parallel_executor.cc 12.0 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
Y
Yu Yang 已提交
16 17
#include "lod_tensor.h"
#include "op_registry.h"
Y
Yu Yang 已提交
18
#include "threadpool.h"
Y
Yang Yang 已提交
19 20

namespace paddle {
Y
Yu Yang 已提交
21 22
namespace framework {

Y
Yu Yang 已提交
23 24 25 26 27 28
#ifdef PADDLE_WITH_CUDA

// FIXME: CHECK the return value of x;
#define NCCL_INVOKE(x) x
#endif

Y
Yu Yang 已提交
29 30 31 32 33 34 35 36
struct OpHandle;

struct VarHandle {
  size_t version_;
  std::string name_;
  platform::Place place_;

  OpHandle *generated_op_;
Y
Yu Yang 已提交
37 38

  std::vector<OpHandle *> pending_ops_;
Y
Yu Yang 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
};

struct OpHandle {
  std::vector<VarHandle *> inputs_;
  std::vector<VarHandle *> outputs_;

  std::string DebugString() {
    std::stringstream ss;
    ss << "(";
    for (auto *var : inputs_) {
      ss << var->name_ << ":" << var->place_ << ", ";
    }
    ss << ") --> (";
    for (auto *var : outputs_) {
      ss << var->name_ << ":" << var->place_ << ", ";
    }
    ss << ")\n";
    return ss.str();
  }

  virtual ~OpHandle() {}
};

struct ComputationOpHandle : public OpHandle {
  std::unique_ptr<OperatorBase> op_;

  explicit ComputationOpHandle(const OpDesc &op_desc)
      : op_(framework::OpRegistry::CreateOp(op_desc)) {}
};

struct ScaleLossGradOpHandle : public OpHandle {};

struct NCCLAllReduceOpHandle : public OpHandle {};

class ParallelExecutorPrivate {
 public:
Y
Yu Yang 已提交
75 76 77
  explicit ParallelExecutorPrivate(size_t num_threads = 12)
      : pool_(num_threads) {}

Y
Yu Yang 已提交
78 79
  std::unordered_map<platform::Place, Scope *, platform::PlaceHash>
      local_scopes_;
Y
Yu Yang 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124

#ifdef PADDLE_WITH_CUDA
  struct NCCLContext {
    std::unique_ptr<platform::CUDADeviceContext> ctx_;
    ncclComm_t comm;

    explicit NCCLContext(int dev_id) {
      ctx_.reset(new platform::CUDADeviceContext(platform::CUDAPlace(dev_id)));
    }

    cudaStream_t stream() const { return ctx_->stream(); }

    int device_id() const {
      return boost::get<platform::CUDAPlace>(ctx_->GetPlace()).device;
    }

    static void InitNCCLContext(std::map<int, NCCLContext> &contexts) {
      std::vector<ncclComm_t> comms;
      std::vector<int> devs;
      comms.resize(contexts.size());
      devs.reserve(contexts.size());

      for (auto &ctx : contexts) {
        devs.push_back(ctx.first);
      }

      NCCL_INVOKE(platform::dynload::ncclCommInitAll(
          &comms[0], static_cast<int>(contexts.size()), &devs[0]));

      int i = 0;
      for (auto &ctx : contexts) {
        ctx.second.comm = comms[i++];
      }
    }
  };

  std::map<int, NCCLContext> communication_streams_;

  NCCLContext &GetNCCLCtx(platform::Place p) {
    int dev_id = boost::get<platform::CUDAPlace>(p).device;
    return communication_streams_.at(dev_id);
  }

#endif

Y
Yu Yang 已提交
125 126 127 128 129 130 131
  platform::Place main_place_;

  std::unordered_map<platform::Place,
                     std::unordered_map<std::string, std::map<int, VarHandle>>,
                     platform::PlaceHash>
      vars_;
  std::vector<std::unique_ptr<OpHandle>> ops_;
Y
Yu Yang 已提交
132 133

