base.py 22.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from ..wrapped_decorator import signature_safe_contextmanager, wrap_decorator
S
songyouwei 已提交
15
import decorator
16
import contextlib
S
songyouwei 已提交
17
import functools
18
import sys
19 20 21
import numpy as np
from paddle.fluid import core
from paddle.fluid import framework
H
hong 已提交
22
from paddle.fluid.multiprocess_utils import CleanupFuncRegistrar
M
minqiyang 已提交
23
from .tracer import Tracer
Z
Zeng Jinle 已提交
24
import logging
J
Jiabin Yang 已提交
25
import objgraph
26

27 28
__all__ = [
    'no_grad',
Z
Zeng Jinle 已提交
29
    'grad',
30
    'guard',
31 32 33
    'enable_dygraph',
    'disable_dygraph',
    'enabled',
34 35
    'to_variable',
]
36 37


38 39 40 41 42 43 44 45 46 47 48
def _switch_to_static_graph_(func):
    def __impl__(*args, **kwargs):
        with framework._dygraph_guard(None):
            return func(*args, **kwargs)

    return __impl__


switch_to_static_graph = wrap_decorator(_switch_to_static_graph_)


49 50 51 52 53 54
@signature_safe_contextmanager
def program_desc_tracing_guard(enable):
    tracer = framework._dygraph_tracer()
    if tracer:
        original_val = tracer._enable_program_desc_tracing
        tracer._enable_program_desc_tracing = enable
55 56 57 58 59
    try:
        yield
    finally:
        if tracer:
            tracer._enable_program_desc_tracing = original_val
60 61


62 63 64
_functional_dygraph_context_manager = None


65 66
@signature_safe_contextmanager
def param_guard(parameters):
67
    # Note: parameters is a reference of self._parameters or self._buffers
68 69 70 71
    if not framework.in_dygraph_mode() and parameters:
        origin_parameters = parameters.copy()
        for name, var_base in parameters.items():
            if isinstance(var_base, core.VarBase):
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
                # Convert ParamBase into Parameter with same attributes in dy2stat.
                if isinstance(var_base, framework.ParamBase):
                    new_var = var_base._to_static_var(to_parameter=True)
                else:
                    # Check whether has been created before.
                    if var_base.name in var_base.block.vars:
                        new_var = var_base.block.vars[var_base.name]
                    # Note(Aurelius84): Convert VarBase in self._buffers into Variabe with
                    # same attributes and set persistable=True to allow saving this var.
                    # Because users can create a VarBase in `__init__`  like a
                    # `mask` Tensor or `hidden_0` in RNN layers, which is equivalent to a Parameter
                    # and necessary for inferring. It will be pruned if it's not necessary for inferring.
                    else:
                        new_var = var_base._to_static_var(
                            to_parameter=False, persistable=True)
87 88 89 90 91 92 93
                parameters[name] = new_var
        yield
        parameters.update(origin_parameters)
    else:
        yield


94
def enabled():
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
    """
    This function checks whether the program runs in dynamic graph mode or not.
    You can enter dynamic graph mode with :ref:`api_fluid_dygraph_guard` api,
    or enable and disable dynamic graph mode with :ref:`api_fluid_dygraph_enable`
    and :ref:`api_fluid_dygraph_disable` api .

    **Note**:
        ``fluid.dygraph.enabled`` is the alias of ``fluid.in_dygraph_mode``, and
        ``fluid.in_dygraph_mode`` is recommended to use.

    Returns:
        bool: Whether the program is running in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            fluid.enable_dygraph()  # Now we are in dygragh mode
            print(fluid.dygraph.enabled())  # True
            fluid.disable_dygraph()
            print(fluid.dygraph.enabled())  # False
    """
L
lujun 已提交
118
    return framework.in_dygraph_mode()
119 120


121 122
def enable_dygraph(place=None):
    """
123 124 125 126
    :alias_main: paddle.enable_dygraph
	:alias: paddle.enable_dygraph,paddle.enable_imperative.enable_dygraph
	:old_api: paddle.fluid.dygraph.base.enable_dygraph

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    This function enables dynamic graph mode.

