matmul_v2_op.cc 14.4 KB
Newer Older
S
ShenLiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/matmul_v2_op.h"
16

S
ShenLiang 已提交
17 18 19
#include <string>
#include <vector>

20
#include "paddle/fluid/framework/infershape_utils.h"
21 22
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
23

S
ShenLiang 已提交
24 25 26
namespace paddle {
namespace operators {

27 28 29 30 31 32 33
static framework::DDim GetDimForInput(const framework::InferShapeContext& ctx,
                                      const std::string input_name) {
  auto shape = ctx.Attrs().Get<std::vector<int>>("fused_reshape_" + input_name);
  auto axis =
      ctx.Attrs().Get<std::vector<int>>("fused_transpose_" + input_name);
  auto dim = ctx.GetInputDim(input_name);

34 35
  PADDLE_ENFORCE_GT(dim.size(),
                    0,
36 37 38 39 40 41 42 43 44 45 46
                    platform::errors::InvalidArgument(
                        "The Input(%s) has not been initialized properly. The "
                        "shape of Input(%s) = [%s].",
                        dim));

  if (!shape.empty() && !axis.empty()) {
    dim = dim.reshape(shape).transpose(axis);
  }
  return dim;
}

S
ShenLiang 已提交
47 48 49 50 51 52 53 54 55 56
class MatMulV2Op : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "matmul_v2");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "matmul_v2");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "matmul_v2");
    bool trans_x = ctx->Attrs().Get<bool>("trans_x");
    bool trans_y = ctx->Attrs().Get<bool>("trans_y");

57 58
    std::vector<int64_t> dims_x = phi::vectorize(GetDimForInput(*ctx, "X"));
    std::vector<int64_t> dims_y = phi::vectorize(GetDimForInput(*ctx, "Y"));
S
ShenLiang 已提交
59 60
    auto ndims_x = dims_x.size();
    auto ndims_y = dims_y.size();
61 62
    PADDLE_ENFORCE_GT(ndims_x,
                      0,
63 64 65
                      platform::errors::InvalidArgument(
                          "The Input(X) dims size must be greater than 0,"
                          " but reviced dims size is 0. "));
66 67
    PADDLE_ENFORCE_GT(ndims_y,
                      0,
68 69 70
                      platform::errors::InvalidArgument(
                          "The Input(Y) dims size must be greater than 0,"
                          " but reviced dims size is 0. "));
S
ShenLiang 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

    bool x_broadcasted = false, y_broadcasted = false;
    if (ndims_x == 1) {
      dims_x.insert(dims_x.begin(), 1);
      ndims_x = 2;
      x_broadcasted = true;
    }

    if (ndims_y == 1) {
      dims_y.push_back(1);
      ndims_y = 2;
      y_broadcasted = true;
    }

    size_t M, N;
    if (trans_x) {
      M = dims_x[ndims_x - 1];
    } else {
      M = dims_x[ndims_x - 2];
    }
    if (trans_y) {
      N = dims_y[ndims_y - 2];
    } else {
      N = dims_y[ndims_y - 1];
    }

    std::vector<int64_t> new_dims;
98
    if (ndims_x > ndims_y) {
S
ShenLiang 已提交
99
      new_dims.assign(dims_x.begin(), dims_x.end() - 2);
100
    } else if (ndims_x < ndims_y) {
S
ShenLiang 已提交
101
      new_dims.assign(dims_y.begin(), dims_y.end() - 2);
102 103 104 105 106
    } else {
      new_dims.reserve(ndims_x);
      for (size_t i = 0; i < ndims_x - 2; ++i) {
        new_dims.push_back(std::max(dims_x[i], dims_y[i]));
      }
S
ShenLiang 已提交
107 108 109 110 111 112 113 114 115 116 117
    }
    if (!x_broadcasted) {
      new_dims.push_back(M);
    }
    if (!y_broadcasted) {
      new_dims.push_back(N);
    }
    if (x_broadcasted && y_broadcasted) {
      new_dims.push_back(1);
    }

118
    auto ddim_out = phi::make_ddim(new_dims);
119 120

#ifdef PADDLE_WITH_MKLDNN
121 122
    auto shape = ctx->Attrs().Get<std::vector<int>>("fused_reshape_Out");
    auto axis = ctx->Attrs().Get<std::vector<int>>("fused_transpose_Out");
123

124 125
    if (!shape.empty() && !axis.empty()) {
      ddim_out = ddim_out.transpose(axis).reshape(shape);
126 127 128
    }
#endif

