backward.py 52.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from paddle.fluid import framework as framework
F
update  
fengjiayi 已提交
18
from . import core
F
update  
fengjiayi 已提交
19
import collections
20
import copy
21
import six
M
minqiyang 已提交
22
from .. import compat as cpt
23
from . import unique_name
24

M
mapingshuo 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
__all__ = [
    'append_backward',
    'gradients',
]


class ProgramStats(object):
    def __init__(self, block, ops):
        self.block = block
        self.ops = ops
        self.op_deps = {}  # op-> in_ops, out_ops
        self.var_op_deps = {}  # var as input op, var as output op

    def get_input_nodes(self):
        input_names = []
        for name in self.var_op_deps:
            if len(self.var_op_deps[name]["var_as_output_ops"]) <= 0 and \
               len(self.var_op_deps[name]["var_as_input_ops"]) > 0:
                if self.block.var(name).persistable:
                    continue
                input_names.append(name)
        for op in self.ops:
            if op.desc.type() == "read":
                input_names.extend(op.desc.output_arg_names())
        return input_names

    def get_reserved_vars(self):
        var_name = []
        for op in self.ops:
            if op.desc.type() == "dropout":
                var_name.extend(op.desc.output_arg_names())
        return var_name

    def get_out_of_subgraph_vars(self, begin_op_idx, end_op_idx):
        var_name = []
        for i in range(begin_op_idx, end_op_idx, 1):
            for name in self.ops[i].desc.output_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_input_ops"]:
                        if idx >= end_op_idx:
                            var_name.append(name)
        return var_name

    def is_subgraph(self, var_group1, var_group2):
        # should traverse from var_group1 to var_group2
        # max op idx in var_group2
        # min op idx in var_group1
        min_op_idx = len(self.ops)
        max_op_idx = -1
        for name in var_group1:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group2:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group1:
            op_idx = self.var_op_deps[name]["var_as_input_ops"]
            for idx in op_idx:
                min_op_idx = min(min_op_idx, idx)
        for name in var_group2:
            op_idx = self.var_op_deps[name]["var_as_output_ops"]
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if min_op_idx >= max_op_idx:
            return False, min_op_idx, max_op_idx
        return True, min_op_idx, max_op_idx

    def build_stats(self):
        for i, op in enumerate(self.ops):
            self.op_deps[i] = {"in_ops": [], "out_ops": []}
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
                    self.op_deps[i]["in_ops"].extend(self.var_op_deps[name][
                        "var_as_output_ops"])
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_input_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = [i]
                    self.var_op_deps[name]["var_as_output_ops"] = []

            for j, name in enumerate(op.desc.output_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_output_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = []
                    self.var_op_deps[name]["var_as_output_ops"] = [i]

            for op_idx in self.op_deps[i]["in_ops"]:
                self.op_deps[op_idx]["out_ops"].extend([i])


def _pretty_op_desc_(op_desc, prefix):
    out_s = "%s\tname:[%s]\n%s    \tinputs:[%s]\n%s    \toutputs:[%s]" % \
            (prefix + "_op", str(op_desc.type()), prefix + "_input", " ".join(op_desc.input_arg_names()),
             prefix + "_output", " ".join(op_desc.output_arg_names()))
    return out_s


def _add_needed_descs_to_block(descs, block, main_block, in_memory_vars):
    if len(descs) == 0:
        return []
    result_descs = []
    op_role_attr_name = \
            core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        is_needed = False
        for name in desc.output_arg_names():
            if main_block.has_var(name) and main_block.var(name).persistable:
                continue
            if name not in in_memory_vars:
                is_needed = True
        if is_needed:
            new_op_desc = block.desc.append_op()
            new_op_desc.copy_from(desc)
            new_op_desc._set_attr(op_role_attr_name, backward)
            result_descs.append(new_op_desc)
    return result_descs


def _add_descs_to_block(descs, block):
    if len(descs) == 0:
        return []
    result_descs = []
    op_role_attr_name = \
        core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        new_op_desc = block.desc.append_op()
        new_op_desc.copy_from(desc)
        new_op_desc._set_attr(op_role_attr_name, backward)
        result_descs.append(new_op_desc)
    return result_descs


def _find_loss_op_(loss):
    for op in reversed(loss.block.ops):
        assert isinstance(op, framework.Operator)
        if len(op.output_arg_names) == 1 and op.output_arg_names[
                0] == loss.name:
            loss.op = op
            break
    if loss.op is None:
        raise ValueError("loss.op is None. Should not happend")
180 181


182 183
def _rename_arg_(op_descs, old_name, new_name, begin_idx=None, end_idx=None):
    """
184
    Traverse all ops in op_descs[begin_idx : end_idx],
185 186
    if any op has inputs/outputs named "old_name", rename it as 'new_name'
    """
F
update  
fengjiayi 已提交
187 188 189
    if begin_idx is None:
        begin_idx = 0
    if end_idx is None:
190
        end_idx = len(op_descs)
F
update  
fengjiayi 已提交
191
    for i in range(begin_idx, end_idx):
192
        op_desc = op_descs[i]
F
fengjiayi 已提交
193 194
        if isinstance(op_desc, tuple):
            op_desc = op_desc[0]
W
Wu Yi 已提交
195 196
        op_desc._rename_input(old_name, new_name)
        op_desc._rename_output(old_name, new_name)
F
update  
fengjiayi 已提交
197 198


F
fengjiayi 已提交
199
def _create_op_desc_(op_type, inputs, outputs, attrs):
200 201 202
    """
    Create a C++ OpDesc object with specified inputs, outputs and attributes.
    """
F
fengjiayi 已提交
203 204
    op_desc = core.OpDesc()
    op_desc.set_type(op_type)
M
minqiyang 已提交
205
    for para, args in six.iteritems(inputs):
206 207 208 209 210
        op_desc.set_input(
            para,
            list(
                map(lambda arg: arg.decode() if isinstance(arg, six.binary_type) else arg,
                    args)))
M
minqiyang 已提交
211
    for para, args in six.iteritems(outputs):
212 213 214 215 216
        op_desc.set_output(
            para,
            list(
                map(lambda arg: arg.decode() if isinstance(arg, six.binary_type) else arg,
                    args)))
Y
yuyang18 已提交
217 218 219 220 221 222

    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()

    if op_role_attr_name not in attrs:
        attrs[
            op_role_attr_name] = core.op_proto_and_checker_maker.OpRole.Backward
M
minqiyang 已提交
223
    for name, val in six.iteritems(attrs):
F
fengjiayi 已提交
224 225 226
        if isinstance(val, framework.Block):
            op_desc.set_block_attr(name, val.desc)
        else:
W
Wu Yi 已提交
227
            op_desc._set_attr(name, val)
F
fengjiayi 已提交
228 229 230
    return op_desc