  ThreadPool pool_;
Y
Yu Yang 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
};

// TODO(yy): Move this function somewhere
ncclDataType_t ToNCCLDataType(std::type_index type) {
  // FIXME!!
  return ncclFloat;
}

ParallelExecutor::ParallelExecutor(
    const std::vector<platform::Place> &places,
    const std::unordered_set<std::string> &params,
    const ProgramDesc &startup_program, const ProgramDesc &main_program,
    const std::string &loss_var_name, Scope *scope)
    : member_(new ParallelExecutorPrivate()) {
  // Step 1. RunStartupProgram and Bcast the params to devs.
  Executor exe(places[0]);
  exe.Run(startup_program, scope, 0);
  // Create local scopes
  for (auto &place : places) {
    member_->local_scopes_[place] = &scope->NewScope();
  }
  member_->main_place_ = places[0];

  // Bcast Parameters to all GPUs
Y
Yu Yang 已提交
158 159 160 161
  if (platform::is_gpu_place(member_->main_place_) &&
      member_->local_scopes_.size() != 1) {  // Is CUDA
    BuildNCCLCommunicator();
    BCastParamsToGPUs(startup_program);
Y
Yu Yang 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
  }
  // Startup Program has been run. All local scopes has correct parameters.

  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  ConstructDependencyGraph(params, main_program, loss_var_name);
}

void ParallelExecutor::ConstructDependencyGraph(
    const std::unordered_set<std::string> &params,
    const ProgramDesc &main_program, const std::string &loss_var_name) const {
  std::unordered_set<std::__cxx11::string> grads;
  for (auto &each_param : params) {
    grads.insert(each_param + "@GRAD");
  }

  bool is_forwarding = true;
  for (auto *op : main_program.Block(0).AllOps()) {
    bool change_forward = false;

    if (!is_forwarding) {
      // FIXME(yy): Do not hard code like this
      if (op->OutputArgumentNames().size() == 1 &&
          op->OutputArgumentNames()[0] == loss_var_name + "@GRAD") {
        continue;  // Drop fill 1. for backward coeff;
      }
    }

    for (auto &pair : member_->local_scopes_) {
      member_->ops_.emplace_back(new ComputationOpHandle(*op));
      auto *op_handle = member_->ops_.back().get();

      auto var_names = op->InputArgumentNames();

      for (auto &each_var_name : var_names) {
        auto &place = pair.first;
        VarHandle *var = GetVarHandle(each_var_name, place);
        op_handle->inputs_.emplace_back(var);
Y
Yu Yang 已提交
200
        var->pending_ops_.emplace_back(op_handle);
Y
Yu Yang 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
      }
      var_names = op->OutputArgumentNames();

      for (auto &each_var_name : var_names) {
        auto &place = pair.first;
        GenerateVar(op_handle, each_var_name, place);
      }

      if (is_forwarding) {
        if (var_names.size() == 1 && var_names[0] == loss_var_name) {
          // Insert ScaleCost OpHandle
          member_->ops_.emplace_back(new ScaleLossGradOpHandle());

          op_handle = member_->ops_.back().get();
          auto &place = pair.first;
          VarHandle *loss = GetVarHandle(loss_var_name, place);
Y
Yu Yang 已提交
217
          loss->pending_ops_.emplace_back(op_handle);
Y
Yu Yang 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
          op_handle->inputs_.emplace_back(loss);
          GenerateVar(op_handle, loss_var_name + "@GRAD", place);
          change_forward = true;
          LOG(INFO) << "Scale Loss " << op_handle->DebugString();
        }
      }
    }

    if (change_forward) {
      is_forwarding = false;
    }

    if (!is_forwarding) {
      auto var_names = op->OutputArgumentNames();
      for (auto &og : var_names) {
        if (grads.count(og) != 0) {  // is param grad
          // Insert NCCL AllReduce Op
          member_->ops_.emplace_back(new NCCLAllReduceOpHandle());
          auto *op_handle = member_->ops_.back().get();