    Parameters:
        place(fluid.CPUPlace or fluid.CUDAPlace, optional): Place to execute dygraph.
            If None, the running place will be determined according to the way of paddle compilation. Default: None

    return:
        None

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            fluid.enable_dygraph()  # Now we are in dygragh mode
            print(fluid.in_dygraph_mode())  # True
            fluid.disable_dygraph()
            print(fluid.in_dygraph_mode())  # False
    """
    global _functional_dygraph_context_manager
S
songyouwei 已提交
147 148 149
    if _functional_dygraph_context_manager is None:
        _functional_dygraph_context_manager = guard(place=place)
        _functional_dygraph_context_manager.__enter__()
150

H
hong 已提交
151 152 153
        # call disable_dygraph when Python exit
        CleanupFuncRegistrar.register(disable_dygraph)

154 155 156

def disable_dygraph():
    """
157 158 159 160
    :alias_main: paddle.disable_dygraph
	:alias: paddle.disable_dygraph,paddle.disable_imperative.disable_dygraph
	:old_api: paddle.fluid.dygraph.base.disable_dygraph

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
    This function disables dynamic graph mode.

    return:
        None

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            fluid.enable_dygraph()  # Now we are in dygragh mode
            print(fluid.in_dygraph_mode())  # True
            fluid.disable_dygraph()
            print(fluid.in_dygraph_mode())  # False
    """
    global _functional_dygraph_context_manager
    if _functional_dygraph_context_manager is not None:
        _functional_dygraph_context_manager.__exit__(*sys.exc_info())
        _functional_dygraph_context_manager = None


182
@signature_safe_contextmanager
183 184 185 186 187
def _switch_tracer_mode_guard_(is_train=True):
    tracer = framework._dygraph_tracer()
    if tracer:
        mode = tracer._train_mode
        tracer._train_mode = is_train
188 189 190 191
        try:
            yield
        finally:
            tracer._train_mode = mode
192 193 194 195
    else:
        yield


196
def no_grad(func=None):
197
    """
198 199
    :api_attr: imperative

200 201
    Create a context which disables dygraph gradient calculation.
    In this mode, the result of every computation will have `stop_gradient=True`.
202

203
    Also functions as a decorator. (Make sure to instantiate without parenthesis.)
204 205 206 207 208 209 210 211

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
        # use as generator

        data = np.array([[2, 3], [4, 5]]).astype('float32')
        with fluid.dygraph.guard():
            l0 = fluid.Linear(2, 2)  # l0.weight.gradient() is None
            l1 = fluid.Linear(2, 2)
            with fluid.dygraph.no_grad():
                # l1.weight.stop_gradient is False
                tmp = l1.weight * 2  # tmp.stop_gradient is True
            x = fluid.dygraph.to_variable(data)
            y = l0(x) + tmp
            o = l1(y)
            o.backward()
            print(tmp.gradient() is None)  # True
            print(l0.weight.gradient() is None)  # False

        # use as decorator

230 231 232
        @fluid.dygraph.no_grad
        def test_layer():
            with fluid.dygraph.guard():
233
                inp = np.ones([3, 1024], dtype='float32')
234
                t = fluid.dygraph.base.to_variable(inp)
235 236 237 238
                linear1 = fluid.Linear(1024, 4, bias_attr=False)
                linear2 = fluid.Linear(4, 4)
                ret = linear1(t)
                dy_ret = linear2(ret)
239 240 241 242

        test_layer()

    """
243 244 245
    if func is None:
        return _switch_tracer_mode_guard_(is_train=False)
    else:
246

S
songyouwei 已提交
247 248
        @decorator.decorator
        def __impl__(func, *args, **kwargs):
249 250
            with _switch_tracer_mode_guard_(is_train=False):
                return func(*args, **kwargs)
251