M
mapingshuo 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244
def _create_loss_op_desc_(loss):
    op_desc = _create_op_desc_(
        "fill_constant", {}, {"Out": [_append_grad_suffix_(loss.name)]}, {
            "shape": [1],
            "value": 1.0,
            "dtype": loss.dtype,
            "force_cpu": False,
            core.op_proto_and_checker_maker.kOpRoleAttrName():
            int(core.op_proto_and_checker_maker.OpRole.Backward) |
            int(core.op_proto_and_checker_maker.OpRole.Loss),
        })
    return op_desc


245 246 247 248
def _infer_var_data_type_(grad_var_name, block):
    """
    Infer the data type of given grad variable
    """
M
minqiyang 已提交
249 250 251 252
    grad_var = block.desc.find_var(cpt.to_bytes(grad_var_name))
    fwd_name = _strip_grad_suffix_(grad_var_name)
    if block.desc.has_var_recursive(cpt.to_bytes(fwd_name)):
        fwd_var = block.desc.find_var_recursive(cpt.to_bytes(fwd_name))
F
fengjiayi 已提交
253 254
        grad_var.set_dtype(fwd_var.dtype())
    else:
255
        grad_var.set_dtype(core.VarDesc.VarType.FP32)
F
fengjiayi 已提交
256 257


F
fengjiayi 已提交
258
def _all_in_set_(cands, s):
259 260 261
    """
    Test if all elements of 'cands' are in set 's'
    """
F
fengjiayi 已提交
262 263
    if len(cands) == 0:
        return False
F
fengjiayi 已提交
264 265 266 267 268 269
    for c in cands:
        if not c in s:
            return False
    return True


270 271 272 273 274 275
def _some_in_set_(cands, s):
    """
    Test if some elements of 'cands' are in set 's'
    """
    if len(cands) == 0:
        return False
M
minqiyang 已提交
276 277
    literal_set = cpt.to_text(s)
    literal_cands = cpt.to_text(cands)
M
minqiyang 已提交
278 279
    for c in literal_cands:
        if c in literal_set:
280 281 282 283
            return True
    return False


F
fengjiayi 已提交
284
def _strip_grad_suffix_(name):
285
    """
M
mapingshuo 已提交
286
    Strip the grad suffix from the given variable name
287 288 289
    e.g. x@GRAD ==> x
         y@GRAD@RENAME@1 ==> y
    """
M
minqiyang 已提交
290
    name = cpt.to_text(name)
M
minqiyang 已提交
291
    pos = name.find(core.grad_var_suffix())
F
fengjiayi 已提交
292
    return name[:pos] if pos != -1 else name
F
fengjiayi 已提交
293 294 295


def _append_grad_suffix_(name):
296 297 298 299
    """
    Append grad suffix to the given variable name
    e.g. x ==> x@GRAD
    """
M
minqiyang 已提交
300
    return cpt.to_text(name) + core.grad_var_suffix()
F
fengjiayi 已提交
301 302


F
fengjiayi 已提交
303
def _addup_repetitive_outputs_(op_descs):
304 305
    """
    In backward part, an variable may be the output of more than one ops.
F
fengjiayi 已提交
306 307
    And one op may yield its multiple outputs to the same variable.
    In these cases, the variable should be the accumulation of all the outputs.
308 309
    `sum_op`s are added to implement the accumulate.
    """
F
update  
fengjiayi 已提交
310 311
    pending_sum_ops = []
    var_rename_count = collections.defaultdict(int)
F
fengjiayi 已提交
312
    renamed_vars = collections.defaultdict(list)
313
    renamed_var_start_idx = collections.defaultdict(list)
F
fengjiayi 已提交
314
    for idx, op_desc in enumerate(op_descs):
F
update  
fengjiayi 已提交
315
        for var_name in op_desc.input_arg_names():
M
mapingshuo 已提交
316 317
            if "@GRAD" not in var_name:
                continue
F
fengjiayi 已提交
318
            if len(renamed_vars[var_name]) > 1:
319 320 321
                pending_sum_ops.append((_create_op_desc_(
                    "sum", {"X": renamed_vars[var_name]}, {"Out": [var_name]},
                    {"use_mkldnn": False}), idx))
F
fengjiayi 已提交
322
                renamed_vars[var_name] = [var_name]
F
update  
fengjiayi 已提交
323
        for param_idx, param_name in enumerate(op_desc.output_names()):
F
fengjiayi 已提交
324 325
            arg_names = op_desc.output(param_name)
            for arg_idx, var_name in enumerate(arg_names):
M
mapingshuo 已提交
326 327 328 329
                if "@GRAD" not in var_name:
                    continue
                #if "@RENAME@" in var_name:
                #    continue
F
fengjiayi 已提交
330 331 332 333 334 335 336
                if var_name == core.empty_var_name(
                ) or var_name in op_desc.input_arg_names():
                    # empty variable or inplace op
                    continue
                if len(renamed_vars[var_name]) == 0:
                    # it's the first time we get the variable
                    renamed_vars[var_name] = [var_name]
337
                    renamed_var_start_idx[var_name] = idx
F
fengjiayi 已提交
338 339 340 341 342 343 344
                else:
                    if len(renamed_vars[var_name]) == 1:
                        new_name = var_name + "@RENAME@" + \
                            str(var_rename_count[var_name])
                        var_rename_count[var_name] += 1
                        # rename original var_name
                        renamed_vars[var_name][0] = new_name
345 346 347 348 349 350
                        # before change: _rename_arg_(op_descs, var_name,
                        #                             new_name, 0, idx)
                        # rename arg from idx of the first appearance
                        # in backward, not always from 0
                        _rename_arg_(op_descs, var_name, new_name,
                                     renamed_var_start_idx[var_name], idx)
F
fengjiayi 已提交
351 352
                        _rename_arg_(pending_sum_ops, var_name, new_name)

F
update  
fengjiayi 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365
                        for p in op_desc.output_names()[:param_idx]:
                            p_arg_names = op_desc.output(p)
                            if var_name in p_arg_names:
                                op_desc.set_output(p, [
                                    new_name if x == var_name else x
                                    for x in p_arg_names
                                ])

                        arg_names = [
                            new_name if x == var_name else x
                            for x in arg_names[:arg_idx]
                        ] + arg_names[arg_idx:]

