base.py 23.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from ..wrapped_decorator import signature_safe_contextmanager, wrap_decorator
15
import inspect
S
songyouwei 已提交
16
import decorator
17
import contextlib
18
import sys
19 20 21
import numpy as np
from paddle.fluid import core
from paddle.fluid import framework
H
hong 已提交
22
from paddle.fluid.multiprocess_utils import CleanupFuncRegistrar
M
minqiyang 已提交
23
from .tracer import Tracer
Z
Zeng Jinle 已提交
24
import logging
J
Jiabin Yang 已提交
25
import objgraph
26
from ..data_feeder import convert_dtype
27

28 29
__all__ = [
    'no_grad',
Z
Zeng Jinle 已提交
30
    'grad',
31
    'guard',
32 33 34
    'enable_dygraph',
    'disable_dygraph',
    'enabled',
35 36
    'to_variable',
]
37 38


39 40 41 42 43 44 45 46 47 48 49
def _switch_to_static_graph_(func):
    def __impl__(*args, **kwargs):
        with framework._dygraph_guard(None):
            return func(*args, **kwargs)

    return __impl__


switch_to_static_graph = wrap_decorator(_switch_to_static_graph_)


50 51 52 53 54 55
@signature_safe_contextmanager
def program_desc_tracing_guard(enable):
    tracer = framework._dygraph_tracer()
    if tracer:
        original_val = tracer._enable_program_desc_tracing
        tracer._enable_program_desc_tracing = enable
56 57 58 59 60
    try:
        yield
    finally:
        if tracer:
            tracer._enable_program_desc_tracing = original_val
61 62


63 64 65
_functional_dygraph_context_manager = None


66 67
@signature_safe_contextmanager
def param_guard(parameters):
68
    # Note: parameters is a reference of self._parameters or self._buffers
69 70 71 72
    if not framework.in_dygraph_mode() and parameters:
        origin_parameters = parameters.copy()
        for name, var_base in parameters.items():
            if isinstance(var_base, core.VarBase):
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
                # Convert ParamBase into Parameter with same attributes in dy2stat.
                if isinstance(var_base, framework.ParamBase):
                    new_var = var_base._to_static_var(to_parameter=True)
                else:
                    # Check whether has been created before.
                    if var_base.name in var_base.block.vars:
                        new_var = var_base.block.vars[var_base.name]
                    # Note(Aurelius84): Convert VarBase in self._buffers into Variabe with
                    # same attributes and set persistable=True to allow saving this var.
                    # Because users can create a VarBase in `__init__`  like a
                    # `mask` Tensor or `hidden_0` in RNN layers, which is equivalent to a Parameter
                    # and necessary for inferring. It will be pruned if it's not necessary for inferring.
                    else:
                        new_var = var_base._to_static_var(
                            to_parameter=False, persistable=True)
88 89 90 91 92 93 94
                parameters[name] = new_var
        yield
        parameters.update(origin_parameters)
    else:
        yield


95
def enabled():
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    """
    This function checks whether the program runs in dynamic graph mode or not.
    You can enter dynamic graph mode with :ref:`api_fluid_dygraph_guard` api,
    or enable and disable dynamic graph mode with :ref:`api_fluid_dygraph_enable`
    and :ref:`api_fluid_dygraph_disable` api .

    **Note**:
        ``fluid.dygraph.enabled`` is the alias of ``fluid.in_dygraph_mode``, and
        ``fluid.in_dygraph_mode`` is recommended to use.

    Returns:
        bool: Whether the program is running in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            fluid.enable_dygraph()  # Now we are in dygragh mode
            print(fluid.dygraph.enabled())  # True
            fluid.disable_dygraph()
            print(fluid.dygraph.enabled())  # False
    """
L
lujun 已提交
119
    return framework.in_dygraph_mode()
120 121


122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
def enable_dygraph(place=None):
    """
    This function enables dynamic graph mode.

