“d8c8f419f974a9d02bddd937330e8201a3a2a699”上不存在“paddle/platform/place.cc”
base.py 27.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from ..wrapped_decorator import signature_safe_contextmanager, wrap_decorator
S
songyouwei 已提交
15
import decorator
16
import contextlib
17 18
import functools
import inspect
19
import sys
20 21 22
import numpy as np
from paddle.fluid import core
from paddle.fluid import framework
H
hong 已提交
23
from paddle.fluid.multiprocess_utils import CleanupFuncRegistrar
M
minqiyang 已提交
24
from .tracer import Tracer
Z
Zeng Jinle 已提交
25
import logging
26
from ..data_feeder import convert_dtype
L
Leo Chen 已提交
27
import warnings
J
Jiabin Yang 已提交
28
from ..framework import _get_paddle_place, _in_legacy_dygraph, _in_eager_without_dygraph_check
29
import paddle
30

31
__all__ = [
32 33
    'no_grad', 'no_grad_', 'grad', 'guard', 'enable_dygraph', 'disable_dygraph',
    'enabled', 'to_variable'
34
]
35

36 37 38 39 40 41 42 43 44 45 46
# Flag that indicates whether running code under `@declarative`
_in_declarative_mode_ = False


def in_declarative_mode():
    """
    Return a bool value that indicates whether running code under `@declarative`

    """
    return _in_declarative_mode_

47

48
def _switch_to_static_graph_(func):
49

50 51 52 53 54 55 56 57 58 59
    def __impl__(*args, **kwargs):
        with framework._dygraph_guard(None):
            return func(*args, **kwargs)

    return __impl__


switch_to_static_graph = wrap_decorator(_switch_to_static_graph_)


60 61 62 63 64 65 66 67 68 69
@signature_safe_contextmanager
def _switch_declarative_mode_guard_(is_declarative=True):

    global _in_declarative_mode_
    original_val = _in_declarative_mode_
    _in_declarative_mode_ = is_declarative
    yield
    _in_declarative_mode_ = original_val


70 71 72 73 74 75
@signature_safe_contextmanager
def program_desc_tracing_guard(enable):
    tracer = framework._dygraph_tracer()
    if tracer:
        original_val = tracer._enable_program_desc_tracing
        tracer._enable_program_desc_tracing = enable
76 77 78 79 80
    try:
        yield
    finally:
        if tracer:
            tracer._enable_program_desc_tracing = original_val
81 82


83 84 85
_functional_dygraph_context_manager = None


86 87
@signature_safe_contextmanager
def param_guard(parameters):
88
    # Note: parameters is a reference of self._parameters or self._buffers
89 90
    if in_declarative_mode(
    ) and not framework._non_static_mode() and parameters:
91 92
        origin_parameters = parameters.copy()
        for name, var_base in parameters.items():
93 94 95 96 97
            if isinstance(var_base, list):
                new_var = [_convert_into_variable(var) for var in var_base]
            else:
                new_var = _convert_into_variable(var_base)
            parameters[name] = new_var
98 99 100 101 102 103
        yield
        parameters.update(origin_parameters)
    else:
        yield


J
Jiabin Yang 已提交
104
def _convert_into_variable(tensor):
105 106 107
    """
    Convert Varbase into Variable.
    """
J
Jiabin Yang 已提交
108
    if isinstance(tensor, (core.eager.Tensor, core.VarBase)):
109
        # Check whether has been created before.
J
Jiabin Yang 已提交
110
        new_var = tensor.block._find_var_recursive(tensor.name)
111 112 113
        if new_var is not None:
            assert isinstance(new_var, framework.Variable)
        # Convert ParamBase into Parameter with same attributes in dy2stat.
J
Jiabin Yang 已提交
114 115 116
        elif isinstance(tensor,
                        (framework.EagerParamBase, framework.ParamBase)):
            new_var = tensor._to_static_var(to_parameter=True)
117 118 119 120 121 122 123 124 125
        else:
            # Note(Aurelius84): Convert VarBase in self._buffers into Variable with
            # same attributes and set persistable=True to allow saving this var.
            # Because users can create a VarBase in `__init__`  like a
            # `mask` Tensor or `hidden_0` in RNN layers, which is equivalent to a Parameter
            # and necessary for inferring. It will be pruned if it's not necessary for inferring.