F
update  
fengjiayi 已提交
366
                    new_name = var_name + "@RENAME@" + \
F
fengjiayi 已提交
367
                        str(var_rename_count[var_name])
F
fengjiayi 已提交
368
                    var_rename_count[var_name] += 1
F
fengjiayi 已提交
369 370 371
                    arg_names[arg_idx] = new_name
                    op_desc.set_output(param_name, arg_names)
                    renamed_vars[var_name].append(new_name)
F
update  
fengjiayi 已提交
372

M
minqiyang 已提交
373
    for var_name, inputs in six.iteritems(renamed_vars):
F
update  
fengjiayi 已提交
374
        if len(inputs) > 1:
375 376 377
            pending_sum_ops.append(
                (_create_op_desc_("sum", {"X": inputs}, {"Out": [var_name]},
                                  {"use_mkldnn": False}), len(op_descs)))
F
fengjiayi 已提交
378
    # sum_op descs are sorted according to their insert position
F
update  
fengjiayi 已提交
379
    for p in reversed(pending_sum_ops):
F
fengjiayi 已提交
380 381 382 383 384 385
        op_descs.insert(p[1], p[0])

    return op_descs


def _remove_no_grad_branch_(op_descs, no_grad_set):
386 387 388 389
    """
    Remove unnecessary grad ops
    A grad op can be removed in two cases:
        1. all outputs of the grad op are in 'no_grad_set'
F
fengjiayi 已提交
390
        2. all grad inputs of the grad op are in 'no_grad_set'
391
    """
F
fengjiayi 已提交
392 393

    def _op_can_be_removed_(op_desc, no_grad_set):
F
fengjiayi 已提交
394 395
        out_arg_names = op_desc.output_arg_names()
        if len(out_arg_names) == 0 or _all_in_set_(out_arg_names, no_grad_set):
F
fengjiayi 已提交
396
            return True
397 398 399 400
        if _all_in_set_([
                name for name in op_desc.input_arg_names()
                if name.find(core.grad_var_suffix()) != -1
        ], no_grad_set):
F
fengjiayi 已提交
401
            no_grad_set.update(out_arg_names)
F
fengjiayi 已提交
402 403 404
            return True
        return False

F
fengjiayi 已提交
405
    # Remove ops whose outputs are all in no_grad_dict
406 407 408 409
    op_descs = [
        op_desc for op_desc in op_descs
        if not _op_can_be_removed_(op_desc, no_grad_set)
    ]
F
fengjiayi 已提交
410 411
    # Insert fill_zeros_like_op
    to_insert = []
F
fengjiayi 已提交
412
    for idx, op_desc in enumerate(op_descs):
F
fengjiayi 已提交
413
        for arg in op_desc.input_arg_names():
M
mapingshuo 已提交
414
            # arg is a gradient var name and arg should not have gradient
F
fengjiayi 已提交
415
            if core.grad_var_suffix() in arg and arg in no_grad_set:
416
                x_in = _strip_grad_suffix_(arg)
M
mapingshuo 已提交
417 418
                # the reason should be: arg can be input of another grad op
                # and the op is a not-to-remove op
419 420
                to_insert.append((_create_op_desc_(
                    "fill_zeros_like", {"X": [x_in]}, {"Out": [arg]}, {}), idx))
F
fengjiayi 已提交
421

422
    list([op_descs.insert(p[1], p[0]) for p in reversed(to_insert)])
F
fengjiayi 已提交
423 424 425 426

    return op_descs


C
chengduo 已提交
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
def _find_not_need_ops(grad_op_descs, forward_ops, input_grad_names_set):
    """
    Pruning Program with Structural Analysis Method of Computational Graph.
    The nodes of the computational graph composed of backward OPS should be
    interconnected. If there are unconnected sub-graphs in the computational graph,
    these sub-graphs should be cut off.

    Args:
        grad_op_descs(list[core.OpDesc]): The candidate backward OpDescs.
        forward_ops(list[Operator]): The forward ops.
        input_grad_names_set(set): this set is used to store the gradients' name
            which is generated by backward ops, and input_grad_names_set can help
            to prune the unnecessary backward ops.

    Return:
        (list[core.OpDesc]): A list of OpDescs which should be pruned.
    """

    class Var(object):
        def __init__(self, var_name):
            self.var_name = var_name
            self.gen_op = None
            self.pendding_ops = []

        def set_gen_op(self, gen_op):
            assert isinstance(gen_op, Op)
            assert self.gen_op is None
            self.gen_op = gen_op

        def add_pending_op(self, op):
            assert isinstance(op, Op)
            self.pendding_ops.append(op)

    class Op(object):
        def __init__(self, op_desc):
            self.op_desc = op_desc
            self.inputs = []
            self.outputs = []

        def insert_input(self, var):
            assert isinstance(var, Var)
            self.inputs.append(var)

        def insert_output(self, var):
            assert isinstance(var, Var)
            self.outputs.append(var)

    var_versions = dict()

    def _create_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        else:
            var_versions[name].append(Var(name))
        return var_versions[name][-1]

    def _create_or_get_last_version_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        return var_versions[name][-1]

    def _create_op_node(op_desc):
        op_node = Op(op_desc)
        for input in op_desc.input_arg_names():
            var = _create_or_get_last_version_node(name=input)
            var.add_pending_op(op_node)
            op_node.insert_input(var)
        for output in op_desc.output_arg_names():
            var = _create_node(name=output)
            var.set_gen_op(op_node)
            op_node.insert_output(var)
        return op_node

    # Record the forward vars
    forward_vars_set = set() if input_grad_names_set is None else set(
        input_grad_names_set)
    for op in forward_ops:
        forward_vars_set.update(op.desc.input_arg_names())
        forward_vars_set.update(op.desc.output_arg_names())

    # Record the vars which are created during backward and is not generated by op.
    backward_vars_set = set()
    # special_op_nodes is the candidate sub-graph head node.
    special_op_nodes = set()
    for op_desc in grad_op_descs:
        input_set = set(op_desc.input_arg_names())
        # The new_vars are created during backward and is not generated by op.
        new_vars = input_set - forward_vars_set - backward_vars_set
        backward_vars_set.update(op_desc.output_arg_names())

        op_node = _create_op_node(op_desc)
        if len(new_vars) == len(input_set):
            special_op_nodes.add(op_node)

    not_need_op_descs = []
    # Start traversing all candidate sub-graph headers to check whether
    # they are connected to backward computational graphs, and if they are
    # not, list them in not_need_op_descs
    for special_op_node in special_op_nodes:
        op_list = [special_op_node]
        ready_vars = set(special_op_node.inputs)
        remove_ops = True
        candidate_ops = [special_op_node]
        while len(candidate_ops) > 0:
            op_node = candidate_ops.pop(0)
            if _all_in_set_(op_node.inputs, ready_vars):
                for out_var in op_node.outputs:
                    candidate_ops.extend(out_var.pendding_ops)
                    op_list.extend(out_var.pendding_ops)
                ready_vars.update(op_node.outputs)
            else:
                remove_ops = False
                break
        if remove_ops:
            not_need_op_descs.extend([node.op_desc for node in op_list])

    return set(not_need_op_descs)