          for (auto &pair : member_->local_scopes_) {
            auto &place = pair.first;
            auto &vars = member_->vars_[place][og];

            if (vars.empty()) {  // This device has no data. continue.
              continue;
            }
            auto *prev_grad = &vars[vars.size() - 1];
            op_handle->inputs_.emplace_back(prev_grad);
Y
Yu Yang 已提交
247
            prev_grad->pending_ops_.emplace_back(op_handle);
Y
Yu Yang 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
            auto &var = vars[vars.size()];
            var.place_ = place;
            var.generated_op_ = op_handle;
            var.name_ = og;
            var.version_ = vars.size() - 1;
            op_handle->outputs_.emplace_back(&var);
          }
        }
      }
    }
  }
}

void ParallelExecutor::GenerateVar(OpHandle *op_handle,
                                   const std::string &each_var_name,
                                   const platform::Place &place) const {
  auto &vars = member_->vars_[place][each_var_name];
  size_t version = vars.size();
  auto &var = vars[version];
  var.version_ = version;
  var.generated_op_ = op_handle;
  var.name_ = each_var_name;
  var.place_ = place;
  op_handle->outputs_.emplace_back(&var);
}

VarHandle *ParallelExecutor::GetVarHandle(const std::string &each_var_name,
                                          const platform::Place &place) const {
  auto &var_holders = member_->vars_[place];
  auto &var_holder = var_holders[each_var_name];
  VarHandle *var = nullptr;
  if (var_holder.empty()) {
    auto &init_var = var_holder[0];
    init_var.place_ = place;
    init_var.name_ = each_var_name;
    init_var.generated_op_ = nullptr;
    init_var.version_ = 0;
    var = &init_var;
  } else {
    var = &var_holder.rbegin()->second;
  }
  return var;
}

void ParallelExecutor::BCastParamsToGPUs(
    const ProgramDesc &startup_program) const {
Y
Yu Yang 已提交
294
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
295
  auto *main_scope = member_->local_scopes_[member_->main_place_];
Y
Yu Yang 已提交
296

Y
Yu Yang 已提交
297 298 299 300 301 302 303
  for (auto *var_desc : startup_program.Block(0).AllVars()) {
    if (var_desc->GetType() == proto::VarType::LOD_TENSOR) {
      auto &main_tensor =
          main_scope->FindVar(var_desc->Name())->Get<LoDTensor>();
      ncclDataType_t data_type = ToNCCLDataType(main_tensor.type());
      auto &dims = main_tensor.dims();
      size_t numel = main_tensor.numel();
Y
Yu Yang 已提交
304 305 306 307
      std::vector<std::pair<void *, ParallelExecutorPrivate::NCCLContext *>>
          mems;
      mems.emplace_back(const_cast<void *>(main_tensor.data<void>()),
                        &member_->GetNCCLCtx(member_->main_place_));
Y
Yu Yang 已提交
308 309 310 311 312 313 314 315 316 317

      for (auto &pair : member_->local_scopes_) {
        if (pair.first == member_->main_place_) {
          continue;
        }

        auto local_scope = pair.second;
        auto *t = local_scope->Var(var_desc->Name())->GetMutable<LoDTensor>();
        t->Resize(dims);
        mems.emplace_back(t->mutable_data(pair.first, main_tensor.type()),
Y
Yu Yang 已提交
318
                          &member_->GetNCCLCtx(member_->main_place_));
Y
Yu Yang 已提交
319 320 321 322 323 324 325
      }

      // TODO(yy): Invoke ncclBCast here. mems, numel, data_type. The mems[0]
      // is the src, rests are dests.