            # But if its shape is empty while created from `create_variable()`, we consider this buffer
            # non-persistable. See case of `drop_state` in lstm api.
J
Jiabin Yang 已提交
126
            is_persistable = len(tensor.shape) > 0
127

128 129
            new_var = tensor._to_static_var(to_parameter=False,
                                            persistable=is_persistable)
130 131
        return new_var
    else:
J
Jiabin Yang 已提交
132
        return tensor
133 134


135
def enabled():
136 137 138
    """
    This function checks whether the program runs in dynamic graph mode or not.
    You can enter dynamic graph mode with :ref:`api_fluid_dygraph_guard` api,
139 140
    or enable and disable dynamic graph mode with :ref:`api_fluid_dygraph_enable_dygraph`
    and :ref:`api_fluid_dygraph_disable_dygraph` api .
141 142

    **Note**:
J
Jiabin Yang 已提交
143 144
        ``fluid.dygraph.enabled`` is the alias of ``fluid.in_dygraph_mode``, and
        ``fluid.in_dygraph_mode`` is recommended to use for now.
145 146 147 148 149 150 151 152 153 154 155 156 157 158

    Returns:
        bool: Whether the program is running in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            fluid.enable_dygraph()  # Now we are in dygragh mode
            print(fluid.dygraph.enabled())  # True
            fluid.disable_dygraph()
            print(fluid.dygraph.enabled())  # False
    """
J
Jiabin Yang 已提交
159
    # TODO(jiabin): Make this check as in_dygraph_mode when we support default eager mode.
J
Jiabin Yang 已提交
160
    return framework._non_static_mode()
161 162


163 164
def enable_dygraph(place=None):
    """
165 166 167 168 169

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API turn OFF static graph mode. You can turn ON static graph mode by `enable_static <./disable_dygraph_en.html>`_ .
170 171

    Parameters:
172 173 174
        place(paddle.CPUPlace|paddle.CUDAPlace|str, optional): Place to run dynamic graph. Default: None. Which means that the running place will be 
            determined according to the way of paddle compilation. If ``place`` is string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the
            index of the GPUs.
175 176 177 178 179 180 181

    return:
        None

    Examples:
        .. code-block:: python

182 183 184 185 186 187 188 189
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
190 191 192

    """
    global _functional_dygraph_context_manager
S
songyouwei 已提交
193
    if _functional_dygraph_context_manager is None:
194 195
        _functional_dygraph_context_manager = guard(
            place=_get_paddle_place(place))
S
songyouwei 已提交
196
        _functional_dygraph_context_manager.__enter__()
197

H
hong 已提交
198 199 200
        # call disable_dygraph when Python exit
        CleanupFuncRegistrar.register(disable_dygraph)

201 202 203

def disable_dygraph():
    """
204 205 206 207 208

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API turn ON static graph mode. You can turn ON static graph mode by `disable_static <./enable_dygraph_en.html>`_ .
209 210 211 212 213 214 215

    return:
        None

    Examples:
        .. code-block:: python

216 217 218 219 220 221 222 223
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
224 225 226 227 228 229 230 231

    """
    global _functional_dygraph_context_manager
    if _functional_dygraph_context_manager is not None:
        _functional_dygraph_context_manager.__exit__(*sys.exc_info())
        _functional_dygraph_context_manager = None


232 233 234 235
@signature_safe_contextmanager
def _switch_tracer_mode_guard_(is_train=True):
    tracer = framework._dygraph_tracer()
    if tracer:
236 237
        has_grad = tracer._has_grad
        tracer._has_grad = is_train
238 239 240
        try:
            yield
        finally:
241
            tracer._has_grad = has_grad
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
    else:
        yield


def no_grad(func=None):
    """
    :api_attr: imperative

    Create a context which disables dygraph gradient calculation.
    In this mode, the result of every computation will have `stop_gradient=True`.

    Also functions as a decorator. (Make sure to instantiate without parenthesis.)