546
from .proto import framework_pb2
Y
Yang Yang 已提交
547 548 549 550


def serialize_op_decs(op_desc):
    protostr = op_desc.serialize_to_string()
M
minqiyang 已提交
551
    proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang 已提交
552 553 554
    return proto.__str__()


M
mapingshuo 已提交
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
def _append_backward_ops_with_checkpoints_(
        block, ops, target_block, no_grad_dict, grad_to_var, checkpoints):
    """
    Create grad ops with forward ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
        ops(Op): the forward operators whose forward recomputation backward ops need to be added
        target_block(Block): the block which is going to hold new generated grad ops
        no_grad_dict(dict):
            key(int) block index
            val(str): corresponding forward variable name
        checkpoints: variables that a user defined as checkpoint for forward recomputation

    Algorithms:
M
mapingshuo 已提交
570 571 572 573 574
        1) find ops between checkpoints, i.e. recompute_segments
        2) go through all forward ops and induct all variables that will be hold in memory
            a. variables that are used across segments will be held in memory
            b. output of dropout op will be held in memory
            c. input variables will be held in memory
M
mapingshuo 已提交
575 576 577
        3) go through each recompute_segments, add backward ops with forward recomputation
            a. add ops in current recompute_segment as forward recomputation ops
            b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
578 579
            c. add backward ops of current recomputation ops
            d. add sum op for repetitive_outputs
M
mapingshuo 已提交
580 581
        4) remove no grad branch as it is in _remove_no_grad_branch_
        5) Note1: all appended ops' OpRole are Backward
M
mapingshuo 已提交
582 583
        6) Note2: all variables with new name should be returned so that _append_backward_vars_ can be called
        7) Note3: current forward recomputation backpropagation does not handle programs with subblock
M
mapingshuo 已提交
584
    """
M
mapingshuo 已提交
585 586

    checkpoints_name = [x.name for x in checkpoints]
M
mapingshuo 已提交
587 588 589
    local_block = block.program._create_block()
    buffer_block = block.program._create_block()

M
mapingshuo 已提交
590
    # 1) find ops between checkpoints, i.e. recompute_segments
M
mapingshuo 已提交
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
    program_stat = ProgramStats(block, ops)
    program_stat.build_stats()
    segments = []

    if len(checkpoints) == 1:
        # only one checkpoint
        max_op_idx = -1
        var_group = [checkpoints_name[0]]
        for name in var_group:
            if name not in program_stat.var_op_deps:
                break
            op_idx = program_stat.var_op_deps[name]["var_as_output_ops"]
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if max_op_idx > 0:
            segments.append([0, max_op_idx + 1])
    else:
        start_idx = 0
        while True:
            if start_idx >= len(checkpoints_name) - 1:
                break
            flag, min_idx, max_idx = program_stat.is_subgraph(
                [checkpoints_name[start_idx]],
                [checkpoints_name[start_idx + 1]])
            if flag:
                segments.append([min_idx, max_idx + 1])
            start_idx += 1

    checkpoints_name = list(set(checkpoints_name))

    if segments != [] and segments[0][0] != 0:
        recompute_segments = [[0, segments[0][0]]] + segments
    else:
        recompute_segments = segments
M
mapingshuo 已提交
625 626

    # 2) go through all forward ops and induct all variables that will be hold in memory
M
mapingshuo 已提交
627
    vars_should_be_hold = []
M
mapingshuo 已提交
628
    # a. variables that are used across segments will be held in memory 
M
mapingshuo 已提交
629 630 631
    for segment in recompute_segments:
        vars_should_be_hold.extend(
            program_stat.get_out_of_subgraph_vars(segment[0], segment[1]))
M
mapingshuo 已提交
632
    # b. output of dropout op will be held in memory
M
mapingshuo 已提交
633
    vars_should_be_hold.extend(program_stat.get_reserved_vars())
M
mapingshuo 已提交
634
    # c. input variables are checkpoints
M
mapingshuo 已提交
635 636 637 638 639 640 641
    vars_should_be_hold.extend(program_stat.get_input_nodes())
    vars_should_be_hold = list(set(vars_should_be_hold))

    # find variables that can not be deleted
    grad_should_be_hold = [x + "@GRAD" for x in vars_should_be_hold]
    vars_should_be_hold.extend(grad_should_be_hold)

M
mapingshuo 已提交
642
    # 3) go through each recompute_segments, add backward ops with forward recomputation
M
mapingshuo 已提交
643 644 645 646 647 648 649
    grad_op_descs = []
    var_name_dict = {}

    vars_in_memory = vars_should_be_hold + checkpoints_name

    max_calculated_op_position = len(ops)
    if recompute_segments == []:
M
mapingshuo 已提交
650 651
        # if there is no recompute segment, add backward ops like 
        # _append_backward_ops_ function
M
mapingshuo 已提交
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
        gap_ops = ops[0:max_calculated_op_position]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op.desc, cpt.to_text(no_grad_dict[block.idx]), [])
            added_descs = _add_descs_to_block(grad_op_desc, local_block)
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

    for i, segment in enumerate(recompute_segments[::-1]):
        # add grad op for ops not in any segments
        gap_ops = ops[segment[1]:max_calculated_op_position]
        max_calculated_op_position = segment[0]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op.desc, cpt.to_text(no_grad_dict[block.idx]), [])
            added_descs = _add_descs_to_block(grad_op_desc, local_block)
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

        ff_ops = ops[segment[0]:segment[1]]
        var_suffix = ".subprog_%d" % i

        for op in ff_ops:
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            input_and_output_names = []
            input_and_output_names.extend(op.desc.input_arg_names())
            input_and_output_names.extend(op.desc.output_arg_names())
            for name in input_and_output_names:
                if block.var(name).persistable or name in checkpoints_name:
                    continue
                if name in vars_should_be_hold:
                    continue
                if name not in var_name_dict:
                    var_name_dict[name] = name + var_suffix
M
mapingshuo 已提交
697
        # 3.a. add ops in current recompute_segment as forward recomputation ops
M
mapingshuo 已提交
698 699 700 701
        buffer_descs = _add_needed_descs_to_block(ff_ops, buffer_block, block,
                                                  vars_in_memory)
        added_descs = _add_descs_to_block(ff_ops, local_block)