      (void)(data_type);
      (void)(numel);
Y
Yu Yang 已提交
326 327 328 329 330 331
    }
  }
#else
  PADDLE_THROW("Not compiled with CUDA");
#endif
}
Y
Yu Yang 已提交
332

Y
Yu Yang 已提交
333 334 335 336 337
void ParallelExecutor::BuildNCCLCommunicator() const {
#ifdef PADDLE_WITH_CUDA
  for (auto &place_pair : member_->local_scopes_) {
    auto place = place_pair.first;
    int dev_id = boost::get<platform::CUDAPlace>(place).device;
Y
Yu Yang 已提交
338

Y
Yu Yang 已提交
339 340
    member_->communication_streams_.emplace(
        dev_id, ParallelExecutorPrivate::NCCLContext(dev_id));
Y
Yu Yang 已提交
341
  }
Y
Yu Yang 已提交
342 343 344 345

  ParallelExecutorPrivate::NCCLContext::InitNCCLContext(
      member_->communication_streams_);
#endif
Y
Yu Yang 已提交
346 347 348 349 350
}

std::vector<LoDTensor> ParallelExecutor::Run(
    const std::vector<std::string> &fetch_tensors) {
  // Version --> VarHandle
Y
Yu Yang 已提交
351 352

  std::unordered_map<VarHandle *, bool> pending_vars;
Y
Yu Yang 已提交
353 354 355 356 357
  std::unordered_map<OpHandle *, size_t> pending_ops;

  for (auto &place_pair : member_->vars_) {
    for (auto &name_pair : place_pair.second) {
      for (auto &version_pair : name_pair.second) {
Y
Yu Yang 已提交
358 359
        pending_vars[&version_pair.second] =
            version_pair.second.generated_op_ == nullptr;
Y
Yu Yang 已提交
360 361 362 363 364 365 366 367
      }
    }
  }

  for (auto &op : member_->ops_) {
    pending_ops.insert({op.get(), op->inputs_.size()});
  }

Y
Yu Yang 已提交
368 369 370 371 372
  while (!pending_ops.empty()) {
    VarHandle *ready_var = nullptr;
    for (auto &pair : pending_vars) {
      if (pair.second) {
        ready_var = pair.first;
Y
Yu Yang 已提交
373 374
      }
    }
Y
Yu Yang 已提交
375 376 377 378

    if (ready_var == nullptr) {
      member_->pool_.Wait();  // Wait thread pool;
      continue;
Y
Yu Yang 已提交
379 380
    }

Y
Yu Yang 已提交
381 382
    pending_vars.erase(ready_var);

Y
Yu Yang 已提交
383
    std::vector<OpHandle *> to_run;
Y
Yu Yang 已提交
384 385 386 387 388 389

    for (auto *op : ready_var->pending_ops_) {
      auto &deps = pending_ops[op];
      --deps;
      if (deps == 0) {
        to_run.emplace_back(op);
Y
Yu Yang 已提交
390 391 392 393 394 395
      }
    }

    for (auto *op : to_run) {
      pending_ops.erase(op);

Y
Yu Yang 已提交
396 397 398 399
      std::vector<bool *> ready_buffer;
      for (auto *var : op->outputs_) {
        ready_buffer.emplace_back(&pending_vars[var]);
      }
Y
Yu Yang 已提交
400

Y
Yu Yang 已提交
401 402 403 404 405 406 407
      auto op_run = [ready_buffer, op] {
        // TODO(yy) Check Previous Op has same dev ctx.
        LOG(INFO) << "Run " << op->DebugString();
        for (auto *ready : ready_buffer) {
          *ready = true;
        }
      };
Y
Yu Yang 已提交
408

Y
Yu Yang 已提交
409
      member_->pool_.Run(op_run);
Y
Yu Yang 已提交
410 411 412 413 414
    }
  }
  return std::vector<LoDTensor>();
}
}  // namespace framework
Y
Yang Yang 已提交
415
}  // namespace paddle