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

        # use as generator

        data = np.array([[2, 3], [4, 5]]).astype('float32')
        with fluid.dygraph.guard():
            l0 = fluid.Linear(2, 2)  # l0.weight.gradient() is None
            l1 = fluid.Linear(2, 2)
            with fluid.dygraph.no_grad():
                # l1.weight.stop_gradient is False
                tmp = l1.weight * 2  # tmp.stop_gradient is True
            x = fluid.dygraph.to_variable(data)
            y = l0(x) + tmp
            o = l1(y)
            o.backward()
            print(tmp.gradient() is None)  # True
            print(l0.weight.gradient() is None)  # False

        # use as decorator

        @fluid.dygraph.no_grad
        def test_layer():
            with fluid.dygraph.guard():
                inp = np.ones([3, 1024], dtype='float32')
                t = fluid.dygraph.base.to_variable(inp)
                linear1 = fluid.Linear(1024, 4, bias_attr=False)
                linear2 = fluid.Linear(4, 4)
                ret = linear1(t)
                dy_ret = linear2(ret)

        test_layer()

    """
    if func is None:
        return _switch_tracer_mode_guard_(is_train=False)
    else:

        @decorator.decorator
        def __impl__(func, *args, **kwargs):
            with _switch_tracer_mode_guard_(is_train=False):
                return func(*args, **kwargs)

        return __impl__(func)


class no_grad_:
306
    """
307 308
    :api_attr: imperative

309
    Create a context which disables dygraph gradient calculation.
310 311
    In this mode, the result of every computation will have `stop_gradient` set
    to `True`.
312

313
    Also functions as a decorator. (Make sure to use an instance.)
314 315 316 317 318 319

    Examples:

     .. code-block:: python

        import numpy as np
320
        import paddle
321

322 323 324
        # use as generator

        data = np.array([[2, 3], [4, 5]]).astype('float32')
325 326 327
        l0 = paddle.nn.Linear(2, 2)  # l0.weight.gradient() is None
        l1 = paddle.nn.Linear(2, 2)
        with paddle.no_grad():
328 329
            # l1.weight.stop_gradient is False
            tmp = l1.weight * 2  # tmp.stop_gradient is True
330
        x = paddle.to_tensor(data)
331 332 333 334 335
        y = l0(x) + tmp
        o = l1(y)
        o.backward()
        print(tmp.gradient() is None)  # True
        print(l0.weight.gradient() is None)  # False
336 337 338

        # use as decorator

339
        @paddle.no_grad()
340
        def test_layer():
341
            inp = np.ones([3, 1024], dtype='float32')
342 343 344
            t = paddle.to_tensor(inp)
            linear1 = paddle.nn.Linear(1024, 4, bias_attr=False)
            linear2 = paddle.nn.Linear(4, 4)
345 346
            ret = linear1(t)
            dy_ret = linear2(ret)
347 348 349 350

        test_layer()
    """

351
    def __call__(self, func):
352

S
songyouwei 已提交
353
        @decorator.decorator
354 355
        def _decorate_function(func, *args, **kwargs):
            with self:
356
                return func(*args, **kwargs)
357

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
        @decorator.decorator
        def _decorate_generator(func, *args, **kwargs):
            gen = func(*args, **kwargs)
            with self:
                for x in gen:
                    yield x

        if inspect.isgeneratorfunction(func):
            return _decorate_generator(func)
        else:
            return _decorate_function(func)

    def __enter__(self):
        tracer = framework._dygraph_tracer()
        if tracer:
373 374
            self.orig = tracer._has_grad
            tracer._has_grad = False
375 376 377 378

    def __exit__(self, *args):
        tracer = framework._dygraph_tracer()
        if tracer:
379
            tracer._has_grad = self.orig
380 381


S
rename  
sneaxiy 已提交
382
@signature_safe_contextmanager
P
Paddle CI 已提交
383
def guard(place=None):
384
    """
385 386
    :api_attr: imperative

387
    This context will create a dygraph context for dygraph to run, using python ``with`` statement.
388

389
    Parameters:
390 391 392 393
        place(fluid.CPUPlace| fluid.CUDAPlace|str, optional): Place to execute dygraph. 
            If None, the running place will be determined according to the way of paddle compilation.
            If ``place`` is string, It can be ``cpu``, ``gpu:x`` and ``xpu:x``, where ``x`` is the
            index of the GPUs or XPUs. Default: None
394 395 396 397 398 399 400 401 402 403 404 405

    return:
        None

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

        with fluid.dygraph.guard():
406
            inp = np.ones([3, 1024], dtype='float32')
407
            t = fluid.dygraph.base.to_variable(inp)
408 409 410 411
            linear1 = fluid.Linear(1024, 4, bias_attr=False)
            linear2 = fluid.Linear(4, 4)
            ret = linear1(t)
            dy_ret = linear2(ret)
412 413