S
songyouwei 已提交
252
        return __impl__(func)
253 254


S
rename  
sneaxiy 已提交
255
@signature_safe_contextmanager
P
Paddle CI 已提交
256
def guard(place=None):
257
    """
258 259
    :api_attr: imperative

260
    This context will create a dygraph context for dygraph to run, using python ``with`` statement.
261

262 263 264
    Parameters:
        place(fluid.CPUPlace or fluid.CUDAPlace, optional): Place to execute dygraph. 
            If None, the running place will be determined according to the way of paddle compilation. Default: None
265 266 267 268 269 270 271 272 273 274 275 276

    return:
        None

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

        with fluid.dygraph.guard():
277
            inp = np.ones([3, 1024], dtype='float32')
278
            t = fluid.dygraph.base.to_variable(inp)
279 280 281 282
            linear1 = fluid.Linear(1024, 4, bias_attr=False)
            linear2 = fluid.Linear(4, 4)
            ret = linear1(t)
            dy_ret = linear2(ret)
283 284

    """
285 286
    train = framework.Program()
    startup = framework.Program()
J
Jiabin Yang 已提交
287
    tracer = Tracer()
288
    VarBase = core.VarBase
M
minqiyang 已提交
289

P
Paddle CI 已提交
290
    if place is None:
M
minqiyang 已提交
291
        if core.is_compiled_with_cuda():
P
Paddle CI 已提交
292
            place = core.CUDAPlace(0)
M
minqiyang 已提交
293 294
        else:
            place = core.CPUPlace()
295
    tracer._expected_place = place
M
minqiyang 已提交
296

297 298
    with framework.program_guard(train, startup):
        with framework.unique_name.guard():
L
lujun 已提交
299 300
            with framework._dygraph_guard(tracer):
                with framework._dygraph_place_guard(place):
P
Paddle CI 已提交
301
                    yield
302 303


304
def _print_debug_msg(parameter_list, limit=5, is_test=False):
Z
Zeng Jinle 已提交
305 306 307 308 309 310
    if not core._is_dygraph_debug_enabled():
        logging.warn(
            'Debug mode is not enabled. Please set FLAGS_dygraph_debug=1 to enable debug'
        )
        return
    unique_name_size = len(framework.unique_name.generator.ids)
311
    tracer_var_size = len(parameter_list)
Z
Zeng Jinle 已提交
312
    alive_cpp_var_size = len(core.VarBase._alive_vars())
J
Jiabin Yang 已提交
313 314 315 316 317 318 319
    if not is_test:
        logging.warn(
            'unique_name num: {}, tracer vars num: {}, alive cpp vars num: {}'
            .format(unique_name_size, tracer_var_size, alive_cpp_var_size))
        objgraph.show_growth(limit=limit)
    else:
        return unique_name_size, tracer_var_size, alive_cpp_var_size
Z
Zeng Jinle 已提交
320 321


322 323 324 325
@framework.dygraph_only
def grad(outputs,
         inputs,
         grad_outputs=None,
Z
Zeng Jinle 已提交
326
         retain_graph=None,
327
         create_graph=False,
Z
Zeng Jinle 已提交
328 329 330
         only_inputs=True,
         allow_unused=False,
         no_grad_vars=None,
331
         backward_strategy=None):
Z
Zeng Jinle 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
    ''' 
    .. note::
        **This API is ONLY available in Dygraph mode.**

    This API computes the sum of gradients of `outputs` with respect to each `inputs` .