M
mapingshuo 已提交
702
        # 3.b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
703 704 705 706 707 708
        for key in var_name_dict:
            _rename_arg_(buffer_descs, key, var_name_dict[key])

        # added_descs should be in grad_op_descs because it is backward op desc
        grad_op_descs.extend(buffer_descs)

M
mapingshuo 已提交
709
        # 3.c. add backward ops of current recomputation ops
M
mapingshuo 已提交
710 711 712 713 714 715 716 717
        for op_desc in reversed(added_descs):
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op_desc, cpt.to_text(no_grad_dict[block.idx]), [])
            for key in var_name_dict:
                _rename_arg_(grad_op_desc, key, var_name_dict[key])
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)

M
mapingshuo 已提交
718
    # 3.d. add sum op for repetitive_outputs
M
mapingshuo 已提交
719
    grad_op_descs = _addup_repetitive_outputs_(grad_op_descs)
M
mapingshuo 已提交
720
    # 4) remove no grad branch as it is in _remove_no_grad_branch_
M
mapingshuo 已提交
721 722 723 724 725 726
    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
                                            no_grad_dict[block.idx])
    added_descs = _add_descs_to_block(grad_op_descs, target_block)
    return program_stat, checkpoints_name, vars_should_be_hold, recompute_segments


727 728
def _append_backward_ops_(block,
                          ops,
F
fengjiayi 已提交
729 730 731
                          target_block,
                          no_grad_dict,
                          grad_to_var,
732 733
                          callbacks=None,
                          input_grad_names_set=None):
734 735 736 737 738
    """
    Create all grad ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
739
        ops(Op): the forward operators whose backward ops need to be added
740
        target_block(Block): the block which is going to hold new generated grad ops
741
        no_grad_dict(dict):
742 743 744 745 746
            key(int)  block index
            val(set) a set of varibale names. These varibales have no gradient
        grad_to_var(dict)(output argument):
            key(str): grad variable name
            val(str): corresponding forward variable name
C
chengduo 已提交
747 748 749 750
        callbacks(callable object): a callable object used to decorate new generated grad ops
        input_grad_names_set(set): this set is used to store the gradients' name which is
            generated by backward ops, and input_grad_names_set can help to prune the unnecessary
            backward ops.
751
    """
Y
Yang Yang 已提交
752
    if callbacks is not None:
Y
Yang Yang 已提交
753 754 755 756
        assert (isinstance(callbacks, list))
        for cb in callbacks:
            if not hasattr(cb, '__call__'):
                raise ValueError("'callback' must be a callable object.")
F
fengjiayi 已提交
757

F
fengjiayi 已提交
758
    # grad_op_descs holds created grad_op, and will be appended to target_block
F
fengjiayi 已提交
759 760
    grad_op_descs = []
    program = block.program
761
    for op in reversed(ops):
F
fengjiayi 已提交
762 763 764
        grad_sub_block_list = []
        # If the op has its own sub-block, deal with the sub-block first
        if op.has_attr("sub_block"):
W
Wu Yi 已提交
765
            sub_block = program.block(op._block_attr_id("sub_block"))
W
Wu Yi 已提交
766
            grad_sub_block = program._create_block()
W
Wu Yi 已提交
767
            grad_sub_block._set_forward_block_idx(sub_block.idx)
768 769 770
            # see follwing comments for why set None here.
            pre_input_grad_names_set = copy.copy(input_grad_names_set)
            input_grad_names_set = None
X
Xin Pan 已提交
771
            _append_backward_ops_(sub_block, sub_block.ops, grad_sub_block,
772 773 774
                                  no_grad_dict, grad_to_var, callbacks,
                                  input_grad_names_set)
            input_grad_names_set = pre_input_grad_names_set
Y
Yu Yang 已提交
775

W
Wu Yi 已提交
776
            program._rollback()
F
fengjiayi 已提交
777 778
            grad_sub_block_list.append(grad_sub_block.desc)

F
fengjiayi 已提交
779
        # Getting op's corresponding grad_op
F
fengjiayi 已提交
780
        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
M
minqiyang 已提交
781
            op.desc, cpt.to_text(no_grad_dict[block.idx]), grad_sub_block_list)
Y
Yang Yu 已提交
782

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
        # If input_grad_names_set is not None, extend grad_op_descs only when
        # any input grad in outputs of previous grad ops.
        # But this strategy is not suited for while op for some control flow,
        # for example, for while op, the grads maybe generated in next loop.
        if input_grad_names_set is not None:
            is_append_grad = False
            for op_desc in grad_op_desc:
                input_grad_names = [
                    name for name in op_desc.input_arg_names()
                    if name.find(core.grad_var_suffix()) != -1
                ]
                # some code of gradient ops, like increment, are not very
                # standard, there is no @GRAD in these ops' inputs.
                if len(input_grad_names) == 0:
                    is_append_grad = True
                    break

                if _some_in_set_(input_grad_names, input_grad_names_set):
                    grad_op_descs.append(op_desc)
                    is_append_grad = True
                    for name in op_desc.output_arg_names():
                        input_grad_names_set.add(name)
            if is_append_grad:
                grad_to_var.update(op_grad_to_var)
        else:
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)
F
fengjiayi 已提交
810

M
mapingshuo 已提交
811 812 813
    # add grad_op_desc by reversed ops

    # sum parameter's gradients' var given multiple var gradient
F
fengjiayi 已提交
814 815
    grad_op_descs = _addup_repetitive_outputs_(grad_op_descs)

M
mapingshuo 已提交
816 817
    # if all outputs of the grad op are in no_grad_set, then just remove and fill zero
    # if all inputs of the grad op are in no_grad_set, just remove this op
F
fengjiayi 已提交
818 819
    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
                                            no_grad_dict[block.idx])
F
fengjiayi 已提交
820

M
mapingshuo 已提交
821
    # remove some backward ops
C
chengduo 已提交
822
    not_need_ops = _find_not_need_ops(grad_op_descs, ops, input_grad_names_set)
M
mapingshuo 已提交
823

C
chengduo 已提交
824 825 826
    grad_op_descs = [
        op_desc for op_desc in grad_op_descs if op_desc not in not_need_ops
    ]
F
fengjiayi 已提交
827
    # append op_desc in grad_op_descs to target_block
Y
yuyang18 已提交
828 829
    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
F
update  
fengjiayi 已提交
830
    for op_desc in grad_op_descs:
F
fengjiayi 已提交
831 832
        new_op_desc = target_block.desc.append_op()
        new_op_desc.copy_from(op_desc)
W
Wu Yi 已提交
833
        new_op_desc._set_attr(op_role_attr_name, backward)
Y
Yang Yang 已提交
834
        grad_to_var["__current_op_desc__"] = new_op_desc
Y
Yang Yang 已提交
835 836 837 838
        if callbacks is not None:
            assert (isinstance(callbacks, list))
            for cb in callbacks:
                cb(block=target_block, context=grad_to_var)
F
update  
fengjiayi 已提交
839

F
fengjiayi 已提交
840 841

def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
842 843 844 845 846 847 848 849 850 851 852 853
    """
    Create new variables required by backward pass.