    """
414 415
    train = framework.Program()
    startup = framework.Program()
J
Jiabin Yang 已提交
416
    tracer = Tracer()
417
    VarBase = core.VarBase
M
minqiyang 已提交
418

419
    if place is not None:
420
        expected_place = _get_paddle_place(place)
421 422
    else:
        expected_place = framework._current_expected_place()
M
minqiyang 已提交
423

424 425
    with framework.program_guard(train, startup):
        with framework.unique_name.guard():
L
lujun 已提交
426
            with framework._dygraph_guard(tracer):
427
                with framework._dygraph_place_guard(expected_place):
P
Paddle CI 已提交
428
                    yield
429 430


431 432 433 434
@framework.dygraph_only
def grad(outputs,
         inputs,
         grad_outputs=None,
Z
Zeng Jinle 已提交
435
         retain_graph=None,
436
         create_graph=False,
Z
Zeng Jinle 已提交
437 438
         only_inputs=True,
         allow_unused=False,
439
         no_grad_vars=None):
Z
Zeng Jinle 已提交
440 441
    ''' 
    .. note::
442
        **This API is ONLY available in imperative mode.**
Z
Zeng Jinle 已提交
443 444 445 446

    This API computes the sum of gradients of `outputs` with respect to each `inputs` .

    Parameters:
447 448 449 450
        outputs (Tensor|list(Tensor)|tuple(Tensor)): the output Tensor or 
            Tensor list/tuple of the graph to compute gradients.
        inputs (Tensor|list(Tensor)|tuple(Tensor)): the input Tensor or 
            Tensor list/tuple of the graph to compute gradients. The returned
Z
Zeng Jinle 已提交
451
            values of this API are the gradients of `inputs` . 
452
        grad_outputs (Tensor|list(Tensor|None)|tuple(Tensor|None), optional): 
Z
Zeng Jinle 已提交
453 454 455 456 457 458
            initial gradient values of `outputs` . If `grad_outputs` is None, 
            the initial gradient values of `outputs` would be Tensors filled with 1; 
            if `grad_outputs` is not None, it must have the same length as `outputs` , 
            and in this case, the initial gradient value of the i-th `outputs` would
            be: (1) a Tensor filled with 1 when the i-th element of `grad_outputs` 
            is None; (2) the i-th element of `grad_outputs` when the i-th element of
459
            `grad_outputs` is a Tensor. Default None.
Z
Zeng Jinle 已提交
460 461 462 463 464 465 466 467 468 469 470
        retain_graph (bool, optional): whether to retain the forward graph which 
            is used to calculate the gradient. When it is True, the graph would 
            be retained, in which way users can calculate backward twice for the 
            same graph. When it is False, the graph would be freed. Default None,
            which means it is equal to `create_graph` . 
        create_graph (bool, optional): whether to create the gradient graphs of
            the computing process. When it is True, higher order derivatives are
            supported to compute; when it is False, the gradient graphs of the
            computing process would be discarded. Default False.
        only_inputs (bool, optional): whether to only compute the gradients of
            `inputs` . If it is False, the gradients of all remaining leaf 
471
            Tensors in the graph would be also computed and accumulated. 
Z
Zeng Jinle 已提交
472 473 474 475
            If it is True, only the gradients of `inputs` would be computed.
            Default True. only_inputs=False is under development, and it is
            not supported yet.    
        allow_unused (bool, optional): whether to raise error or return None if some 
476
            Tensors of `inputs` are unreachable in the graph. If some Tensors of 
Z
Zeng Jinle 已提交
477 478 479
            `inputs` are unreachable in the graph (i.e., their gradients are None),  
            error would be raised if allow_unused=False, or None would be returned as
            their gradients if allow_unused=True. Default False.
480 481
        no_grad_vars (Tensor|list(Tensor)|tuple(Tensor)|set(Tensor), optional): 
            the Tensors whose gradients are not needed to compute. Default None.
Z
Zeng Jinle 已提交
482 483

    Returns:
L
levi131 已提交
484
        list: a list of Tensors, whose length is the same as the Tensor number 
485
        inside `inputs`, and the i-th returned Tensor is the sum of gradients of 
Z
Zeng Jinle 已提交
486 487
        `outputs` with respect to the i-th `inputs`.