    Parameters:
        outputs (Variable|list(Variable)|tuple(Variable)): the output Variable or 
            Variable list/tuple of the graph to compute gradients.
        inputs (Variable|list(Variable)|tuple(Variable)): the input Variable or 
            Variable list/tuple of the graph to compute gradients. The returned
            values of this API are the gradients of `inputs` . 
        grad_outputs (Variable|list(Variable|None)|tuple(Variable|None), optional): 
            initial gradient values of `outputs` . If `grad_outputs` is None, 
            the initial gradient values of `outputs` would be Tensors filled with 1; 
            if `grad_outputs` is not None, it must have the same length as `outputs` , 
            and in this case, the initial gradient value of the i-th `outputs` would
            be: (1) a Tensor filled with 1 when the i-th element of `grad_outputs` 
            is None; (2) the i-th element of `grad_outputs` when the i-th element of
            `grad_outputs` is a Variable. Default None.
        retain_graph (bool, optional): whether to retain the forward graph which 
            is used to calculate the gradient. When it is True, the graph would 
            be retained, in which way users can calculate backward twice for the 
            same graph. When it is False, the graph would be freed. Default None,
            which means it is equal to `create_graph` . 
        create_graph (bool, optional): whether to create the gradient graphs of
            the computing process. When it is True, higher order derivatives are
            supported to compute; when it is False, the gradient graphs of the
            computing process would be discarded. Default False.
        only_inputs (bool, optional): whether to only compute the gradients of
            `inputs` . If it is False, the gradients of all remaining leaf 
            Variables in the graph would be also computed and accumulated. 
            If it is True, only the gradients of `inputs` would be computed.
            Default True. only_inputs=False is under development, and it is
            not supported yet.    
        allow_unused (bool, optional): whether to raise error or return None if some 
            Variables of `inputs` are unreachable in the graph. If some Variables of 
            `inputs` are unreachable in the graph (i.e., their gradients are None),  
            error would be raised if allow_unused=False, or None would be returned as
            their gradients if allow_unused=True. Default False.
        no_grad_vars (Variable|list(Variable)|tuple(Variable)|set(Variable), optional): 
            the Variables whose gradients are not needed to compute. Default None.
        backward_strategy (BackwardStrategy, optional): The backward strategy to
            compute gradients. See :ref:`api_fluid_dygraph_BackwardStrategy` for
            details. Default None.

    Returns:
        tuple: a tuple of Variables, whose length is the same as the Variable number 
        inside `inputs`, and the i-th returned Variable is the sum of gradients of 
        `outputs` with respect to the i-th `inputs`.

    Examples 1:
        .. code-block:: python

            import paddle.fluid as fluid

            def test_dygraph_grad(create_graph):
                with fluid.dygraph.guard(): 
                    x = fluid.layers.ones(shape=[1], dtype='float32') 
                    x.stop_gradient = False
                    y = x * x

                    # Since y = x * x, dx = 2 * x 
                    dx = fluid.dygraph.grad(
                            outputs=[y],
                            inputs=[x], 
                            create_graph=create_graph, 
                            retain_graph=True)[0]

                    z = y + dx

                    # If create_graph = False, the gradient of dx
                    # would not be backpropagated. Therefore,
                    # z = x * x + dx, and x.gradient() = 2 * x = 2.0
                    
                    # If create_graph = True, the gradient of dx
                    # would be backpropagated. Therefore, 
                    # z = x * x + dx = x * x + 2 * x, and
                    # x.gradient() = 2 * x + 2 = 4.0 

                    z.backward()
                    return x.gradient() 

            print(test_dygraph_grad(create_graph=False)) # [2.] 
            print(test_dygraph_grad(create_graph=True)) # [4.]