    Parameters:
        place(fluid.CPUPlace or fluid.CUDAPlace, optional): Place to execute dygraph.
            If None, the running place will be determined according to the way of paddle compilation. Default: None

    return:
        None

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            fluid.enable_dygraph()  # Now we are in dygragh mode
            print(fluid.in_dygraph_mode())  # True
            fluid.disable_dygraph()
            print(fluid.in_dygraph_mode())  # False
    """
    global _functional_dygraph_context_manager
S
songyouwei 已提交
144 145 146
    if _functional_dygraph_context_manager is None:
        _functional_dygraph_context_manager = guard(place=place)
        _functional_dygraph_context_manager.__enter__()
147

H
hong 已提交
148 149 150
        # call disable_dygraph when Python exit
        CleanupFuncRegistrar.register(disable_dygraph)

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174

def disable_dygraph():
    """
    This function disables dynamic graph mode.

    return:
        None

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            fluid.enable_dygraph()  # Now we are in dygragh mode
            print(fluid.in_dygraph_mode())  # True
            fluid.disable_dygraph()
            print(fluid.in_dygraph_mode())  # False
    """
    global _functional_dygraph_context_manager
    if _functional_dygraph_context_manager is not None:
        _functional_dygraph_context_manager.__exit__(*sys.exc_info())
        _functional_dygraph_context_manager = None


175
class no_grad:
176
    """
177 178
    :api_attr: imperative

179
    Create a context which disables dygraph gradient calculation.
180 181
    In this mode, the result of every computation will have `stop_gradient` set
    to `True`.
182

183
    Also functions as a decorator. (Make sure to use an instance.)
184 185 186 187 188 189 190 191

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

192 193
        paddle.enable_imperative()

194 195 196
        # use as generator

        data = np.array([[2, 3], [4, 5]]).astype('float32')
197 198 199 200 201 202 203 204 205 206 207
        l0 = fluid.Linear(2, 2)  # l0.weight.gradient() is None
        l1 = fluid.Linear(2, 2)
        with fluid.no_grad():
            # l1.weight.stop_gradient is False
            tmp = l1.weight * 2  # tmp.stop_gradient is True
        x = fluid.dygraph.to_variable(data)
        y = l0(x) + tmp
        o = l1(y)
        o.backward()
        print(tmp.gradient() is None)  # True
        print(l0.weight.gradient() is None)  # False
208 209 210

        # use as decorator

211
        @fluid.no_grad()
212
        def test_layer():
213 214 215 216 217 218
            inp = np.ones([3, 1024], dtype='float32')
            t = fluid.dygraph.base.to_variable(inp)
            linear1 = fluid.Linear(1024, 4, bias_attr=False)
            linear2 = fluid.Linear(4, 4)
            ret = linear1(t)
            dy_ret = linear2(ret)
219 220 221 222

        test_layer()
    """

223
    def __call__(self, func):
S
songyouwei 已提交
224
        @decorator.decorator
225 226
        def _decorate_function(func, *args, **kwargs):
            with self:
227
                return func(*args, **kwargs)
228

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
        @decorator.decorator
        def _decorate_generator(func, *args, **kwargs):
            gen = func(*args, **kwargs)
            with self:
                for x in gen:
                    yield x

        if inspect.isgeneratorfunction(func):
            return _decorate_generator(func)
        else:
            return _decorate_function(func)

    def __enter__(self):
        tracer = framework._dygraph_tracer()
        if tracer:
            self.orig = tracer._train_mode
            tracer._train_mode = False

    def __exit__(self, *args):
        tracer = framework._dygraph_tracer()
        if tracer:
            tracer._train_mode = self.orig
251 252


S
rename  
sneaxiy 已提交
253
@signature_safe_contextmanager
P
Paddle CI 已提交
254
def guard(place=None):
255
    """
256 257
    :api_attr: imperative