488
    Examples:
Z
Zeng Jinle 已提交
489
        .. code-block:: python
490
            :name: code-example-1
Z
Zeng Jinle 已提交
491

492
            import paddle
Z
Zeng Jinle 已提交
493 494

            def test_dygraph_grad(create_graph):
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
                x = paddle.ones(shape=[1], dtype='float32')
                x.stop_gradient = False
                y = x * x

                # Since y = x * x, dx = 2 * x
                dx = paddle.grad(
                        outputs=[y],
                        inputs=[x],
                        create_graph=create_graph,
                        retain_graph=True)[0]

                z = y + dx

                # If create_graph = False, the gradient of dx
                # would not be backpropagated. Therefore,
                # z = x * x + dx, and x.gradient() = 2 * x = 2.0

                # If create_graph = True, the gradient of dx
                # would be backpropagated. Therefore,
                # z = x * x + dx = x * x + 2 * x, and
                # x.gradient() = 2 * x + 2 = 4.0

                z.backward()
                return x.gradient()

            print(test_dygraph_grad(create_graph=False)) # [2.]
Z
Zeng Jinle 已提交
521 522 523
            print(test_dygraph_grad(create_graph=True)) # [4.]

        .. code-block:: python
524
            :name: code-example-2
Z
Zeng Jinle 已提交
525

526
            import paddle
Z
Zeng Jinle 已提交
527 528

            def test_dygraph_grad(grad_outputs=None):
529
                x = paddle.to_tensor(2.0)
Z
Zeng Jinle 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
                x.stop_gradient = False

                y1 = x * x
                y2 = x * 3 

                # If grad_outputs=None, dy1 = [1], dy2 = [1].
                # If grad_outputs=[g1, g2], then:
                #    - dy1 = [1] if g1 is None else g1
                #    - dy2 = [1] if g2 is None else g2

                # Since y1 = x * x, dx = 2 * x * dy1.
                # Since y2 = x * 3, dx = 3 * dy2.
                # Therefore, the final result would be:
                # dx = 2 * x * dy1 + 3 * dy2 = 4 * dy1 + 3 * dy2.

545
                dx = paddle.grad(
Z
Zeng Jinle 已提交
546 547 548 549 550 551
                    outputs=[y1, y2], 
                    inputs=[x],
                    grad_outputs=grad_outputs)[0]

                return dx.numpy()

552
            grad_value = paddle.to_tensor(4.0)
Z
Zeng Jinle 已提交
553 554 555 556
            # dy1 = [1], dy2 = [1]
            print(test_dygraph_grad(None)) # [7.]

            # dy1 = [1], dy2 = [4]
557
            print(test_dygraph_grad([None, grad_value])) # [16.]
Z
Zeng Jinle 已提交
558 559

            # dy1 = [4], dy2 = [1]
560
            print(test_dygraph_grad([grad_value, None])) # [19.]
Z
Zeng Jinle 已提交
561 562

            # dy1 = [3], dy2 = [4]
563
            grad_y1 = paddle.to_tensor(3.0)
564
            print(test_dygraph_grad([grad_y1, grad_value])) # [24.]
Z
Zeng Jinle 已提交
565 566
	'''

567 568 569 570 571 572
    def check_in_out(in_out_list, name):
        assert in_out_list is not None, "{} should not be None".format(name)

        if isinstance(in_out_list, (list, tuple)):
            assert len(in_out_list) > 0, "{} cannot be empty".format(name)
            for each_var in in_out_list:
J
Jiabin Yang 已提交
573
                if _in_eager_without_dygraph_check():
574
                    assert isinstance(
575 576
                        each_var, core.eager.Tensor
                    ), "Elements of {} must be Tensor".format(name)
577 578 579 580 581
                else:
                    assert isinstance(
                        each_var,
                        core.VarBase), "Elements of {} must be Variable".format(
                            name)
582 583
            return in_out_list
        else:
J
Jiabin Yang 已提交
584
            if _in_eager_without_dygraph_check():
585
                assert isinstance(
586 587
                    in_out_list, core.eager.Tensor
                ), "{} must be Tensor or list of Tensor".format(name)
588 589 590 591
            else:
                assert isinstance(
                    in_out_list, core.VarBase
                ), "{} must be Variable or list of Variable".format(name)
592 593 594 595 596 597 598 599 600 601 602
            return [in_out_list]