129 130
    ctx->SetOutputDim("Out", ddim_out);
    ctx->ShareLoD("X", "Out");
S
ShenLiang 已提交
131 132 133 134 135
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
136
    auto input_data_type =
137
        OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y");
138 139 140

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
141 142
      return framework::OpKernelType(input_data_type,
                                     ctx.GetPlace(),
143 144 145 146 147
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
148 149 150
  }

  framework::OpKernelType GetKernelTypeForVar(
151 152
      const std::string& var_name,
      const framework::Tensor& tensor,
153 154 155
      const framework::OpKernelType& expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
156
      return framework::OpKernelType(
157 158
          framework::TransToProtoVarType(tensor.dtype()),
          tensor.place(),
159
          tensor.layout());
160
    } else {
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
#ifdef PADDLE_WITH_MKLDNN
      // When matmul_v2 is first oneDNN op in a chain (there was some non oneDNN
      // op
      // previously)
      // then we also need to rotate shape NHWC -> NCWH
      if ((expected_kernel_type.data_layout_ ==
           framework::DataLayout::kMKLDNN) &&
          (tensor.layout() != framework::DataLayout::kMKLDNN) &&
          paddle::platform::MKLDNNDeviceContext::tls()
                  .get_cur_paddle_data_layout() ==
              framework::DataLayout::kNHWC) {
        return framework::OpKernelType(expected_kernel_type.data_type_,
                                       tensor.place(),
                                       framework::DataLayout::kNHWC);
      }
#endif
177 178
      return framework::OpKernelType(
          expected_kernel_type.data_type_, tensor.place(), tensor.layout());
179
    }
S
ShenLiang 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
  }
};

class MatMulV2OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "tensor of shape (d0, d1 ... M, K)");
    AddInput("Y", "tensor of shape (d0, d1 ... K, N)");
    AddOutput("Out", "tensor of shape (d0, d1 ... M, N)");
    AddAttr<bool>("trans_x",
                  "Set true to transpose the last two dimensions of X before "
                  "doing multiplication")
        .SetDefault(false);
    AddAttr<bool>("trans_y",
                  "Set true to transpose the last two dimensions of Y before "
                  "doing multiplication")
        .SetDefault(false);
    AddComment(
        R"DOC(Matrix multiplication Out = X * Y. A has shape (d0, d1 ... M, K), 
        B has shape (d0, d1 ... K, N), Out has shape ((d0, d1 ... M, N)). 
        In addition, it also follows the broadcast rule which is similar as
        numpy.matmul.
)DOC");
  }
};

class MatMulV2OpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
C
chentianyu03 已提交
211 212
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
213 214 215 216 217
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
218 219
      return framework::OpKernelType(input_data_type,
                                     ctx.GetPlace(),
220 221 222 223 224
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
C
chentianyu03 已提交
225 226 227
  }

  framework::OpKernelType GetKernelTypeForVar(
228 229
      const std::string& var_name,
      const framework::Tensor& tensor,
C
chentianyu03 已提交
230 231 232
      const framework::OpKernelType& expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
233
      return framework::OpKernelType(
234 235
          framework::TransToProtoVarType(tensor.dtype()),
          tensor.place(),
236
          tensor.layout());
C
chentianyu03 已提交
237
    } else {
238 239
      return framework::OpKernelType(
          expected_kernel_type.data_type_, tensor.place(), tensor.layout());
C
chentianyu03 已提交
240 241
    }
  }
S
ShenLiang 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
};

template <typename T>
class MatMulV2GradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("matmul_v2_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    op->SetAttrMap(this->Attrs());
  }
};

W
wawltor 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
class MatMulV2OpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* context) const override {
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul");
    OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul");
    OP_INOUT_CHECK(context->HasInput("DOut"), "Input", "DOut", "matmul");

    if (context->HasOutput("DX") && context->HasInput("DDY")) {
      context->ShareDim("X", "DX");
    }

    if (context->HasOutput("DY") && context->HasInput("DDX")) {
      context->ShareDim("Y", "DY");
    }

    if (context->HasOutput("DDOut") &&
        (context->HasInput("DDY") || context->HasInput("DDX"))) {
      context->ShareDim("DOut", "DDOut");
    }
  }
};

template <typename T>
class MatMulV2OpDoubleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("matmul_v2_grad_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));

    auto ddx = this->OutputGrad(framework::GradVarName("X"));
    auto ddy = this->OutputGrad(framework::GradVarName("Y"));