    Examples 2:
        .. code-block:: python

            import paddle.fluid as fluid

            fluid.enable_dygraph()

            def test_dygraph_grad(grad_outputs=None):
                x = fluid.layers.fill_constant(shape=[1], value=2.0, dtype='float32')
                x.stop_gradient = False

                y1 = x * x
                y2 = x * 3 

                # If grad_outputs=None, dy1 = [1], dy2 = [1].
                # If grad_outputs=[g1, g2], then:
                #    - dy1 = [1] if g1 is None else g1
                #    - dy2 = [1] if g2 is None else g2

                # Since y1 = x * x, dx = 2 * x * dy1.
                # Since y2 = x * 3, dx = 3 * dy2.
                # Therefore, the final result would be:
                # dx = 2 * x * dy1 + 3 * dy2 = 4 * dy1 + 3 * dy2.

                dx = fluid.dygraph.grad(
                    outputs=[y1, y2], 
                    inputs=[x],
                    grad_outputs=grad_outputs)[0]

                return dx.numpy()

            THREE = fluid.layers.fill_constant(shape=[1], value=3.0, dtype='float32')
            FOUR = fluid.layers.fill_constant(shape=[1], value=4.0, dtype='float32')

            # dy1 = [1], dy2 = [1]
            print(test_dygraph_grad(None)) # [7.]

            # dy1 = [1], dy2 = [4]
            print(test_dygraph_grad([None, FOUR])) # [16.] 

            # dy1 = [4], dy2 = [1]
            print(test_dygraph_grad([FOUR, None])) # [19.]

            # dy1 = [3], dy2 = [4]
            print(test_dygraph_grad([THREE, FOUR])) # [24.]
	'''

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
    def check_in_out(in_out_list, name):
        assert in_out_list is not None, "{} should not be None".format(name)

        if isinstance(in_out_list, (list, tuple)):
            assert len(in_out_list) > 0, "{} cannot be empty".format(name)
            for each_var in in_out_list:
                assert isinstance(
                    each_var,
                    core.VarBase), "Elements of {} must be Variable".format(
                        name)
            return in_out_list
        else:
            assert isinstance(
                in_out_list,
                core.VarBase), "{} must be Variable or list of Variable".format(
                    name)
            return [in_out_list]

    outputs = check_in_out(outputs, 'outputs')
    inputs = check_in_out(inputs, 'inputs')

    if grad_outputs is not None:
        if not isinstance(grad_outputs, (list, tuple)):
            grad_outputs = [grad_outputs]

        for each_var in grad_outputs:
            if each_var is not None:
                assert isinstance(
                    each_var, core.VarBase
                ), "grad_outputs must be None, a Variable or a list containing None or Variables"
    else:
        grad_outputs = []

    if len(grad_outputs) > 0:
        assert len(grad_outputs) == len(
            outputs), "The length of grad_outputs must be equal to outputs"

Z
Zeng Jinle 已提交
502 503 504 505 506 507 508
    if no_grad_vars is None:
        no_grad_vars = []
    elif isinstance(no_grad_vars, core.VarBase):
        no_grad_vars = [no_grad_vars]
    elif isinstance(no_grad_vars, (list, tuple, set)):
        no_grad_vars = list(no_grad_vars)
        for var in no_grad_vars:
509
            assert isinstance(
Z
Zeng Jinle 已提交
510
                var, core.VarBase), "no_grad_vars can only contains Variable"
511 512
    else:
        raise AssertionError(
Z
Zeng Jinle 已提交
513
            "no_grad_vars must be None, Variable or list/tuple/set of Variables")
514 515 516 517 518 519 520 521 522

    if backward_strategy is None:
        backward_strategy = core.BackwardStrategy()

    assert isinstance(backward_strategy, core.BackwardStrategy), \
        "backward_strategy must be type paddle.fluid.dygraph.BackwardStrategy"

    assert isinstance(create_graph, bool), "create_graph must be True or False"

Z
Zeng Jinle 已提交
523 524 525 526 527 528 529 530 531 532 533
    if retain_graph is None:
        retain_graph = create_graph

    assert isinstance(retain_graph,
                      bool), "retain_graph must be None, True or False"

    assert isinstance(allow_unused, bool), "allow_unused must be True or False"

    assert isinstance(only_inputs, bool), "only_inputs must be True or False"
    assert only_inputs, "only_inputs=False is not supported yet"