    outputs = check_in_out(outputs, 'outputs')
    inputs = check_in_out(inputs, 'inputs')

    if grad_outputs is not None:
        if not isinstance(grad_outputs, (list, tuple)):
            grad_outputs = [grad_outputs]

        for each_var in grad_outputs:
            if each_var is not None:
J
Jiabin Yang 已提交
603
                if _in_eager_without_dygraph_check():
604 605 606 607 608 609 610
                    assert isinstance(
                        each_var, core.eager.Tensor
                    ), "grad_outputs must be None, a Variable or a list containing None or Variables"
                else:
                    assert isinstance(
                        each_var, core.VarBase
                    ), "grad_outputs must be None, a Variable or a list containing None or Variables"
611 612 613 614 615 616 617
    else:
        grad_outputs = []

    if len(grad_outputs) > 0:
        assert len(grad_outputs) == len(
            outputs), "The length of grad_outputs must be equal to outputs"

Z
Zeng Jinle 已提交
618 619
    if no_grad_vars is None:
        no_grad_vars = []
H
hong 已提交
620
    elif isinstance(no_grad_vars, (core.VarBase, core.eager.Tensor)):
Z
Zeng Jinle 已提交
621
        no_grad_vars = [no_grad_vars]
622 623
    elif isinstance(no_grad_vars, core.eager.Tensor):
        no_grad_vars = [no_grad_vars]
Z
Zeng Jinle 已提交
624 625 626
    elif isinstance(no_grad_vars, (list, tuple, set)):
        no_grad_vars = list(no_grad_vars)
        for var in no_grad_vars:
J
Jiabin Yang 已提交
627
            if _in_eager_without_dygraph_check():
628 629 630 631 632 633 634
                assert isinstance(
                    var,
                    core.eager.Tensor), "no_grad_vars can only contains Tensor"
            else:
                assert isinstance(
                    var,
                    core.VarBase), "no_grad_vars can only contains Variable"
635
    else:
J
Jiabin Yang 已提交
636
        if _in_eager_without_dygraph_check():
637
            raise AssertionError(
638 639
                "no_grad_vars must be None, Tensor or list/tuple/set of Tensors"
            )
640 641 642 643
        else:
            raise AssertionError(
                "no_grad_vars must be None, Variable or list/tuple/set of Variables"
            )
644 645 646

    assert isinstance(create_graph, bool), "create_graph must be True or False"

Z
Zeng Jinle 已提交
647 648 649 650 651 652 653 654 655 656 657
    if retain_graph is None:
        retain_graph = create_graph

    assert isinstance(retain_graph,
                      bool), "retain_graph must be None, True or False"

    assert isinstance(allow_unused, bool), "allow_unused must be True or False"

    assert isinstance(only_inputs, bool), "only_inputs must be True or False"
    assert only_inputs, "only_inputs=False is not supported yet"

J
Jiabin Yang 已提交
658
    if _in_eager_without_dygraph_check():
659 660 661 662
        return core.eager.run_partial_grad(outputs, inputs, grad_outputs,
                                           retain_graph, create_graph,
                                           only_inputs, allow_unused,
                                           no_grad_vars)
J
Jiabin Yang 已提交
663 664 665
    else:
        place = core.Place()
        place.set_place(framework._current_expected_place())
666 667 668 669
        return core.dygraph_partial_grad(inputs, outputs, grad_outputs,
                                         no_grad_vars, place, create_graph,
                                         retain_graph, allow_unused,
                                         only_inputs)
670 671


672
@framework.dygraph_only
673
def to_variable(value, name=None, zero_copy=None, dtype=None):
674
    r"""
675 676
    :api_attr: imperative

C
chentianyu03 已提交
677 678
    The API will create a ``Variable`` object from 
    tuple, list, numpy\.ndarray or Variable object.
679