258
    This context will create a dygraph context for dygraph to run, using python ``with`` statement.
259

260 261 262
    Parameters:
        place(fluid.CPUPlace or fluid.CUDAPlace, optional): Place to execute dygraph. 
            If None, the running place will be determined according to the way of paddle compilation. Default: None
263 264 265 266 267 268 269 270 271 272 273 274

    return:
        None

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

        with fluid.dygraph.guard():
275
            inp = np.ones([3, 1024], dtype='float32')
276
            t = fluid.dygraph.base.to_variable(inp)
277 278 279 280
            linear1 = fluid.Linear(1024, 4, bias_attr=False)
            linear2 = fluid.Linear(4, 4)
            ret = linear1(t)
            dy_ret = linear2(ret)
281 282

    """
283 284
    train = framework.Program()
    startup = framework.Program()
J
Jiabin Yang 已提交
285
    tracer = Tracer()
286
    VarBase = core.VarBase
M
minqiyang 已提交
287

P
Paddle CI 已提交
288
    if place is None:
M
minqiyang 已提交
289
        if core.is_compiled_with_cuda():
P
Paddle CI 已提交
290
            place = core.CUDAPlace(0)
M
minqiyang 已提交
291 292
        else:
            place = core.CPUPlace()
293
    tracer._expected_place = place
M
minqiyang 已提交
294

295 296
    with framework.program_guard(train, startup):
        with framework.unique_name.guard():
L
lujun 已提交
297 298
            with framework._dygraph_guard(tracer):
                with framework._dygraph_place_guard(place):
P
Paddle CI 已提交
299
                    yield
300 301


302
def _print_debug_msg(parameter_list, limit=5, is_test=False):
Z
Zeng Jinle 已提交
303 304 305 306 307 308
    if not core._is_dygraph_debug_enabled():
        logging.warn(
            'Debug mode is not enabled. Please set FLAGS_dygraph_debug=1 to enable debug'
        )
        return
    unique_name_size = len(framework.unique_name.generator.ids)
309
    tracer_var_size = len(parameter_list)
Z
Zeng Jinle 已提交
310
    alive_cpp_var_size = len(core.VarBase._alive_vars())
J
Jiabin Yang 已提交
311 312 313 314 315 316 317
    if not is_test:
        logging.warn(
            'unique_name num: {}, tracer vars num: {}, alive cpp vars num: {}'
            .format(unique_name_size, tracer_var_size, alive_cpp_var_size))
        objgraph.show_growth(limit=limit)
    else:
        return unique_name_size, tracer_var_size, alive_cpp_var_size
Z
Zeng Jinle 已提交
318 319


320 321 322 323
@framework.dygraph_only
def grad(outputs,
         inputs,
         grad_outputs=None,
Z
Zeng Jinle 已提交
324
         retain_graph=None,
325
         create_graph=False,
Z
Zeng Jinle 已提交
326 327 328
         only_inputs=True,
         allow_unused=False,
         no_grad_vars=None,
329
         backward_strategy=None):
Z
Zeng Jinle 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
    ''' 
    .. note::
        **This API is ONLY available in Dygraph mode.**

    This API computes the sum of gradients of `outputs` with respect to each `inputs` .