534 535
    place = core.Place()
    place.set_place(framework._current_expected_place())
Z
Zeng Jinle 已提交
536 537 538
    return core.dygraph_partial_grad(
        inputs, outputs, grad_outputs, no_grad_vars, place, backward_strategy,
        create_graph, retain_graph, allow_unused, only_inputs)
539 540


541
@framework.dygraph_only
542
def to_variable(value, name=None, zero_copy=None):
543
    """
544 545
    :api_attr: imperative

546 547
    The API will create a ``Variable`` or ``ComplexVariable`` object from 
    numpy\.ndarray, Variable or ComplexVariable object.
548

549
    Parameters:
550 551
        value(ndarray|Variable|Tensor|ComplexVariable): The numpy\.ndarray, Variable 
            Tensor or ComplexVariable object that needs to be converted, it can be 
552 553 554 555 556 557 558 559 560
            multi-dimension, and the data type is one of numpy\.{float16, 
            float32, float64, int16, int32, int64, uint8, uint16, complex64, 
            complex128}.
        name(str, optional): The default value is None. Normally there is no 
            need for user to set this property. For more information, please 
            refer to :ref:`api_guide_Name` .
        zero_copy(bool, optional): Whether to share memory with the input numpy 
            array. This parameter only works with CPUPlace and will be set to 
            True when it is None. Default: None.
561

562
    Returns:
563
        Variable or ComplexVariable: If ``value`` is a numpy\.ndarray object, return ``Tensor`` created from the specified numpy\.ndarray object, which has same data type and shape with ``value``. If ``value`` is a Variable or ComplexVariable object, just return ``value``.
564

565 566 567 568 569 570 571 572

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

573
        with fluid.dygraph.guard(fluid.CPUPlace()):
574
            x = np.ones([2, 2], np.float32)
575 576 577
            y = fluid.dygraph.to_variable(x, zero_copy=False)
            x[0][0] = -1
            y[0][0].numpy()  # array([1.], dtype=float32)
578
            y = fluid.dygraph.to_variable(x)
579 580
            x[0][0] = 0
            y[0][0].numpy()  # array([0.], dtype=float32)
581 582 583 584
            c = np.array([2+1j, 2])
            z = fluid.dygraph.to_variable(c)
            z.numpy() # array([2.+1.j, 2.+0.j])
            z.dtype # 'complex128'
585
    """
586
    if isinstance(value, np.ndarray):
L
lujun 已提交
587 588
        assert framework.in_dygraph_mode(
        ), "to_variable could only be called in dygraph mode"
589 590 591 592 593 594
        if isinstance(framework._current_expected_place(),
                      framework.core.CPUPlace):
            if zero_copy is None:
                zero_copy = True
        else:
            assert not zero_copy, "zero_copy mode can only be used with CPUPlace"
595
            zero_copy = False
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
        if np.iscomplexobj(value):
            if not name:
                name = framework.unique_name.generate('_generated_var')
            real_var = core.VarBase(
                value=value.real,
                place=framework._current_expected_place(),
                persistable=False,
                zero_copy=zero_copy,
                name=name + ".real")
            imag_var = core.VarBase(
                value=value.imag,
                place=framework._current_expected_place(),
                persistable=False,
                zero_copy=zero_copy,
                name=name + ".imag")
            return framework.ComplexVariable(real_var, imag_var)
        else:
            py_var = core.VarBase(
                value=value,
                place=framework._current_expected_place(),
                persistable=False,
                zero_copy=zero_copy,
                name=name if name else '')
            return py_var
    elif isinstance(value, (core.VarBase, framework.Variable,
                            framework.ComplexVariable)):
622
        return value
623 624
    elif isinstance(value, (core.Tensor, core.LoDTensor)):
        return core.VarBase(value)
625 626
    else:
        raise TypeError(
627 628
            "The type of input value is invalid, expected type is 'ndarray', "
            "'Variable' or 'ComplexVariable', but received %s." % type(value))