680
    Parameters:
C
chentianyu03 已提交
681 682
        value(tuple|list|ndarray|Variable|Tensor): Initial data. 
            Can be a list, tuple, NumPy ndarray, Variable, Tensor.
683 684 685
            The shape can be multi-dimensional. The data type is one of 
            numpy\.{float16, float32, float64, int16, int32, int64, 
            uint8, uint16, complex64, complex128}.
686 687
        name(str, optional): The default value is None. Normally there is no 
            need for user to set this property. For more information, please 
L
Leo Chen 已提交
688
            refer to :ref:`api_guide_Name` . 
689 690
        zero_copy(bool, optional): Whether to share memory with the input numpy 
            array. This parameter only works with CPUPlace and will be set to 
L
Leo Chen 已提交
691
            True when it is None. Default: None. (Note: zero_copy is discarded temporally for some reason.)
692 693 694
        dtype(str, optional): The desired data type of returned ``Variable`` .
            Can be 'bool' , 'float16' , 'float32' , 'float64' , 'int8' , 'int16' , 
            'int32' , 'int64' , 'uint8' . Default: None.
695

696
    Returns:
C
chentianyu03 已提交
697
        Variable : If ``value`` is a tuple/list/numpy\.ndarray object, 
698
            return ``Tensor`` created from the corresponding numpy\.ndarray object, which has 
C
chentianyu03 已提交
699
            same data type and shape with ``value``. 
700

701 702 703 704 705 706 707 708

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

709
        with fluid.dygraph.guard(fluid.CPUPlace()):
710
            x = np.ones([2, 2], np.float32)
711 712 713
            y = fluid.dygraph.to_variable(x, zero_copy=False)
            x[0][0] = -1
            y[0][0].numpy()  # array([1.], dtype=float32)
714
            y = fluid.dygraph.to_variable(x)
715 716
            x[0][0] = 0
            y[0][0].numpy()  # array([0.], dtype=float32)
717 718 719 720
            c = np.array([2+1j, 2])
            z = fluid.dygraph.to_variable(c)
            z.numpy() # array([2.+1.j, 2.+0.j])
            z.dtype # 'complex128'
721 722 723 724 725 726 727

            y = fluid.dygraph.to_variable([[0.1, 1.2], [2.2, 3.1], [4.9, 5.2]])
            y.shape     # [3L, 2L]

            y = fluid.dygraph.to_variable(((0.1, 1.2), (2.2, 3.1), (4.9, 5.2)), dtype='int32')
            y.shape     # [3L, 2L]

728
    """
H
hong 已提交
729 730
    support_type = (list, tuple, np.ndarray, core.eager.Tensor, core.VarBase,
                    framework.Variable, core.Tensor, core.LoDTensor)
731 732 733 734
    if not isinstance(value, support_type):
        raise TypeError(
            "The type of 'value' in fluid.dygraph.to_variable must be %s, but received %s."
            % (support_type, type(value)))
H
hong 已提交
735
    if isinstance(value, (core.eager.Tensor, core.VarBase, framework.Variable)):
736 737 738 739
        return value
    elif isinstance(value, (core.Tensor, core.LoDTensor)):
        return core.VarBase(value)
    else:
740 741
        if isinstance(framework._current_expected_place(),
                      framework.core.CPUPlace):
L
Leo Chen 已提交
742
            #TODO(zhiqiu): we found two problems when enable zero_copy on CPUPlace.
743
            # (1): eigen requires 16-bytes alignments, but the data of numpy array may not statisfy.
L
Leo Chen 已提交
744 745 746 747 748 749 750 751 752
            # Details: https://eigen.tuxfamily.org/dox/group__TopicUnalignedArrayAssert.html
            # (2): when used in flask framework, it may result in hang.
            # Details: https://github.com/PaddlePaddle/Paddle/issues/26635
            # So, we temporally diable the zero_copy strategy.
            if zero_copy == True:
                warnings.warn(
                    "Currently, zero_copy is not supported, and it will be discarded."
                )
                zero_copy = False
753 754
        else:
            assert not zero_copy, "zero_copy mode can only be used with CPUPlace"
755 756 757 758 759 760 761 762 763

        if not isinstance(value, np.ndarray):
            value = np.array(value)

        if dtype is not None:
            dtype = convert_dtype(dtype)
            if value.dtype != dtype:
                value = value.astype(dtype)

J
Jiabin Yang 已提交
764
        if _in_eager_without_dygraph_check():
765 766 767
            return core.eager.Tensor(value, framework._current_expected_place(),
                                     False, zero_copy, name if name else None,
                                     True)
768
        else:
769 770 771 772 773
            py_var = core.VarBase(value=value,
                                  place=framework._current_expected_place(),
                                  persistable=False,
                                  zero_copy=zero_copy,
                                  name=name if name else '')
774
            return py_var