    Args:
        block(Block): the block where new variables will be created
        start_op_idx(int): Only variables required by ops in block.ops[start_op_idx : ] will be created
        grad_to_var(dict):
            key(str): grad variable name
            val(str): corresponding forward variable name
            In most cases, this dict is generated by _append_backward_ops_()
        grad_info_map(dict)(output argument):
            key(str): forward variable name
854
            val(tuple): a tuple of (str, Block), str is the corresponding grad name, Block is the block containing grad variable
855
    """
F
fengjiayi 已提交
856 857 858
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        if op_desc.has_attr("sub_block"):
W
Wu Yi 已提交
859
            sub_block = block.program.block(op_desc._block_attr_id("sub_block"))
F
fengjiayi 已提交
860 861 862 863
            _append_backward_vars_(sub_block, 0, grad_to_var, grad_info_map)
        new_vars = set()
        # create new gradient variables
        for grad_var_name in op_desc.output_arg_names():
M
minqiyang 已提交
864 865
            if block.desc.has_var_recursive(cpt.to_bytes(
                    grad_var_name)) or grad_var_name == core.empty_var_name():
F
fengjiayi 已提交
866
                continue
M
minqiyang 已提交
867
            block.desc.var(cpt.to_bytes(grad_var_name))
F
fengjiayi 已提交
868
            new_vars.add(grad_var_name)
869
            if grad_var_name not in grad_to_var:
F
fengjiayi 已提交
870 871 872 873 874 875 876 877
                continue
            grad_info_map[grad_to_var[grad_var_name]] = (grad_var_name, block)
        # infer_shape and infer_type
        op_desc.infer_var_type(block.desc)
        op_desc.infer_shape(block.desc)
        for arg in op_desc.output_arg_names():
            if arg in new_vars:
                _infer_var_data_type_(arg, block)
F
update  
fengjiayi 已提交
878 879


880 881 882 883 884 885
def _rename_grad_(block, start_op_idx, grad_to_var, target_grad_map):
    var_map = copy.copy(target_grad_map)
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        for name in op_desc.input_arg_names():
            if name in var_map:
W
Wu Yi 已提交
886
                op_desc._rename_input(name, var_map[name])
887 888

        for name in op_desc.output_arg_names():
M
mapingshuo 已提交
889 890
            if "@GRAD" not in name:
                continue
891
            if block.desc.find_var(name.encode("ascii")):
Y
Yu Yang 已提交
892
                new_name = unique_name.generate(name)
W
Wu Yi 已提交
893
                op_desc._rename_output(name, new_name)
894 895
                var_map[name] = new_name

M
minqiyang 已提交
896
    for g, ng in six.iteritems(var_map):
897 898 899 900 901 902 903 904 905 906 907
        if g in grad_to_var:
            grad_to_var[ng] = grad_to_var[g]
            grad_to_var.pop(g)


def _get_stop_gradients_(program):
    no_grad_dict = dict()
    assert isinstance(program, framework.Program)
    for block in program.blocks:
        assert isinstance(block, framework.Block)
        block_no_grad_set = set()
908
        for var in list(block.vars.values()):
909 910 911 912 913 914 915
            assert isinstance(var, framework.Variable)
            if var.stop_gradient:
                block_no_grad_set.add(_append_grad_suffix_(var.name))
        no_grad_dict[block.idx] = block_no_grad_set
    return no_grad_dict


M
mapingshuo 已提交
916 917 918 919 920
def append_backward(loss,
                    parameter_list=None,
                    no_grad_set=None,
                    callbacks=None,
                    checkpoints=None):
921
    """
F
fengjiayi 已提交
922 923
    Append backward part to main_program.

924 925 926
    A complete neural network training is made up of forward and backward
    propagation. However, when we configure a network, we only need to
    specify its forwrd part. The backward part is generated automatically
F
fengjiayi 已提交
927 928
    according to the forward part by this function.

929
    In most cases, users do not need to invoke this function manually. It
F
fengjiayi 已提交
930
    will be automatically invoked by the optimizer's `minimize` function.
F
fengjiayi 已提交
931 932

    Args:
F
fengjiayi 已提交
933
        loss(Variable): The loss variable of the network.
934 935 936
        parameter_list(list[string]|None): Names of parameters that need
                                           to be updated by optimizers.
                                           If it is None, all parameters
F
fengjiayi 已提交
937 938
                                           will be updated.
                                           Default: None
939 940
        no_grad_set(set|None): Variables in the Block 0 whose gradients
                               should be ignored. All variables with
941
                               `stop_gradient=True` from all blocks will
F
fengjiayi 已提交
942 943
                               be automatically added into this set.
                               Default: None
944 945 946 947 948 949 950 951 952 953 954 955 956 957
        callbacks(list[callable object]|None): The callbacks are used for
                                               doing some custom jobs during
                                               backward part building. All
                                               callable objects in it will
                                               be invoked once each time a
                                               new gradient operator is added
                                               into the program. The callable
                                               object must has two input
                                               parameters: 'block' and 'context'.
                                               The 'block' is the block which
                                               the new gradient operator will
                                               be added to. The 'context' is a
                                               map, whose keys are gradient
                                               variable names and values are
F
fengjiayi 已提交
958
                                               corresponding original variables.
959 960 961 962 963 964
                                               In addition to this, the 'context'
                                               has another special key-value pair:
                                               the key is string '__current_op_desc__'
                                               and the value is the op_desc of the
                                               gradient operator who has just
                                               triggered the callable object.
F
fengjiayi 已提交
965 966

    Returns:
967 968
        list[(Variable,Variable)]: Pairs of parameter and its
        corresponding gradients. The key is the parameter and the
F
fengjiayi 已提交
969 970 971 972 973 974 975 976
        value is gradient variable.

    Raises:
        AssertionError: If `loss` is not an instance of Variable.

