test_complex_elementwise_layers.py 3.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

17 18
import numpy as np
from numpy.random import random as rand
19 20

import paddle
21 22 23
import paddle.fluid as fluid
import paddle.fluid.dygraph as dg

24 25 26 27 28
paddle_apis = {
    "add": paddle.add,
    "sub": paddle.subtract,
    "mul": paddle.multiply,
    "div": paddle.divide,
29 30
}

31 32 33

class TestComplexElementwiseLayers(unittest.TestCase):
    def setUp(self):
34 35
        self._dtypes = ["float32", "float64"]
        self._places = [paddle.CPUPlace()]
36
        if fluid.core.is_compiled_with_cuda():
37
            self._places.append(paddle.CUDAPlace(0))
38

39
    def paddle_calc(self, x, y, op, place):
40
        with dg.guard(place):
C
chentianyu03 已提交
41 42
            x_t = dg.to_variable(x)
            y_t = dg.to_variable(y)
43 44 45
            return paddle_apis[op](x_t, y_t).numpy()

    def assert_check(self, pd_result, np_result, place):
46 47 48 49
        np.testing.assert_allclose(
            pd_result,
            np_result,
            rtol=1e-05,
50 51 52 53 54 55
            err_msg='\nplace: {}\npaddle diff result:\n {}\nnumpy diff result:\n {}\n'.format(
                place,
                pd_result[~np.isclose(pd_result, np_result)],
                np_result[~np.isclose(pd_result, np_result)],
            ),
        )
56 57

    def compare_by_basic_api(self, x, y):
58
        for place in self._places:
59 60 61 62 63 64 65 66 67 68 69 70
            self.assert_check(
                self.paddle_calc(x, y, "add", place), x + y, place
            )
            self.assert_check(
                self.paddle_calc(x, y, "sub", place), x - y, place
            )
            self.assert_check(
                self.paddle_calc(x, y, "mul", place), x * y, place
            )
            self.assert_check(
                self.paddle_calc(x, y, "div", place), x / y, place
            )
71

C
chentianyu03 已提交
72
    def compare_op_by_basic_api(self, x, y):
73 74 75 76
        for place in self._places:
            with dg.guard(place):
                var_x = dg.to_variable(x)
                var_y = dg.to_variable(y)
77 78 79 80
                self.assert_check((var_x + var_y).numpy(), x + y, place)
                self.assert_check((var_x - var_y).numpy(), x - y, place)
                self.assert_check((var_x * var_y).numpy(), x * y, place)
                self.assert_check((var_x / var_y).numpy(), x / y, place)
81

82
    def test_complex_xy(self):
83
        for dtype in self._dtypes:
84 85 86 87 88 89
            x = rand([2, 3, 4, 5]).astype(dtype) + 1j * rand(
                [2, 3, 4, 5]
            ).astype(dtype)
            y = rand([2, 3, 4, 5]).astype(dtype) + 1j * rand(
                [2, 3, 4, 5]
            ).astype(dtype)
90

C
chentianyu03 已提交
91
            self.compare_by_basic_api(x, y)
92
            self.compare_op_by_basic_api(x, y)
93 94

    def test_complex_x_real_y(self):
95
        for dtype in self._dtypes:
96 97 98
            x = rand([2, 3, 4, 5]).astype(dtype) + 1j * rand(
                [2, 3, 4, 5]
            ).astype(dtype)
99 100 101 102 103
            y = rand([4, 5]).astype(dtype)

            # promote types cases
            self.compare_by_basic_api(x, y)
            self.compare_op_by_basic_api(x, y)
104 105

    def test_real_x_complex_y(self):
106 107 108 109 110 111 112
        for dtype in self._dtypes:
            x = rand([2, 3, 4, 5]).astype(dtype)
            y = rand([5]).astype(dtype) + 1j * rand([5]).astype(dtype)

            # promote types cases
            self.compare_by_basic_api(x, y)
            self.compare_op_by_basic_api(x, y)
113

114 115 116

if __name__ == '__main__':
    unittest.main()