework::OpProtoAndCheckerMaker {
50
 public:
Y
Yu Yang 已提交
51
  void Make() override {
52
    AddInput("X", "(LoDTensor) The variable-length input of SequencePoolOp");
L
Luo Tao 已提交
53
    AddOutput("Out",
54
              "(Tensor) The output of SequencePoolOp does not contain LoD "
L
Luo Tao 已提交
55
              "infomation.");
56
    AddOutput("MaxIndex",
D
dangqingqing 已提交
57 58
              "(Tensor<int>) This tensor is used for the sequence max-pooling "
              "to record the max indexes.")
59
        .AsIntermediate();
60 61 62 63
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
D
dzhwinter 已提交
64 65
    AddAttr<std::string>(
        "pooltype",
L
Luo Tao 已提交
66
        "(string, default 'AVERAGE') the pooling pooltype of SequencePoolOp.")
67 68
        .SetDefault("AVERAGE")
        .InEnum({"AVERAGE", "SUM", "SQRT", "LAST", "FIRST", "MAX"});
69 70 71
    AddAttr<float>("pad_value",
                   "(float, default 0.0) The value to pad for empty sequence.")
        .SetDefault(0.0);
72
    AddComment(R"DOC(
73
Sequence Pool Operator.
74

75 76
The SequencePoolOp pools features of all time-steps of each instance.
It supports six pooling types:
77 78 79
1. AVERAGE: $$Out[i] = \frac{\sum_i X_i}{N}$$
2. SUM:     $$Out[i] = \sum_jX_{ij}$$
3. SQRT:    $$Out[i] = \frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}$$
80 81
4. LAST:    Out[i] = last instance in i-th sequence X[i]
5. FIRST:   Out[i] = first instance in i-th sequence X[i]
82
6. MAX:     $$Out[i] = max(X_i)$$
83

84 85
and for the empty sequence Out[i] = attr(pad_value).

86 87 88
The following example explains how this works:
For a mini-batch of 3 variable-length sentences,
containing 2, 3, and 2 time-steps:
Q
Qiao Longfei 已提交
89

90 91 92
Assume X is a [7,M,N] LoDTensor, and X->lod()[0] = [0, 2, 5, 7], 7=2+3+2.
Besides, for the sake of simplicity, we assume M=1 and N=1,
and the value of X = [[1, 3], [2, 4, 6], [5, 1]].
L
Luo Tao 已提交
93

94 95
Thus, Out is a [3,1,1] Tensor without LoD infomation.
And for different pooltype, the value of Out is as follows:
L
Luo Tao 已提交
96

97 98 99
- AVERAGE: [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
- SUM: [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
- SQRT: [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
L
Luo Tao 已提交
100
           6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
101 102 103 104
- MAX: [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
- LAST: [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
- FIRST: [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)

105 106 107 108
    )DOC");
  }
};

109
class SequencePoolGradOp : public framework::OperatorWithKernel {
110 111 112
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

113
  void InferShape(framework::InferShapeContext* ctx) const override {
114 115 116 117
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
                      "Gradient of Out should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      "The input X should not be null.");
Q
Qiao Longfei 已提交
118 119
    auto og_dims = ctx->GetInputDim(framework::GradVarName("Out"));
    auto x_dims = ctx->GetInputDim("X");
120 121
    PADDLE_ENFORCE_EQ(og_dims.size(), x_dims.size(),
                      "The rank of output grad must equal to Input(X).");
122
    for (int64_t i = 1; i < og_dims.size(); ++i) {
123 124
      PADDLE_ENFORCE_EQ(og_dims[i], x_dims[i], "The dimension mismatch.");
    }
125 126 127

    ctx->ShareDim("X", /*->*/ framework::GradVarName("X"));
    ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
128
  }
129 130

 protected:
131
  framework::OpKernelType GetExpectedKernelType(
132
      const framework::ExecutionContext& ctx) const override {
133 134 135
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
136
  }
137 138
};

H
hong 已提交
139 140
template <typename T>
class SequencePoolGradOpMaker : public framework::SingleGradOpMaker<T> {
141
 public:
H
hong 已提交
142
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
143 144

 protected:
H
hong 已提交
145 146
  std::unique_ptr<T> Apply() const override {
    auto* op_desc_ptr = new T();
147
    op_desc_ptr->SetType("sequence_pool_grad");
H
hong 已提交
148 149 150
    op_desc_ptr->SetInput("X", this->Input("X"));
    if (boost::get<std::string>(this->GetAttr("pooltype")) == "MAX") {
      op_desc_ptr->SetInput("MaxIndex", this->Output("MaxIndex"));
151
    }
H
hong 已提交
152 153 154 155 156
    op_desc_ptr->SetInput(framework::GradVarName("Out"),
                          this->OutputGrad("Out"));
    op_desc_ptr->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op_desc_ptr->SetAttrMap(this->Attrs());
    return std::unique_ptr<T>(op_desc_ptr);
157 158 159
  }
};

160 161 162
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(
    SequencePoolGradOpNoNeedBufferVarsInference, "X");

163 164 165 166
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
167
REGISTER_OPERATOR(sequence_pool, ops::SequencePoolOp, ops::SequencePoolOpMaker,
H
hong 已提交
168 169
                  ops::SequencePoolGradOpMaker<paddle::framework::OpDesc>,
                  ops::SequencePoolGradOpMaker<paddle::imperative::OpBase>);
170 171
REGISTER_OPERATOR(sequence_pool_grad, ops::SequencePoolGradOp,
                  ops::SequencePoolGradOpNoNeedBufferVarsInference);
172
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
173 174
    sequence_pool,
    ops::SequencePoolKernel<paddle::platform::CPUDeviceContext, float>);
175
REGISTER_OP_CPU_KERNEL(
176
    sequence_pool_grad,
Q
QI JUN 已提交
177
    ops::SequencePoolGradKernel<paddle::platform::CPUDeviceContext, float>);