Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
ae88fdef
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ae88fdef
编写于
3月 15, 2018
作者:
Y
Yu Yang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Use thread pool
上级
692a0f74
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
41 addition
and
40 deletion
+41
-40
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+39
-38
paddle/fluid/framework/threadpool.h
paddle/fluid/framework/threadpool.h
+2
-2
未找到文件。
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
ae88fdef
...
...
@@ -15,6 +15,7 @@ limitations under the License. */
#include "paddle/fluid/framework/parallel_executor.h"
#include "lod_tensor.h"
#include "op_registry.h"
#include "threadpool.h"
namespace
paddle
{
namespace
framework
{
...
...
@@ -34,7 +35,6 @@ struct VarHandle {
struct
OpHandle
{
std
::
vector
<
VarHandle
*>
inputs_
;
std
::
vector
<
VarHandle
*>
outputs_
;
platform
::
DeviceContext
*
dev_ctx_
;
std
::
string
DebugString
()
{
std
::
stringstream
ss
;
...
...
@@ -66,6 +66,9 @@ struct NCCLAllReduceOpHandle : public OpHandle {};
class
ParallelExecutorPrivate
{
public:
explicit
ParallelExecutorPrivate
(
size_t
num_threads
=
12
)
:
pool_
(
num_threads
)
{}
std
::
unordered_map
<
platform
::
Place
,
Scope
*
,
platform
::
PlaceHash
>
local_scopes_
;
std
::
unordered_map
<
platform
::
Place
,
platform
::
CUDADeviceContext
,
...
...
@@ -78,6 +81,8 @@ class ParallelExecutorPrivate {
platform
::
PlaceHash
>
vars_
;
std
::
vector
<
std
::
unique_ptr
<
OpHandle
>>
ops_
;
ThreadPool
pool_
;
};
// TODO(yy): Move this function somewhere
...
...
@@ -285,13 +290,15 @@ void ParallelExecutor::BCastParamsToGPUs(
std
::
vector
<
LoDTensor
>
ParallelExecutor
::
Run
(
const
std
::
vector
<
std
::
string
>
&
fetch_tensors
)
{
// Version --> VarHandle
std
::
unordered_set
<
VarHandle
*>
pending_vars
;
std
::
unordered_map
<
VarHandle
*
,
bool
>
pending_vars
;
std
::
unordered_map
<
OpHandle
*
,
size_t
>
pending_ops
;
for
(
auto
&
place_pair
:
member_
->
vars_
)
{
for
(
auto
&
name_pair
:
place_pair
.
second
)
{
for
(
auto
&
version_pair
:
name_pair
.
second
)
{
pending_vars
.
insert
(
&
version_pair
.
second
);
pending_vars
[
&
version_pair
.
second
]
=
version_pair
.
second
.
generated_op_
==
nullptr
;
}
}
}
...
...
@@ -300,56 +307,50 @@ std::vector<LoDTensor> ParallelExecutor::Run(
pending_ops
.
insert
({
op
.
get
(),
op
->
inputs_
.
size
()});
}
std
::
unordered_set
<
OpHandle
*>
complete_op
;
size_t
num_op
=
pending_ops
.
size
();
while
(
complete_op
.
size
()
!=
num_op
)
{
std
::
vector
<
VarHandle
*>
to_remove
;
for
(
auto
&
var
:
pending_vars
)
{
if
(
var
->
generated_op_
==
nullptr
||
complete_op
.
count
(
var
->
generated_op_
)
!=
0
)
{
to_remove
.
push_back
(
var
);
while
(
!
pending_ops
.
empty
())
{
VarHandle
*
ready_var
=
nullptr
;
for
(
auto
&
pair
:
pending_vars
)
{
if
(
pair
.
second
)
{
ready_var
=
pair
.
first
;
}
}
for
(
auto
*
var
:
to_remove
)
{
pending_vars
.
erase
(
var
);
if
(
ready_var
==
nullptr
)
{
member_
->
pool_
.
Wait
();
// Wait thread pool;
continue
;
}
pending_vars
.
erase
(
ready_var
);
std
::
vector
<
OpHandle
*>
to_run
;
for
(
auto
*
var
:
to_remove
)
{
for
(
auto
*
op
:
var
->
pending_ops_
)
{
if
(
var
->
name_
==
"mean_0.tmp_0@GRAD"
)
{
LOG
(
INFO
)
<<
op
->
DebugString
();
}
auto
&
num
=
pending_ops
[
op
];
--
num
;
if
(
num
==
0
)
{
to_run
.
emplace_back
(
op
);
}
for
(
auto
*
op
:
ready_var
->
pending_ops_
)
{
auto
&
deps
=
pending_ops
[
op
];
--
deps
;
if
(
deps
==
0
)
{
to_run
.
emplace_back
(
op
);
}
}
for
(
auto
*
op
:
to_run
)
{
pending_ops
.
erase
(
op
);
complete_op
.
insert
(
op
);
}
if
(
to_run
.
empty
())
break
;
std
::
vector
<
bool
*>
ready_buffer
;
for
(
auto
*
var
:
op
->
outputs_
)
{
ready_buffer
.
emplace_back
(
&
pending_vars
[
var
]);
}
// TODO(yy): Use thead pool to run OpHandle. Operators in ToRun can be
// paralleled. We can also use another schedule method. Just a demo here.
auto
op_run
=
[
ready_buffer
,
op
]
{
// TODO(yy) Check Previous Op has same dev ctx.
LOG
(
INFO
)
<<
"Run "
<<
op
->
DebugString
();
for
(
auto
*
ready
:
ready_buffer
)
{
*
ready
=
true
;
}
};
std
::
stringstream
ss
;
ss
<<
"
\n
"
;
for
(
auto
*
op
:
to_run
)
{
ss
<<
op
->
DebugString
()
<<
"
\n
"
;
member_
->
pool_
.
Run
(
op_run
);
}
ss
<<
std
::
endl
;
LOG
(
INFO
)
<<
ss
.
str
();
}
PADDLE_ENFORCE_EQ
(
complete_op
.
size
(),
num_op
);
return
std
::
vector
<
LoDTensor
>
();
}
}
// namespace framework
...
...
paddle/fluid/framework/threadpool.h
浏览文件 @
ae88fdef
...
...
@@ -32,6 +32,8 @@ namespace framework {
// number of threads.
class
ThreadPool
{
public:
explicit
ThreadPool
(
int
num_threads
);
using
Task
=
std
::
packaged_task
<
std
::
unique_ptr
<
platform
::
EnforceNotMet
>
()
>
;
// Returns the singleton of ThreadPool.
...
...
@@ -103,8 +105,6 @@ class ThreadPool {
DISABLE_COPY_AND_ASSIGN
(
ThreadPool
);
explicit
ThreadPool
(
int
num_threads
);
// If the task queue is empty and avaialbe is equal to the number of
// threads, means that all tasks are completed. Note: this function
// is not thread-safe. Returns true if all tasks are completed.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录