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
977
            # network configuration code
L
lujun 已提交
978
            # loss from ...
979
            import paddle.fluid as fluid
L
lujun 已提交
980 981 982 983 984 985
            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')

            y_predict = fluid.layers.fc(input=x, size=1, act=None)
            loss = fluid.layers.square_error_cost(input=y_predict, label=y)

F
fengjiayi 已提交
986 987
            avg_loss = fluid.layers.mean(loss)
            param_grad_list = fluid.backward.append_backward(loss=avg_loss)
988 989
    """
    assert isinstance(loss, framework.Variable)
Y
yuyang18 已提交
990

Y
Fix bug  
yuyang18 已提交
991 992
    if loss.op is None:
        # the loss is from a cloned program. Find loss op manually.
M
mapingshuo 已提交
993
        _find_loss_op_(loss)
Y
Fix bug  
yuyang18 已提交
994

W
Wu Yi 已提交
995 996 997
    loss.op._set_attr(core.op_proto_and_checker_maker.kOpRoleAttrName(),
                      int(core.op_proto_and_checker_maker.OpRole.Forward) |
                      int(core.op_proto_and_checker_maker.OpRole.Loss))
Y
yuyang18 已提交
998

Y
Yang Yang 已提交
999 1000
    if callbacks is not None:
        isinstance(callbacks, list)
Y
Yu Yang 已提交
1001

F
fengjiayi 已提交
1002
    program = loss.block.program
1003 1004
    program._appending_grad_times += 1

F
fengjiayi 已提交
1005
    if no_grad_set is None:
1006 1007 1008
        no_grad_set = set()
    no_grad_set = copy.copy(no_grad_set)
    no_grad_dict = _get_stop_gradients_(program)
1009
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
Y
Yu Yang 已提交
1010

F
update  
fengjiayi 已提交
1011
    grad_info_map = dict()
F
fengjiayi 已提交
1012
    root_block = program.block(0)
F
fengjiayi 已提交
1013

F
fengjiayi 已提交
1014 1015
    fwd_op_num = root_block.desc.op_size()
    current_block_idx = program.current_block_idx
F
fengjiayi 已提交
1016 1017
    grad_to_var = dict()

M
mapingshuo 已提交
1018
    op_desc = _create_loss_op_desc_(loss)
1019 1020 1021 1022
    root_block.desc.append_op().copy_from(op_desc)

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
    op_path = _find_op_path_(root_block, [loss], [], block_no_grad_set)
1023 1024 1025
    no_grad_vars = _find_no_grad_vars(root_block, op_path, [loss],
                                      block_no_grad_set)
    block_no_grad_set.update(no_grad_vars)
1026
    no_grad_dict[0].update(list(map(_append_grad_suffix_, block_no_grad_set)))
1027

1028 1029 1030 1031 1032 1033
    input_grad_names_set = None
    # For double backward, input_grad_names is used for filter
    # some non-used gradients op.
    if program._appending_grad_times > 1:
        input_grad_names_set = set([_append_grad_suffix_(loss.name)])

M
mapingshuo 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056

    if checkpoints != None and \
       isinstance(checkpoints, list) and \
       len(checkpoints) > 0:
        program_stat, checkpoint_names, \
        vars_should_be_hold, \
        recompute_segments = \
                        _append_backward_ops_with_checkpoints_(
                            root_block,
                            op_path,
                            root_block,
                            no_grad_dict,
                            grad_to_var,
                            checkpoints)
    else:
        _append_backward_ops_(
            root_block,
            op_path,
            root_block,
            no_grad_dict,
            grad_to_var,
            callbacks,
            input_grad_names_set=input_grad_names_set)
1057 1058 1059 1060 1061 1062

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
    _rename_grad_(root_block, fwd_op_num, grad_to_var, {})

F
fengjiayi 已提交
1063
    _append_backward_vars_(root_block, fwd_op_num, grad_to_var, grad_info_map)
F
fengjiayi 已提交
1064

F
fengjiayi 已提交
1065
    program.current_block_idx = current_block_idx
W
Wu Yi 已提交
1066
    program._sync_with_cpp()
F
fengjiayi 已提交
1067

1068 1069 1070
    if parameter_list is not None:
        parameters = parameter_list
    else:
F
fengjiayi 已提交
1071
        params = program.global_block().all_parameters()
C
chengduo 已提交
1072
        parameters = [param.name for param in params if param.trainable]
1073

1074 1075
    params_and_grads = []
    for param in parameters:
M
minqiyang 已提交
1076
        if cpt.to_text(param) not in grad_info_map:
F
fengjiayi 已提交
1077
            continue
F
update  
fengjiayi 已提交
1078
        grad_info = grad_info_map[param]
F
fengjiayi 已提交
1079
        grad_block = grad_info[1]
1080 1081 1082 1083
        if not grad_block.has_var(grad_info[0]):
            raise ValueError("grad block[{0}] did not have grad var {1}".format(
                grad_info[1], grad_info[0]))
        # Get the param var from the global block
F
fengjiayi 已提交
1084
        param_var = program.global_block().var(param)
1085 1086 1087 1088 1089
        grad_var = grad_block.var(grad_info[0])
        if loss.block.has_var(grad_info[0]):
            params_and_grads.append((param_var, grad_var))
        else:
            params_and_grads.append((param_var, None))
Y
yuyang18 已提交
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102

    op_role_var_attr_name = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
    for p, g in params_and_grads:
        if g is None:
            continue
        for op in reversed(program.global_block().ops):
            assert isinstance(op, framework.Operator)
            if g.name in op.output_arg_names:
                g.op = op
                break

        if g.op is None:
            raise ValueError("Unexpected branch")
Y
yuyang18 已提交
1103
        attr_val = [p.name, g.name]
Y
yuyang18 已提交
1104 1105
        if g.op.has_attr(op_role_var_attr_name):
            attr_val.extend(g.op.attr(op_role_var_attr_name))
W
Wu Yi 已提交
1106
        g.op._set_attr(op_role_var_attr_name, attr_val)
Y
yuyang18 已提交
1107

1108
    return params_and_grads
1109 1110 1111 1112 1113 1114 1115 1116


def _as_list(x):
    if x is None:
        return []
    return list(x) if isinstance(x, collections.Sequence) else [x]


1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
def _find_no_grad_vars(block, op_path, targets, no_grad_set):
    """
    Find the vars which is not used in the program, and
    those var belong to no_grad_var.
    """
    output_names = set([out.name for out in targets])
    no_grad_var = []
    for i, op in reversed(list(enumerate(op_path))):
        # If the op has sub_block, it is too complicated to find the correct no_grad_var.
        if not op.has_attr("sub_block"):
            for out_var in op.desc.output_arg_names():
                if out_var not in output_names and out_var not in op.desc.input_arg_names(
                ) and not block.vars[out_var].stop_gradient:
                    no_grad_var.append(out_var)
        for name in op.desc.input_arg_names():
            if name not in no_grad_set:
                output_names.add(name)
    return set(no_grad_var)