    Parameters:
        outputs (Variable|list(Variable)|tuple(Variable)): the output Variable or 
            Variable list/tuple of the graph to compute gradients.
        inputs (Variable|list(Variable)|tuple(Variable)): the input Variable or 
            Variable list/tuple of the graph to compute gradients. The returned
            values of this API are the gradients of `inputs` . 
        grad_outputs (Variable|list(Variable|None)|tuple(Variable|None), optional): 
            initial gradient values of `outputs` . If `grad_outputs` is None, 
            the initial gradient values of `outputs` would be Tensors filled with 1; 
            if `grad_outputs` is not None, it must have the same length as `outputs` , 
            and in this case, the initial gradient value of the i-th `outputs` would
            be: (1) a Tensor filled with 1 when the i-th element of `grad_outputs` 
            is None; (2) the i-th element of `grad_outputs` when the i-th element of
            `grad_outputs` is a Variable. Default None.
        retain_graph (bool, optional): whether to retain the forward graph which 
            is used to calculate the gradient. When it is True, the graph would 
            be retained, in which way users can calculate backward twice for the 
            same graph. When it is False, the graph would be freed. Default None,
            which means it is equal to `create_graph` . 
        create_graph (bool, optional): whether to create the gradient graphs of
            the computing process. When it is True, higher order derivatives are
            supported to compute; when it is False, the gradient graphs of the
            computing process would be discarded. Default False.
        only_inputs (bool, optional): whether to only compute the gradients of
            `inputs` . If it is False, the gradients of all remaining leaf 
            Variables in the graph would be also computed and accumulated. 
            If it is True, only the gradients of `inputs` would be computed.
            Default True. only_inputs=False is under development, and it is
            not supported yet.    
        allow_unused (bool, optional): whether to raise error or return None if some 
            Variables of `inputs` are unreachable in the graph. If some Variables of 
            `inputs` are unreachable in the graph (i.e., their gradients are None),  
            error would be raised if allow_unused=False, or None would be returned as
            their gradients if allow_unused=True. Default False.
        no_grad_vars (Variable|list(Variable)|tuple(Variable)|set(Variable), optional): 
            the Variables whose gradients are not needed to compute. Default None.
        backward_strategy (BackwardStrategy, optional): The backward strategy to
            compute gradients. See :ref:`api_fluid_dygraph_BackwardStrategy` for
            details. Default None.

    Returns:
        tuple: a tuple of Variables, whose length is the same as the Variable number 
        inside `inputs`, and the i-th returned Variable is the sum of gradients of 
        `outputs` with respect to the i-th `inputs`.

    Examples 1:
        .. code-block:: python

            import paddle.fluid as fluid

            def test_dygraph_grad(create_graph):
                with fluid.dygraph.guard(): 
                    x = fluid.layers.ones(shape=[1], dtype='float32') 
                    x.stop_gradient = False
                    y = x * x

                    # Since y = x * x, dx = 2 * x 
                    dx = fluid.dygraph.grad(
                            outputs=[y],
                            inputs=[x], 
                            create_graph=create_graph, 
                            retain_graph=True)[0]

                    z = y + dx

                    # If create_graph = False, the gradient of dx
                    # would not be backpropagated. Therefore,
                    # z = x * x + dx, and x.gradient() = 2 * x = 2.0
                    
                    # If create_graph = True, the gradient of dx
                    # would be backpropagated. Therefore, 
                    # z = x * x + dx = x * x + 2 * x, and
                    # x.gradient() = 2 * x + 2 = 4.0 

                    z.backward()
                    return x.gradient() 

            print(test_dygraph_grad(create_graph=False)) # [2.] 
            print(test_dygraph_grad(create_graph=True)) # [4.]

    Examples 2:
        .. code-block:: python

            import paddle.fluid as fluid

            fluid.enable_dygraph()

            def test_dygraph_grad(grad_outputs=None):
                x = fluid.layers.fill_constant(shape=[1], value=2.0, dtype='float32')
                x.stop_gradient = False

                y1 = x * x
                y2 = x * 3 

                # If grad_outputs=None, dy1 = [1], dy2 = [1].
                # If grad_outputs=[g1, g2], then:
                #    - dy1 = [1] if g1 is None else g1
                #    - dy2 = [1] if g2 is None else g2

                # Since y1 = x * x, dx = 2 * x * dy1.
                # Since y2 = x * 3, dx = 3 * dy2.
                # Therefore, the final result would be:
                # dx = 2 * x * dy1 + 3 * dy2 = 4 * dy1 + 3 * dy2.

                dx = fluid.dygraph.grad(
                    outputs=[y1, y2], 
                    inputs=[x],
                    grad_outputs=grad_outputs)[0]

                return dx.numpy()

            THREE = fluid.layers.fill_constant(shape=[1], value=3.0, dtype='float32')
            FOUR = fluid.layers.fill_constant(shape=[1], value=4.0, dtype='float32')

