# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from numpy.random import random as rand import paddle import paddle.fluid as fluid import paddle.fluid.dygraph as dg paddle_apis = { "add": paddle.add, "sub": paddle.subtract, "mul": paddle.multiply, "div": paddle.divide, } class TestComplexElementwiseLayers(unittest.TestCase): def setUp(self): self._dtypes = ["float32", "float64"] self._places = [paddle.CPUPlace()] if fluid.core.is_compiled_with_cuda(): self._places.append(paddle.CUDAPlace(0)) def paddle_calc(self, x, y, op, place): with dg.guard(place): x_t = dg.to_variable(x) y_t = dg.to_variable(y) return paddle_apis[op](x_t, y_t).numpy() def assert_check(self, pd_result, np_result, place): np.testing.assert_allclose( pd_result, np_result, rtol=1e-05, err_msg='\nplace: {}\npaddle diff result:\n {}\nnumpy diff result:\n {}\n'.format( place, pd_result[~np.isclose(pd_result, np_result)], np_result[~np.isclose(pd_result, np_result)], ), ) def compare_by_basic_api(self, x, y): for place in self._places: self.assert_check( self.paddle_calc(x, y, "add", place), x + y, place ) self.assert_check( self.paddle_calc(x, y, "sub", place), x - y, place ) self.assert_check( self.paddle_calc(x, y, "mul", place), x * y, place ) self.assert_check( self.paddle_calc(x, y, "div", place), x / y, place ) def compare_op_by_basic_api(self, x, y): for place in self._places: with dg.guard(place): var_x = dg.to_variable(x) var_y = dg.to_variable(y) self.assert_check((var_x + var_y).numpy(), x + y, place) self.assert_check((var_x - var_y).numpy(), x - y, place) self.assert_check((var_x * var_y).numpy(), x * y, place) self.assert_check((var_x / var_y).numpy(), x / y, place) def test_complex_xy(self): for dtype in self._dtypes: x = rand([2, 3, 4, 5]).astype(dtype) + 1j * rand( [2, 3, 4, 5] ).astype(dtype) y = rand([2, 3, 4, 5]).astype(dtype) + 1j * rand( [2, 3, 4, 5] ).astype(dtype) self.compare_by_basic_api(x, y) self.compare_op_by_basic_api(x, y) def test_complex_x_real_y(self): for dtype in self._dtypes: x = rand([2, 3, 4, 5]).astype(dtype) + 1j * rand( [2, 3, 4, 5] ).astype(dtype) y = rand([4, 5]).astype(dtype) # promote types cases self.compare_by_basic_api(x, y) self.compare_op_by_basic_api(x, y) def test_real_x_complex_y(self): for dtype in self._dtypes: x = rand([2, 3, 4, 5]).astype(dtype) y = rand([5]).astype(dtype) + 1j * rand([5]).astype(dtype) # promote types cases self.compare_by_basic_api(x, y) self.compare_op_by_basic_api(x, y) if __name__ == '__main__': unittest.main()