    if (!ddx.empty() || !ddy.empty()) {
      op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
    }
    op->SetOutput("DX",
                  ddy.empty() ? this->EmptyInputGrad() : this->InputGrad("X"));
    op->SetOutput("DY",
                  ddx.empty() ? this->EmptyInputGrad() : this->InputGrad("Y"));

    op->SetAttrMap(this->Attrs());
  }
};
314 315 316 317 318 319
class MatMulV2OpTripleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* context) const override {
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
    OP_INOUT_CHECK(
        context->HasInput("X"), "Input", "X", "matmul_v2_triple_grad");
    OP_INOUT_CHECK(
        context->HasInput("Y"), "Input", "Y", "matmul_v2_triple_grad");
    OP_INOUT_CHECK(
        context->HasInput("DOut"), "Input", "DOut", "matmul_v2_triple_grad");
    OP_INOUT_CHECK(
        context->HasInput("DDX"), "Input", "DDX", "matmul_v2_triple_grad");
    OP_INOUT_CHECK(
        context->HasInput("DDY"), "Input", "DDY", "matmul_v2_triple_grad");
    OP_INOUT_CHECK(
        context->HasInput("D_DX"), "Input", "D_DX", "matmul_v2_triple_grad");
    OP_INOUT_CHECK(
        context->HasInput("D_DY"), "Input", "D_DY", "matmul_v2_triple_grad");
    OP_INOUT_CHECK(context->HasInput("D_DDOut"),
                   "Input",
                   "D_DDOut",
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
                   "matmul_v2_triple_grad");

    if (context->HasOutput("D_X_out")) {
      context->ShareDim("X", "D_X_out");
    }
    if (context->HasOutput("D_Y_out")) {
      context->ShareDim("Y", "D_Y_out");
    }
    if (context->HasOutput("D_DOut_out")) {
      context->ShareDim("DOut", "D_DOut_out");
    }
    if (context->HasOutput("D_DDX_out")) {
      context->ShareDim("X", "D_DDX_out");
    }
    if (context->HasOutput("D_DDY_out")) {
      context->ShareDim("Y", "D_DDY_out");
    }
  }
};

template <typename T>
class MatMulV2OpTripleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("matmul_v2_triple_grad");

    // get input from double grad
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput("DOut", this->Input("DOut"));
    op->SetInput("DDX", this->Input("DDX"));
    op->SetInput("DDY", this->Input("DDY"));
    op->SetInput("D_DX", this->OutputGrad("DX"));
    op->SetInput("D_DY", this->OutputGrad("DY"));
    op->SetInput("D_DDOut", this->OutputGrad("DDOut"));

    // set outputs
    op->SetOutput("D_X_out", this->InputGrad("X"));
    op->SetOutput("D_Y_out", this->InputGrad("Y"));
    op->SetOutput("D_DOut_out", this->InputGrad("DOut"));
    op->SetOutput("D_DDX_out", this->InputGrad("DDX"));
    op->SetOutput("D_DDY_out", this->InputGrad("DDY"));

    op->SetAttrMap(this->Attrs());
  }
};
S
ShenLiang 已提交
386 387 388 389
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
390 391 392
REGISTER_OPERATOR(matmul_v2,
                  ops::MatMulV2Op,
                  ops::MatMulV2OpMaker,
S
ShenLiang 已提交
393 394 395
                  ops::MatMulV2GradOpMaker<paddle::framework::OpDesc>,
                  ops::MatMulV2GradOpMaker<paddle::imperative::OpBase>);

396 397
DECLARE_INFER_SHAPE_FUNCTOR(matmul_v2_grad,
                            MatMulV2GradInferShapeFunctor,
398
                            PD_INFER_META(phi::GeneralBinaryGradInferMeta));
399 400
REGISTER_OPERATOR(matmul_v2_grad,
                  ops::MatMulV2OpGrad,
W
wawltor 已提交
401
                  ops::MatMulV2OpDoubleGradMaker<paddle::framework::OpDesc>,
402 403
                  ops::MatMulV2OpDoubleGradMaker<paddle::imperative::OpBase>,
                  MatMulV2GradInferShapeFunctor);
W
wawltor 已提交
404

405 406
REGISTER_OPERATOR(matmul_v2_grad_grad,
                  ops::MatMulV2OpDoubleGrad,
407 408 409 410
                  ops::MatMulV2OpTripleGradMaker<paddle::framework::OpDesc>,
                  ops::MatMulV2OpTripleGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(matmul_v2_triple_grad, ops::MatMulV2OpTripleGrad);