            # dy1 = [1], dy2 = [1]
            print(test_dygraph_grad(None)) # [7.]

            # dy1 = [1], dy2 = [4]
            print(test_dygraph_grad([None, FOUR])) # [16.] 

            # dy1 = [4], dy2 = [1]
            print(test_dygraph_grad([FOUR, None])) # [19.]

            # dy1 = [3], dy2 = [4]
            print(test_dygraph_grad([THREE, FOUR])) # [24.]
	'''

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
    def check_in_out(in_out_list, name):
        assert in_out_list is not None, "{} should not be None".format(name)

        if isinstance(in_out_list, (list, tuple)):
            assert len(in_out_list) > 0, "{} cannot be empty".format(name)
            for each_var in in_out_list:
                assert isinstance(
                    each_var,
                    core.VarBase), "Elements of {} must be Variable".format(
                        name)
            return in_out_list
        else:
            assert isinstance(
                in_out_list,
                core.VarBase), "{} must be Variable or list of Variable".format(
                    name)
            return [in_out_list]

    outputs = check_in_out(outputs, 'outputs')
    inputs = check_in_out(inputs, 'inputs')

    if grad_outputs is not None:
        if not isinstance(grad_outputs, (list, tuple)):
            grad_outputs = [grad_outputs]

        for each_var in grad_outputs:
            if each_var is not None:
                assert isinstance(
                    each_var, core.VarBase
                ), "grad_outputs must be None, a Variable or a list containing None or Variables"
    else:
        grad_outputs = []

    if len(grad_outputs) > 0:
        assert len(grad_outputs) == len(
            outputs), "The length of grad_outputs must be equal to outputs"

Z
Zeng Jinle 已提交
500 501 502 503 504 505 506
    if no_grad_vars is None:
        no_grad_vars = []
    elif isinstance(no_grad_vars, core.VarBase):
        no_grad_vars = [no_grad_vars]
    elif isinstance(no_grad_vars, (list, tuple, set)):
        no_grad_vars = list(no_grad_vars)
        for var in no_grad_vars:
507
            assert isinstance(
Z
Zeng Jinle 已提交
508
                var, core.VarBase), "no_grad_vars can only contains Variable"
509 510
    else:
        raise AssertionError(
Z
Zeng Jinle 已提交
511
            "no_grad_vars must be None, Variable or list/tuple/set of Variables")
512 513 514 515 516 517 518 519 520

    if backward_strategy is None:
        backward_strategy = core.BackwardStrategy()

    assert isinstance(backward_strategy, core.BackwardStrategy), \
        "backward_strategy must be type paddle.fluid.dygraph.BackwardStrategy"

    assert isinstance(create_graph, bool), "create_graph must be True or False"

Z
Zeng Jinle 已提交
521 522 523 524 525 526 527 528 529 530 531
    if retain_graph is None:
        retain_graph = create_graph

    assert isinstance(retain_graph,
                      bool), "retain_graph must be None, True or False"

    assert isinstance(allow_unused, bool), "allow_unused must be True or False"

    assert isinstance(only_inputs, bool), "only_inputs must be True or False"
    assert only_inputs, "only_inputs=False is not supported yet"

532 533
    place = core.Place()
    place.set_place(framework._current_expected_place())
Z
Zeng Jinle 已提交
534 535 536
    return core.dygraph_partial_grad(
        inputs, outputs, grad_outputs, no_grad_vars, place, backward_strategy,
        create_graph, retain_graph, allow_unused, only_inputs)
537 538


539
@framework.dygraph_only
540
def to_variable(value, name=None, zero_copy=None, dtype=None):
541
    """
542 543
    :api_attr: imperative

544
    The API will create a ``Variable`` or ``ComplexVariable`` object from 
545
    tuple, list, numpy\.ndarray, Variable or ComplexVariable object.
546