1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
def _find_op_path_(block, outputs, inputs, no_grad_set):
    """
    no_grad_set will also be changed
    """
    input_names = set([inp.name for inp in inputs])
    output_names = set([out.name for out in outputs])

    relevant_op_flags = [True] * len(block.ops)

    # All the inputs of the block are used if inputs is empty,
    if inputs:
        for i, op in enumerate(block.ops):
            if _some_in_set_(op.desc.input_arg_names(), input_names):
                for name in op.desc.output_arg_names():
                    if name not in no_grad_set:
                        input_names.add(name)
            else:
                relevant_op_flags[i] = False

    for i, op in reversed(list(enumerate(block.ops))):
        if _some_in_set_(op.desc.output_arg_names(), output_names):
            for name in op.desc.input_arg_names():
                if name not in no_grad_set:
                    output_names.add(name)
        else:
            relevant_op_flags[i] = False

    op_path = [
        block.ops[i] for i in range(len(block.ops)) if relevant_op_flags[i]
    ]

    if inputs:
        for op in op_path:
            for name in op.desc.input_arg_names():
1171
                if name not in input_names and block.vars[name].stop_gradient:
1172 1173 1174 1175 1176 1177 1178
                    no_grad_set.add(name)

    return op_path


def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None):
    """
1179
    Backpropagate the gradients of targets to inputs.
1180 1181 1182 1183

    Args:
        targets(Variable|list[Variable]): The target variables
        inputs(Variable|list[Variable]): The input variables
1184 1185 1186
        target_gradients (Variable|list[Variable]|None): The gradient variables
            of targets which has the same shape with targets, If None, ones will
            be created for them.
1187 1188 1189 1190 1191
        no_grad_set(set[string]): The names of variables that have no gradients
            in Block 0. All variables with `stop_gradient=True` from all blocks
            will be automatically added.

    Return:
1192
        (list[Variable]): A list of gradients for inputs
1193 1194 1195 1196 1197 1198 1199 1200 1201
        If an input does not affect targets, the corresponding gradient variable
        will be None
    """
    targets = _as_list(targets)
    inputs = _as_list(inputs)
    target_gradients = _as_list(target_gradients)

    block = targets[0].block
    prog = block.program
1202 1203
    # increase appending gradients times
    prog._appending_grad_times += 1
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
    block_idx = block.idx

    if not target_gradients:
        target_gradients = [None] * len(targets)

    if len(targets) != len(target_gradients):
        raise ValueError(
            "Should have the same number of target_gradients as targets")

    if no_grad_set is None:
        no_grad_set = set()
    no_grad_set = copy.copy(no_grad_set)
    no_grad_dict = _get_stop_gradients_(prog)
1217
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
1218 1219 1220

    fwd_op_num = block.desc.op_size()

1221 1222
    input_grad_names_set = set()

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
    target_grad_map = {}
    for i, grad in enumerate(target_gradients):
        target = targets[i]
        if grad is None:
            grad_name = _append_grad_suffix_(target.name)
            op_desc = _create_op_desc_("fill_constant_batch_size_like",
                                       {"Input": [target.name]},
                                       {"Out": [grad_name]}, {
                                           "shape": target.shape,
                                           "value": 1.0,
                                           "dtype": target.dtype,
                                           'input_dim_idx': 0,
                                           'output_dim_idx': 0
                                       })
            block.desc.append_op().copy_from(op_desc)
1238
            input_grad_names_set.add(grad_name)
1239 1240 1241 1242 1243 1244 1245 1246
        else:
            if target.block.idx != block_idx or target.block.program != prog:
                raise ValueError("all targets must be in the same block")
            if target.shape != grad.shape:
                raise ValueError(
                    "The shapes of target and grad are different: %s %s" % (
                        target.name, grad.name))
            target_grad_map[_append_grad_suffix_(target.name)] = grad.name
1247 1248 1249 1250 1251 1252
            input_grad_names_set.add(grad.name)

    # For double backward, input_grad_names is used for filter
    # some non-used gradients op.
    if prog._appending_grad_times == 1:
        input_grad_names_set = None
1253 1254 1255 1256 1257 1258 1259

    for input in inputs:
        if input.block.program != prog:
            raise "input must be in the same program as targets"

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
    op_path = _find_op_path_(block, targets, inputs, block_no_grad_set)
1260
    no_grad_dict[0].update(list(map(_append_grad_suffix_, block_no_grad_set)))
1261 1262
    grad_to_var = dict()
    grad_info_map = dict()
1263 1264 1265 1266 1267 1268 1269
    _append_backward_ops_(
        block,
        op_path,
        block,
        no_grad_dict,
        grad_to_var,
        input_grad_names_set=input_grad_names_set)
1270 1271 1272 1273 1274 1275 1276

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
    _rename_grad_(block, fwd_op_num, grad_to_var, target_grad_map)

    _append_backward_vars_(block, fwd_op_num, grad_to_var, grad_info_map)
W
Wu Yi 已提交
1277
    prog._sync_with_cpp()
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292

    grad_vars = []
    for input_var in inputs:
        if input_var.name not in grad_info_map:
            grad_vars.append(None)
        else:
            grad_info = grad_info_map[input_var.name]
            grad_block = grad_info[1]
            grad_var = grad_block.var(grad_info[0])
            grad_vars.append(grad_var)

    if len(grad_vars) == 1:
        return grad_vars[0]
    else:
        return grad_vars
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329


def gradients(targets, inputs, target_gradients=None, no_grad_set=None):
    """
    Backpropagate the gradients of targets to inputs.

    Args:
        targets (Variable|list[Variable]): The target variables.
        inputs (Variable|list[Variable]): The input variables.
        target_gradients (Variable|list[Variable]|None): The gradient variables
            of targets which has the same shape with targets, If None, ones will
            be created for them.
        no_grad_set (set[string]): The names of variables that have no gradients
            in Block 0. All variables with `stop_gradient=True` from all blocks
            will be automatically added.

    Return:
        (list[Variable]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient variable
        will be None.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[2,8,8], dtype='float32')
            x.stop_gradient=False
            y = fluid.layers.conv2d(x, 4, 1, bias_attr=False)
            y = fluid.layers.relu(y)
            y = fluid.layers.conv2d(y, 4, 1, bias_attr=False)
            y = fluid.layers.relu(y)
            z = fluid.gradients([y], x)
            print(z)
    """
    outs = calc_gradient(targets, inputs, target_gradients, no_grad_set)
    return _as_list(outs)