test_complex_elementwise_layers.py 5.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
from numpy.random import random as rand
18 19

import paddle
20 21
import paddle.fluid as fluid
import paddle.fluid.dygraph as dg
22
from paddle import complex as cpx
23 24 25 26 27 28 29 30

layers = {
    "add": cpx.elementwise_add,
    "sub": cpx.elementwise_sub,
    "mul": cpx.elementwise_mul,
    "div": cpx.elementwise_div,
}

31 32 33 34 35
paddle_apis = {
    "add": paddle.add,
    "sub": paddle.subtract,
    "mul": paddle.multiply,
    "div": paddle.divide,
36 37
}

38 39 40

class TestComplexElementwiseLayers(unittest.TestCase):
    def setUp(self):
41 42
        self._dtypes = ["float32", "float64"]
        self._places = [paddle.CPUPlace()]
43
        if fluid.core.is_compiled_with_cuda():
44
            self._places.append(paddle.CUDAPlace(0))
45

46
    def calc(self, x, y, op, place):
47 48 49
        with dg.guard(place):
            var_x = dg.to_variable(x)
            var_y = dg.to_variable(y)
50
            return layers[op](var_x, var_y).numpy()
51

52
    def paddle_calc(self, x, y, op, place):
53
        with dg.guard(place):
54
            x_t = paddle.Tensor(
55
                value=x,
56
                place=place,
57
                persistable=False,
58 59 60
                zero_copy=False,
                stop_gradient=True)
            y_t = paddle.Tensor(
61
                value=y,
62
                place=place,
63
                persistable=False,
64 65 66 67 68 69 70 71 72 73 74 75
                zero_copy=False,
                stop_gradient=True)
            return paddle_apis[op](x_t, y_t).numpy()

    def assert_check(self, pd_result, np_result, place):
        self.assertTrue(
            np.allclose(pd_result, np_result),
            "\nplace: {}\npaddle diff result:\n {}\nnumpy diff result:\n {}\n".
            format(place, pd_result[~np.isclose(pd_result, np_result)],
                   np_result[~np.isclose(pd_result, np_result)]))

    def compare_by_complex_api(self, x, y):
76
        for place in self._places:
77 78 79 80
            self.assert_check(self.calc(x, y, "add", place), x + y, place)
            self.assert_check(self.calc(x, y, "sub", place), x - y, place)
            self.assert_check(self.calc(x, y, "mul", place), x * y, place)
            self.assert_check(self.calc(x, y, "div", place), x / y, place)
81

82
    def compare_by_basic_api(self, x, y):
83
        for place in self._places:
84 85 86 87 88 89 90 91 92 93
            self.assert_check(
                self.paddle_calc(x, y, "add", place), x + y, place)
            self.assert_check(
                self.paddle_calc(x, y, "sub", place), x - y, place)
            self.assert_check(
                self.paddle_calc(x, y, "mul", place), x * y, place)
            self.assert_check(
                self.paddle_calc(x, y, "div", place), x / y, place)

    def compare_op_by_complex_api(self, x, y):
94 95 96 97
        for place in self._places:
            with dg.guard(place):
                var_x = dg.to_variable(x)
                var_y = dg.to_variable(y)
98 99 100 101
                self.assert_check((var_x + var_y).numpy(), x + y, place)
                self.assert_check((var_x - var_y).numpy(), x - y, place)
                self.assert_check((var_x * var_y).numpy(), x * y, place)
                self.assert_check((var_x / var_y).numpy(), x / y, place)
102

103
    def compare_op_by_basic_api(self, x, y):
104 105
        for place in self._places:
            with dg.guard(place):
106
                x_t = paddle.Tensor(
107
                    value=x,
108
                    place=place,
109
                    persistable=False,
110 111 112
                    zero_copy=False,
                    stop_gradient=True)
                y_t = paddle.Tensor(
113
                    value=y,
114
                    place=place,
115
                    persistable=False,
116 117 118 119 120 121
                    zero_copy=False,
                    stop_gradient=True)
                self.assert_check((x_t + y_t).numpy(), x + y, place)
                self.assert_check((x_t - y_t).numpy(), x - y, place)
                self.assert_check((x_t * y_t).numpy(), x * y, place)
                self.assert_check((x_t / y_t).numpy(), x / y, place)
122

123
    def test_complex_xy(self):
124 125 126 127 128 129 130 131 132 133 134
        for dtype in self._dtypes:
            x = rand([2, 3, 4, 5]).astype(dtype) + 1j * rand(
                [2, 3, 4, 5]).astype(dtype)
            y = rand([2, 3, 4, 5]).astype(dtype) + 1j * rand(
                [2, 3, 4, 5]).astype(dtype)

            self.compare_by_complex_api(x, y)
            self.compare_op_by_complex_api(x, y)

            self.compare_op_by_complex_api(x, y)
            self.compare_op_by_basic_api(x, y)
135 136

    def test_complex_x_real_y(self):
137 138 139 140 141 142 143 144 145 146 147
        for dtype in self._dtypes:
            x = rand([2, 3, 4, 5]).astype(dtype) + 1j * rand(
                [2, 3, 4, 5]).astype(dtype)
            y = rand([4, 5]).astype(dtype)

            self.compare_by_complex_api(x, y)
            self.compare_op_by_complex_api(x, y)

            # promote types cases
            self.compare_by_basic_api(x, y)
            self.compare_op_by_basic_api(x, y)
148 149

    def test_real_x_complex_y(self):
150 151 152 153 154 155 156 157 158 159
        for dtype in self._dtypes:
            x = rand([2, 3, 4, 5]).astype(dtype)
            y = rand([5]).astype(dtype) + 1j * rand([5]).astype(dtype)

            self.compare_by_complex_api(x, y)
            self.compare_op_by_complex_api(x, y)

            # promote types cases
            self.compare_by_basic_api(x, y)
            self.compare_op_by_basic_api(x, y)
160

161 162 163

if __name__ == '__main__':
    unittest.main()