547
    Parameters:
548 549 550 551 552
        value(tuple|list|ndarray|Variable|Tensor|ComplexVariable): Initial data. 
            Can be a list, tuple, NumPy ndarray, Variable, Tensor, ComplexVariable. 
            The shape can be multi-dimensional. The data type is one of 
            numpy\.{float16, float32, float64, int16, int32, int64, 
            uint8, uint16, complex64, complex128}.
553 554 555 556 557 558
        name(str, optional): The default value is None. Normally there is no 
            need for user to set this property. For more information, please 
            refer to :ref:`api_guide_Name` .
        zero_copy(bool, optional): Whether to share memory with the input numpy 
            array. This parameter only works with CPUPlace and will be set to 
            True when it is None. Default: None.
559 560 561
        dtype(str, optional): The desired data type of returned ``Variable`` .
            Can be 'bool' , 'float16' , 'float32' , 'float64' , 'int8' , 'int16' , 
            'int32' , 'int64' , 'uint8' . Default: None.
562

563
    Returns:
564 565 566 567
        Variable or ComplexVariable: If ``value`` is a tuple/list/numpy\.ndarray object, 
            return ``Tensor`` created from the corresponding numpy\.ndarray object, which has 
            same data type and shape with ``value``. If ``value`` is a Variable or ComplexVariable 
            object, just return ``value``.
568

569 570 571 572 573 574 575 576

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

577
        with fluid.dygraph.guard(fluid.CPUPlace()):
578
            x = np.ones([2, 2], np.float32)
579 580 581
            y = fluid.dygraph.to_variable(x, zero_copy=False)
            x[0][0] = -1
            y[0][0].numpy()  # array([1.], dtype=float32)
582
            y = fluid.dygraph.to_variable(x)
583 584
            x[0][0] = 0
            y[0][0].numpy()  # array([0.], dtype=float32)
585 586 587 588
            c = np.array([2+1j, 2])
            z = fluid.dygraph.to_variable(c)
            z.numpy() # array([2.+1.j, 2.+0.j])
            z.dtype # 'complex128'
589 590 591 592 593 594 595

            y = fluid.dygraph.to_variable([[0.1, 1.2], [2.2, 3.1], [4.9, 5.2]])
            y.shape     # [3L, 2L]

            y = fluid.dygraph.to_variable(((0.1, 1.2), (2.2, 3.1), (4.9, 5.2)), dtype='int32')
            y.shape     # [3L, 2L]

596
    """
597 598 599 600 601 602 603 604 605 606 607 608
    support_type = (list, tuple, np.ndarray, core.VarBase, framework.Variable,
                    framework.ComplexVariable, core.Tensor, core.LoDTensor)
    if not isinstance(value, support_type):
        raise TypeError(
            "The type of 'value' in fluid.dygraph.to_variable must be %s, but received %s."
            % (support_type, type(value)))
    if isinstance(value, (core.VarBase, framework.Variable,
                          framework.ComplexVariable)):
        return value
    elif isinstance(value, (core.Tensor, core.LoDTensor)):
        return core.VarBase(value)
    else:
609 610 611 612 613 614
        if isinstance(framework._current_expected_place(),
                      framework.core.CPUPlace):
            if zero_copy is None:
                zero_copy = True
        else:
            assert not zero_copy, "zero_copy mode can only be used with CPUPlace"
615 616 617 618 619 620 621 622 623

        if not isinstance(value, np.ndarray):
            value = np.array(value)

        if dtype is not None:
            dtype = convert_dtype(dtype)
            if value.dtype != dtype:
                value = value.astype(dtype)

624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
        if np.iscomplexobj(value):
            if not name:
                name = framework.unique_name.generate('_generated_var')
            real_var = core.VarBase(
                value=value.real,
                place=framework._current_expected_place(),
                persistable=False,
                zero_copy=zero_copy,
                name=name + ".real")
            imag_var = core.VarBase(
                value=value.imag,
                place=framework._current_expected_place(),
                persistable=False,
                zero_copy=zero_copy,
                name=name + ".imag")
            return framework.ComplexVariable(real_var, imag_var)
        else:
            py_var = core.VarBase(
                value=value,
                place=framework._current_expected_place(),
                persistable=False,
                zero_copy=zero_copy,
                name=name if name else '')
            return py_var